
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 1329–1338
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

1329

Exemplar Encoder-Decoder for Neural Conversation Generation

Gaurav Pandey, Danish Contractor, Vineet Kumar and Sachindra Joshi
IBM Research AI
New Delhi, India

{gpandey1, dcontrac, vineeku6, jsachind}@in.ibm.com

Abstract

In this paper we present the Exemplar
Encoder-Decoder network (EED), a novel
conversation model that learns to uti-
lize similar examples from training data
to generate responses. Similar conver-
sation examples (context-response pairs)
from training data are retrieved using a
traditional TF-IDF based retrieval model.
The retrieved responses are used to cre-
ate exemplar vectors that are used by the
decoder to generate the response. The
contribution of each retrieved response is
weighed by the similarity of correspond-
ing context with the input context. We
present detailed experiments on two large
data sets and find that our method out-
performs state of the art sequence to se-
quence generative models on several re-
cently proposed evaluation metrics. We
also observe that the responses generated
by the proposed EED model are more in-
formative and diverse compared to exist-
ing state-of-the-art method.

1 Introduction

With the availability of large datasets and
the recent progress made by neural meth-
ods, variants of sequence to sequence learning
(seq2seq) (Sutskever et al., 2014) architectures
have been successfully applied for building con-
versational systems (Serban et al., 2016, 2017b).
However, despite these methods being the state-
of-the art frameworks for conversation generation,
they suffer from problems such as lack of diver-
sity in responses and generation of short, repetitive
and uninteresting responses (Liu et al., 2016; Ser-
ban et al., 2016, 2017b). A large body of recent

literature has focused on overcoming such chal-
lenges (Li et al., 2016a; Lowe et al., 2017).

In part, such problems arise as all information
required to generate responses needs to be cap-
tured as part of the model parameters learnt from
the training data. These model parameters alone
may not be sufficient for generating natural con-
versations. Therefore, despite providing enormous
amount of data, neural generative systems have
been found to be ineffective for use in real world
applications (Liu et al., 2016).

In this paper, we focus our attention on closed
domain conversations. A characteristic feature of
such conversations is that over a period of time,
some conversation contexts1 are likely to have oc-
curred previously (Lu et al., 2017b). For instance,
Table 1 shows some contexts from the Ubuntu dia-
log corpus. Each row presents an input dialog con-
text with its corresponding gold response followed
by a similar context and response seen in train-
ing data – as can be seen, contexts for “installing
dms”, “sharing files”, “blocking ufw ports” have
all occurred in training data. We hypothesize that
being able to refer to training responses for pre-
viously seen similar contexts could be a helpful
signal to use while generating responses.

In order to exploit this aspect of closed do-
main conversations we build our neural encoder-
decoder architecture called the Exemplar Encoder
Decoder (EED), that learns to generate a response
for a given context by exploiting similar contexts
from training conversations. Thus, instead of hav-
ing the seq2seq model learn patterns of language
only from aligned parallel corpora, we assist the
model by providing it closely related (similar)
samples from the training data that it can refer to
while generating text.

Specifically, given a context c, we retrieve a set
1We use the phrase “dialog context”, “conversation con-

text” and “context” interchangeably throughout the paper.

1330

Input Context Gold Response Similar Context in training data Associated Response

U1 if you want autologin install a dm of
some sort

lightdm, gdm, kdm,
xdm, slim, etc. U1 if you’re running a dm, it will probably

restart x e.g. gdm, kdm, xdm

U2 what is a dm U2 whats a dm?

U1 is it possible to share a file in one user’s
home directory with another user?

so chmod 777
should do it, right? U1 howto set right permission for my home

directory?
chmod and chown? u mean
that sintax

U2 if you set permissions (to ’group’,’other’
or with an acl) U2 but which is the syntax to set permission

for my user in my home user directory ?

U1
is there a way to block all ports in ufw
and only allow the ports that have been
allowed?

do i need to use ipt-
ables in order to use
ufw?

U1 is ufw blocking connections to all ports
by default?

how do i block all ports with
ufw?

U2 try to get familiar with configuring ip-
tables U2 no, all ports are open by default.

U1
how do i upgrade on php beyond 5.3.2 on
ubuntu using apt-get ? ? ? this version is
a bit old

lucid, 10.04 ubuntu
10.04.4 lts U1

hello!, how can i upgrade apt-get?(i have
version 0.7.9 installed but i need to up-
date to latest)

I’m using ubuntu server 10.04
64

U2 which version of ubuntu are you using? U2 sudo apt-get upgrade apt-get
U1 what version of ubuntu do you have?

Table 1: Sample input contexts and corresponding gold responses from Ubuntu validation dataset along
with similar contexts seen in training data and their corresponding responses. We refer to training data
as training data for the Ubuntu corpus. The highlighted words are common between the gold response
and the exemplar response.

of context-response pairs (c(k), r(k)), 1 ≤ k ≤ K
using an inverted index of training data. We create
an exemplar vector e(k) by encoding the response
r(k) (also referred to as exemplar response) along
with an encoded representation of the current con-
text c. We then learn the importance of each ex-
emplar vector e(k) based on the likelihood of it be-
ing able to generate the ground truth response. We
believe that e(k) may contain information that is
helpful in generating the response. Table 1 high-
lights the words in exemplar responses that appear
in the ground truth response as well.

Contributions: We present a novel Exemplar
Encoder-Decoder (EED) architecture that makes
use of similar conversations, fetched from an
index of training data. The retrieved context-
response pairs are used to create exemplar vec-
tors which are used by the decoder in the
EED model, to learn the importance of train-
ing context-response pairs, while generating re-
sponses. We present detailed experiments on the
publicly benchmarked Ubuntu dialog corpus data
set (Lowe et al., 2015) as well a large collection
of more than 127,000 technical support conversa-
tions. We compare the performance of the EED
model with the existing state of the art generative
models such as HRED (Serban et al., 2016) and
VHRED (Serban et al., 2017b). We find that our
model out-performs these models on a wide vari-
ety of metrics such as the recently proposed Activ-
ity Entity metrics (Serban et al., 2017a) as well as
Embedding-based metrics (Lowe et al., 2015). In
addition, we present qualitative insights into our
results and we find that exemplar based responses

are more informative and diverse.
The rest of the paper is organized as follows.

Section 2 briefly describes the recent works in neu-
ral dialogue generation The details of the proposed
EED model for dialogue generation are described
in detail in Section 3. In Section 4, we describe
the datasets as well as the details of the models
used during training. We present quantitative and
qualitative results of EED model in Section 5.

2 Related Work

In this section, we compare our work against other
data-driven end-to-end conversation models. End-
to-end conversation models can be further classi-
fied into two broad categories — generation based
models and retrieval based models.

Generation based models cast the problem of
dialogue generation as a sequence to sequence
learning problem. Initial works treat the entire
context as a single long sentence and learn an
encoder-decoder framework to generate response
word by word (Shang et al., 2015; Vinyals and
Le, 2015). This was followed by work that mod-
els context better by breaking it into conversation
history and last utterance (Sordoni et al., 2015b).
Context was further modeled effectively by us-
ing a hierarchical encoder decoder (HRED) model
which first learns a vector representation of each
utterance and then combines these representations
to learn vector representation of context (Serban
et al., 2016). Later, an alternative hierarchical
model called VHRED (Serban et al., 2017b) was
proposed, where generated responses were condi-
tioned on latent variables. This leads to more in-

1331

formative responses and adds diversity to response
generation. Models that explicitly incorporate di-
versity in response generation have also been stud-
ied in literature (Li et al., 2016b; Vijayakumar
et al., 2016; Cao and Clark, 2017; Zhao et al.,
2017).

Our work differs from the above as none of
these above approaches utilize similar conversa-
tion contexts observed in the training data explic-
itly.

Retrieval based models on the other hand treat
the conversation context as a query and obtain a
set of responses using information retrieval (IR)
techniques from the conversation logs (Ji et al.,
2014). There has been further work where the
responses are further ranked using a deep learn-
ing based model (Yan et al., 2016a,b; Qiu et al.,
2017). On the other hand of the spectrum, end-
to-end deep learning based rankers have also been
employed to generate responses (Wu et al., 2017;
Henderson et al., 2017). Recently a framework has
also been proposed that uses a discriminative di-
alog network that ranks the candidate responses
received from a response generator network and
trains both the networks in an end to end manner
(Lu et al., 2017a).

In contrast to the above models, we use the in-
put contexts as well as the retrieved responses for
generating the final responses. Contemporaneous
to our work, a generative model for machine trans-
lation that employs retrieved translation pairs has
also been proposed (Gu et al., 2017). We note that
while the underlying premise of both the papers
remains the same, the difference lies in the mech-
anism of incorporating the retrieved data.

3 Exemplar Encoder Decoder

3.1 Overview

A conversation consists of a sequence of utter-
ances. At a given point in the conversation, the ut-
terances expressed prior to it are jointly referred to
as the context. The utterance that immediately fol-
lows the context is referred to as the response. As
discussed in Section 1, given a conversational con-
text, we wish to to generate a response by utiliz-
ing similar context-response pairs from the train-
ing data. We retrieve a set of K exemplar context-
response pairs from an inverted index created us-
ing the training data in an off-line manner. The
input and the retrieved context-response pairs are
then fed to the Exemplar Encoder Decoder (EED)

network. A schematic illustration of the EED net-
work is presented in Figure 1. The EED encoder
combines the input context and the retrieved re-
sponses to create a set of exemplar vectors. The
EED decoder then uses the exemplar vectors based
on the similarity between the input context and re-
trieved contexts to generate a response. We now
provide details of each of these modules.

3.2 Retrieval of Similar Context-Response
Pairs

Given a large collection of conversations as
(context, response) pairs, we index each re-
sponse and its corresponding context in tf − idf
vector space. We further extract the last turn of a
conversation and index it as an additional attribute
of the context-response document pairs so as to al-
low directed queries based on it.

Given an input context c, we construct a query
that weighs the last utterance in the context twice
as much as the rest of the context and use it to
retrieve the top-k similar context-response pairs
from the index based on a BM25 (Robertson
et al., 2009) retrieval model. These retrieved
pairs form our exemplar context-response pairs
(c(k), r(k)), 1 ≤ k ≤ K.

3.3 Exemplar Encoder Network

Given the exemplar pairs (c(k), r(k)), 1 ≤ k ≤
K and an input context-response pair (c, r), we
feed the input context c and the exemplar contexts
c(1), . . . , c(K) through an encoder to generate the
embeddings as given below:

ce = Encodec(c)

c(k)e = Encodec(c
(k)), 1 ≤ k ≤ K

Note that we do not constrain our choice of en-
coder and that any parametrized differentiable ar-
chitecture can be used as the encoder to gener-
ate the above embeddings. Similarly, we feed the
exemplar responses r(1), . . . , r(K) through a re-
sponse encoder to generate response embeddings
r
(1)
e , . . . , r

(K)
e , that is,

r(k)e = Encoder(r
(k)), 1 ≤ k ≤ K (1)

Next, we concatenate the exemplar response en-
coding r

(k)
e with an encoded representation of cur-

rent context ce as shown in equation 2 to create the
exemplar vector e(k). This allows us to include in-

1332

Figure 1: A schematic illustration of the EED network. The input context-response pair is (c, r), while
the exemplar context-response pairs are (c(k), r(k)), 1 ≤ k ≤ K.

formation about similar responses along with the
encoded input context representation.

e(k) = [ce; r
(k)
e], 1 ≤ k ≤ K (2)

The exemplar vectors e(k), 1 ≤ k ≤ K are fur-
ther used by the decoder for generating the ground
truth response as described in the next section.

3.4 Exemplar Decoder Network
Recall that we want the exemplar responses to help
generate the responses based on how similar the
corresponding contexts are with the input context.
More similar an exemplar context is to the input
context, higher should be its effect in generating
the response. To this end, we compute the similar-
ity scores s(k), 1 ≤ k ≤ K using the encodings
computed in Section 3.3 as shown below.

s(k) =
exp(cTe c

(k)
e)∑K

l=1 exp(c
T
e c

(l)
e)

(3)

Next, each exemplar vector e(k) computed in
Section 3.3, is fed to a decoder, where the decoder
is responsible for predicting the ground truth re-
sponse from the exemplar vector. Let pdec(r|e(k))
be the distribution of generating the ground truth
response given the exemplar embedding. The ob-
jective function to be maximized, is expressed as a

function of the scores s(k), the decoding distribu-
tion pdec and the exemplar vectors e(k) as shown
below:

ll =
K∑
k=1

s(k) log pdec(r|e(k)) (4)

Note that we weigh the contribution of each exem-
plar vector to the final objective based on how sim-
ilar the corresponding context is to the input con-
text. Moreover, the similarities are differentiable
function of the input and hence, trainable by back
propagation. The model should learn to assign
higher similarities to the exemplar contexts, whose
responses are helpful for generating the correct re-
sponse.

The model description uses encoder and de-
coder networks that can be implemented using any
differentiable parametrized architecture. We dis-
cuss our choices for the encoders and decoder in
the next section.

3.5 The Encoders and Decoder
In this section, we discuss the various encoders
and the decoder used by our model. The con-
versation context consists of an ordered sequence
of utterances and each utterance can be further
viewed as a sequence of words. Thus, con-
text can be viewed as having multiple levels of

1333

hierarchies—at the word level and then at the ut-
terance (sentence) level. We use a hierarchical re-
current encoder—popularly employed as part of
the HRED framework for generating responses
and query suggestions (Sordoni et al., 2015a; Ser-
ban et al., 2016, 2017b). The word-level encoder
encodes the vector representations of words of
an utterance to an utterance vector. Finally, the
utterance-level encoder encodes the utterance vec-
tors to a context vector.

Let (u1, . . . ,uN) be the utterances present in
the context. Furthermore, let (wn1, . . . , wnMn) be
the words present in the nth utterance for 1 ≤ n ≤
N . For each word in the utterance, we retrieve
its corresponding embedding from an embedding
matrix. The word embedding for wnm will be de-
noted as wenm. The encoding of the nth utterance
can be computed iteratively as follows:

hnm = f1(hnm−1, wenm), 1 ≤ m ≤Mn (5)

We use an LSTM (Hochreiter and Schmidhuber,
1997) to model the above equation. The last hid-
den state hnMn is referred to as the utterance en-
coding and will be denoted as hn.

The utterance-level encoder takes the utterance
encodings h1, . . . , hN as input and generates the
encoding for the context as follows:

cen = f2(cen−1, hn), 1 ≤ n ≤ N (6)

Again, we use an LSTM to model the above equa-
tion. The last hidden state ceN is referred to as the
context embedding and is denoted as ce.

A single level LSTM is used for embedding the
response. In particular, let (w1, . . . , wM) be the
sequence of words present in the response. For
each word w, we retrieve the corresponding word
embedding we from a word embedding matrix.
The response embedding is computed from the
word embeddings iteratively as follows:

rem = g(rem−1, wem), 1 ≤ m ≤M (7)

Again, we use an LSTM to model the above equa-
tion. The last hidden state rem is referred to as the
response embedding and is denoted as re.

4 Experimental Setup

4.1 Datasets
4.1.1 Ubuntu Dataset
We conduct experiments on Ubuntu Dialogue Cor-
pus (Lowe et al., 2015)(v2.0)2. Ubuntu dialogue
corpus has about 1M context response pairs along
with a label. The label value 1 indicates that the
response associated with a context is the correct
response and is incorrect otherwise. As we are
only interested in positive labeled data we work
with label = 1. Table 2 depicts some statistics for
the dataset.

Size
Training Pairs 499,873
Validation Pairs 19,560
Test Pairs 18,920

|V | 538,328

Table 2: Dataset statistics for Ubuntu Dialog Cor-
pus v2.0 (Lowe et al., 2015), where |V | represents
the size of vocabulary.

4.1.2 Tech Support Dataset
We also conduct our experiments on a large tech-
nical support dataset with more than 127K con-
versations. We will refer to this dataset as Tech
Support dataset in the rest of the paper. Tech
Support dataset contains conversations pertaining
to an employee seeking assistance from an agent
(technical support) — to resolve problems such
as password reset, software installation/licensing,
and wireless access. In contrast to Ubuntu dataset,
this dataset has clearly two distinct users — em-
ployee and agent. In our experiments we model
the agent responses only.

For each conversation in the tech support data,
we sample context and response pairs to create a
dataset similar to the Ubuntu dataset format. Note
that multiple context-response pairs can be gen-
erated from a single conversation. For each con-
versation, we sample 25% of the possible context-
response pairs. We create validation pairs by
selecting 5000 conversations randomly and sam-
pling context response pairs). Similarly, we create
test pairs from a different subset of 5000 conver-
sations. The remaining conversations are used to

2https://github.com/rkadlec/
ubuntu-ranking-dataset-creator

https://github.com/rkadlec/ubuntu-ranking-dataset-creator
https://github.com/rkadlec/ubuntu-ranking-dataset-creator

1334

create training context-response pairs. Table 3 de-
picts some statistics for this dataset:

Size
Conversations 127,466

Training Pairs 204,808
Validation Pairs 8,738
Test Pairs 8,756

|V | 293,494

Table 3: Dataset statistics for Tech Support
dataset.

4.2 Model and Training Details
The EED and HRED models were implemented
using the PyTorch framework (Paszke et al.,
2017). We initialize the word embedding matrix
as well as the weights of context and response en-
coders from the standard normal distribution with
mean 0 and variance 0.01. The biases of the en-
coders and decoder are initialized with 0. The
word embedding matrix is shared by the context
and response encoders. For Ubuntu dataset, we
use a word embedding size of 600, whereas the
size of the hidden layers of the LSTMs in context
and response encoders and the decoder is fixed at
1200. For Tech support dataset, we use a word em-
bedding size of 128. Furthermore, the size of the
hidden layers of the multiple LSTMs in context
and response encoders and the decoder is fixed at
256. A smaller embedding size was chosen for
the Tech Support dataset since we observed much
less diversity in the responses of the Tech Support
dataset as compared to Ubuntu dataset.

Two different encoders are used for encoding
the input context (not shown in Figure 1 for sim-
plicity). The output of the first context encoder is
concatenated with the exemplar response vectors
to generate exemplar vectors as detailed in Sec-
tion 3.3. The output of the second context encoder
is used to compute the scoring function as detailed
in Section 3.4. For each input context, we re-
trieve 5 similar context-response pairs for Ubuntu
dataset and 3 context-response pairs for Tech sup-
port dataset using the tf-idf mechanism discussed
in Section 3.2.

We use the Adam optimizer (Kingma and Ba,
2014) with a learning rate of 1e − 4 for training
the model. A batch size of 20 samples was used

during training. In order to prevent overfitting, we
use early stopping with log-likelihood on valida-
tion set as the stopping criteria. In order to gen-
erate the samples using the proposed EED model,
we identify the exemplar context that is most sim-
ilar to the input context based on the learnt scor-
ing function discussed in Section 3.4. The cor-
responding exemplar vector is fed to the decoder
to generate the response. The samples are gener-
ated using a beam search with width 5. The av-
erage per-word log-likelihood is used to score the
beams.

5 Results & Evaluation

5.1 Quantitative Evaluation

5.1.1 Activity and Entity Metrics

A traditional and popular metric used for compar-
ing a generated sentence with a ground truth sen-
tence is BLEU (Papineni et al., 2002) and is fre-
quently used to evaluate machine translation. The
metric has also been applied to compute scores
for predicted responses in conversations, but it has
been found to be less indicative of actual perfor-
mance (Liu et al., 2016; Sordoni et al., 2015a; Ser-
ban et al., 2017a), as it is extremely sensitive to
the exact words in the ground truth response, and
gives equal importance to stop words/phrases and
informative words.

Serban et al. (2017a) recently proposed a new
set of metrics for evaluating dialogue responses
for the Ubuntu corpus. It is important to highlight
that these metrics have been specifically designed
for the Ubuntu corpus and evaluate a generated
response with the ground truth response by com-
paring the coarse level representation of an utter-
ance (such as entities, activities, Ubuntu OS com-
mands). Here is a brief description of each metric:

• Activity: Activity metric compares the ac-
tivities present in a predicted response with
the ground truth response. Activity can be
thought of as a verb. Thus, all the verbs in
a response are mapped to a set of manually
identified list of 192 verbs.

• Entity: This compares the technical entities
that overlap with the ground truth response.
A total of 3115 technical entities is identified
using public resources such as Debian pack-
age manager APT.

1335

Activity Entity Tense Cmd
Model P R F1 P R F1 Acc. Acc.
LSTM* 1.7 1.03 1.18 1.18 0.81 0.87 14.57 94.79
VHRED* 6.43 4.31 4.63 3.28 2.41 2.53 20.2 92.02
HRED* 5.93 4.05 4.34 2.81 2.16 2.22 22.2 92.58

EED 6.42 4.77 4.87 3.8 2.91 2.99 31.73 95.06

Table 4: Activity & Entity metrics for the Ubuntu corpus. LSTM*, HRED* & VHRED* as reported by
Serban et al. (2017a).

• Tense: This measure compares the time tense
of ground truth with predicted response.

• Cmd: This metric computes accuracy by
comparing commands identified in ground
truth utterance with a predicted response.

Table 4 compares our model with other re-
cent generative models (Serban et al., 2017a) —
LSTM (Shang et al., 2015), HRED (Serban et al.,
2016) & VHRED (Serban et al., 2017b).We do not
compare our model with Multi-Resolution RNN
(MRNN) (Serban et al., 2017a), as MRNN explic-
itly utilizes the activities and entities during the
generation process. In contrast, the proposed EED
model and the other models used for comparison
are agnostic to the activity and entity information.
We use the standard script3 to compute the met-
rics.

The EED model scores better than generative
models on almost all of the metrics, indicating
that we generate more informative responses than
other state-of-the-art generative based approaches
for Ubuntu corpus. The results show that re-
sponses associated with similar contexts may con-
tain the activities and entities present in the ground
truth response, and thus help in response genera-
tion. This is discussed further in Section 5.2. Ad-
ditionally, we compared our proposed EED with
a retrieval only baseline. The retrieval baseline
achieves an activity F1 score of 4.23 and entity
F1 score of 2.72 compared to 4.87 and 2.99 re-
spectively achieved by our method on the Ubuntu
corpus.

The Tech Support dataset is not evaluated using
the above metrics, since activity and entity infor-
mation is not available for this dataset.

3https://github.com/julianser/Ubuntu-Multiresolution-
Tools/blob/master/ActEntRepresentation/eval file.sh

5.1.2 Embedding Metrics
Embedding metrics (Lowe et al., 2017) were pro-
posed as an alternative to word by word compar-
ison metrics such as BLEU. We use pre-trained
Google news word embeddings4 similar to Ser-
ban et al. (2017b), for easy reproducibility as these
metrics are sensitive to the word embeddings used.
The three metrics of interest utilize the word vec-
tors in ground truth response and a predicted re-
sponse and are discussed below:

• Average: Average word embedding vec-
tors are computed for the candidate response
and ground truth. The cosine similarity is
computed between these averaged embed-
dings. High similarity gives as indication
that ground truth and predicted response have
similar words.

• Greedy: Greedy matching score finds the
most similar word in predicted response to
ground truth response using cosine similarity.

• Extrema: Vector extrema score computes the
maximum or minimum value of each dimen-
sion of word vectors in candidate response
and ground truth.

Of these, the embedding average metric is the
most reflective of performance for our setup. The
extrema representation, for instance, is very sensi-
tive to text length and becomes ineffective beyond
single length sentences(Forgues et al., 2014). We
use the publicly available script5 for all our com-
putations. As the test outputs for HRED are not
available for Technical Support dataset, we use our

4GoogleNews-vectors-negative300.bin from https://
code.google.com/archive/p/word2vec/

5https://github.com/julianser/
hed-dlg-truncated/blob/master/
Evaluation/embedding_metrics.py

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
https://github.com/julianser/hed-dlg-truncated/blob/master/Evaluation/embedding_metrics.py
https://github.com/julianser/hed-dlg-truncated/blob/master/Evaluation/embedding_metrics.py
https://github.com/julianser/hed-dlg-truncated/blob/master/Evaluation/embedding_metrics.py

1336

Ubuntu Tech Support
Model Average Greedy Extrema Average Greedy Extrema
HRED 0.5131 0.4103 0.3263 0.6372 0.5100 0.4355
EED 0.5528 0.4172 0.3134 0.6420 0.5125 0.4356

Table 5: Embedding Metrics (Lowe et al., 2015) for Ubuntu and Technical Support Corpus.

Ubuntu Tech Support
Model distinct-1 distinct-2 distinct-3 distinct-1 distinct-2 distinct-3
HRED 1154 8668 22417 645 3510 6365
EED 1173 9572 29447 732 4149 7877

Table 6: The number of unique tokens, token-pairs and token-triplets for Ubuntu and Technical Support
Corpus.

Input Context (C) and exemplar response (R) Generated/Ground Truth Responses

1

C: i want to check ntfs file systems. is fsck ok with ntfs.
→ no , you ’d need to use chkdsk from windows. →
R: i already symlinked ntfsfix to fsck. ntfs and am
scanning the unmounted devices

HRED: i know , but i dont know how to do that
VHRED: how can i do that ?
EED: i am trying to use ntfs 3g i have a windows partition.
GT: i dont have windows installed

2

C: anyone help me ? → seems that its detecting grub ,
have you tried checking continue without installing
grub ?
R: try the live cd... you ca n’t boot into linux
unless grub install

HRED: yes i did , but i have no idea how to fix it
VHRED: yes i did. i dont know how to do it
EED: nope not yet. grub install cd is not working
GT: no i did not.

3
C: any ideas on my mplayer problem ? → reinstall.
apt-get purge mplayer then reinstall
R: but half my system depends on this package ...

HRED: I did that , but it didn’t work
VHRED: I dont know how to do that
EED: does n t work. package does n t work
GT: that does n’t seem as a solution

4

C: any of you guys in here know how to take a package
on launchpad and recompile it and submit to your
own ppa ? https : //launchpad.net/ mojocode/+archive
/ppa ¡ ¡ i ’m trying to take the nginx package and install
the rtmp module → could n’t you download the source
and just commit it to your own ?
R: i need prop . drivers

HRED: I don’t know how to do that ,
I just want to know if there is a way to do it
VHRED: no , I just want to make it so I can use it
EED: i need to get the source package. package
manager is not available
GT: so i figured how how to copy into my private ppa .
any idea how to download those source files maybe and make
modifications to resubmit and recompile ? https :
//launchpad.net / blendedbyus/+archive/master/+packages

5

C: hi people , can you help me uninstall a package ?
i did dpkg -i virtualbox-4.2 4.2.2-81494 ubuntu precise
amd64.deb. how do i uninstall it , i ca n’t find the

package from apt-get → sudo apt-get purge virtualbox
should work fine → package virtualbox is not installed
, so not removed → does n’t work : (
R: sudo dpkg – remove – force < package >

HRED: what version of ubuntu ?
VHRED: did you try sudo apt-get install virtualbox-ose
EED: sudo dpkg reconfigure package package manager
GT: if you ca n’t find the package ; sudo aptitude search virtualbox

Table 7: Contexts, exemplar responses and responses generated by HRED, VHRED and the proposed
EED model. We use the published responses for HRED and VHRED. GT indicates the ground truth
response. The change of turn is indicated by →. The highlighted words in bold are common between
the exemplar response and the response predicted by EED.

own implementation of HRED. Table 5 compares
our model with HRED, and depicts that our model
scores better on all metrics for Technical Support

dataset, and on majority of the metrics for Ubuntu
dataset.

We note that the improvement achieved by the

1337

EED model on activity and entity metrics are
much more significant than those on embedding
metrics. This suggests that the EED model is bet-
ter able to capture the specific information (objects
and actions) present in the conversations.

Finally, we evaluate the diversity of the gener-
ated responses for EED against HRED by count-
ing the number of unique tokens, token-pairs and
token-triplets present in the generated responses
on Ubuntu and Tech Support dataset. The results
are shown in Table 6. As can be observed, the re-
sponses in EED have a larger number of distinct
tokens, token-pairs and token-triplets than HRED,
and hence, are arguably more diverse.

5.2 Qualitative Evaluation

Table 7 presents the responses generated by
HRED, VHRED and the proposed EED for a few
selected contexts along with the corresponding
similar exemplar responses. As can be observed
from the table, the responses generated by EED
tend to be more specific to the input context as
compared to the responses of HRED and VHRED.
For example, in conversations 1 and 2 we find that
both HRED and VHRED generate simple generic
responses whereas EED generates responses with
additional information such as the type of disk par-
tition used or a command not working. This is
also confirmed by the quantitative results obtained
using activity and entity metrics in the previous
section. We further observe that the exemplar re-
sponses contain informative words that are utilized
by the EED model for generating the responses as
highlighted in Table 7.

6 Conclusions

In this work, we propose a deep learning method,
Exemplar Encoder Decoder (EED), that given a
conversation context uses similar contexts and cor-
responding responses from training data for gen-
erating a response. We show that by utilizing this
information the system is able to outperform state
of the art generative models on publicly available
Ubuntu dataset. We further show improvements
achieved by the proposed method on a large col-
lection of technical support conversations.

While in this work, we apply the exemplar en-
coder decoder network on conversational task, the
method is generic and could be used with other
tasks such as question answering and machine
translation. In our future work we plan to extend

the proposed method to these other applications.

Acknowledgements

We are grateful to the anonymous reviewers for
their comments that helped in improving the pa-
per.

References
Kris Cao and Stephen Clark. 2017. Latent variable di-

alogue models and their diversity. In Proceedings
of the 15th Conference of the European Chapter of
the Association for Computational Linguistics, vol-
ume 2, pages 182–187.

Gabriel Forgues, Joelle Pineau, Jean-Marie
Larchevêque, and Réal Tremblay. 2014. Boot-
strapping dialog systems with word embeddings.
In Nips, modern machine learning and natural
language processing workshop, volume 2.

Jiatao Gu, Yong Wang, Kyunghyun Cho, and Vic-
tor OK Li. 2017. Search engine guided non-
parametric neural machine translation. arXiv
preprint arXiv:1705.07267.

Matthew Henderson, Rami Al-Rfou’, Brian Strope,
Yun-Hsuan Sung, László Lukács, Ruiqi Guo, San-
jiv Kumar, Balint Miklos, and Ray Kurzweil. 2017.
Efficient natural language response suggestion for
smart reply. CoRR, abs/1705.00652.

Sepp Hochreiter and Jurgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Zongcheng Ji, Zhengdong Lu, and Hang Li. 2014. An
information retrieval approach to short text conver-
sation. CoRR, abs/1408.6988.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016a. A diversity-promoting ob-
jective function for neural conversation models. In
NAACL HLT 2016, The 2016 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, San Diego California, USA, June 12-17,
2016, pages 110–119.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016b. A diversity-promoting ob-
jective function for neural conversation models. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 110–119.

http://aclweb.org/anthology/N/N16/N16-1014.pdf
http://aclweb.org/anthology/N/N16/N16-1014.pdf

1338

Chia-Wei Liu, Ryan Lowe, Iulian V Serban, Michael
Noseworthy, Laurent Charlin, and Joelle Pineau.
2016. How not to evaluate your dialogue system:
An empirical study of unsupervised evaluation met-
rics for dialogue response generation. arXiv preprint
arXiv:1603.08023.

Ryan Lowe, Nissan Pow, Iulian Serban, and Joelle
Pineau. 2015. The ubuntu dialogue corpus: A large
dataset for research in unstructured multi-turn dia-
logue systems. arXiv preprint arXiv:1506.08909.

Ryan Thomas Lowe, Nissan Pow, Iulian Vlad Serban,
Laurent Charlin, Chia-Wei Liu, and Joelle Pineau.
2017. Training end-to-end dialogue systems with
the ubuntu dialogue corpus. Dialogue & Discourse,
8(1):31–65.

Jiasen Lu, Anitha Kannan, Jianwei Yang, Devi Parikh,
and Dhruv Batra. 2017a. Best of both worlds:
Transferring knowledge from discriminative learn-
ing to a generative visual dialog model. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems 30, pages
314–324.

Yichao Lu, Phillip Keung, Shaonan Zhang, Jason Sun,
and Vikas Bhardwaj. 2017b. A practical approach
to dialogue response generation in closed domains.
arXiv preprint arXiv:1703.09439.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.

Minghui Qiu, Feng-Lin Li, Siyu Wang, Xing Gao, Yan
Chen, Weipeng Zhao, Haiqing Chen, Jun Huang,
and Wei Chu. 2017. Alime chat: A sequence to se-
quence and rerank based chatbot engine. In ACL.

Stephen Robertson, Hugo Zaragoza, et al. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends R© in Information Re-
trieval, 3(4):333–389.

Iulian Serban, Alessandro Sordoni, Yoshua Bengio,
Aaron C. Courville, and Joelle Pineau. 2016. Build-
ing end-to-end dialogue systems using generative hi-
erarchical neural network models. In AAAI.

Iulian Vlad Serban, Tim Klinger, Gerald Tesauro, Kar-
tik Talamadupula, Bowen Zhou, Yoshua Bengio,
and Aaron C Courville. 2017a. Multiresolution re-
current neural networks: An application to dialogue
response generation. In AAAI, pages 3288–3294.

Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe,
Laurent Charlin, Joelle Pineau, Aaron C Courville,
and Yoshua Bengio. 2017b. A hierarchical latent
variable encoder-decoder model for generating di-
alogues. In AAAI, pages 3295–3301.

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015.
Neural responding machine for short-text conversa-
tion. In ACL.

Alessandro Sordoni, Yoshua Bengio, Hossein Vahabi,
Christina Lioma, Jakob Grue Simonsen, and Jian-
Yun Nie. 2015a. A hierarchical recurrent encoder-
decoder for generative context-aware query sugges-
tion. In Proceedings of the 24th ACM International
on Conference on Information and Knowledge Man-
agement, pages 553–562. ACM.

Alessandro Sordoni, Michel Galley, Michael Auli,
Chris Brockett, Yangfeng Ji, Margaret Mitchell,
Jian-Yun Nie, Jianfeng Gao, and William B. Dolan.
2015b. A neural network approach to context-
sensitive generation of conversational responses. In
HLT-NAACL.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104–3112.

Ashwin K Vijayakumar, Michael Cogswell, Ram-
prasath R Selvaraju, Qing Sun, Stefan Lee, David
Crandall, and Dhruv Batra. 2016. Diverse beam
search: Decoding diverse solutions from neural se-
quence models. arXiv preprint arXiv:1610.02424.

Oriol Vinyals and Quoc V. Le. 2015. A neural conver-
sational model. CoRR, abs/1506.05869.

Yu Wu, Wei Wu, Chen Xing, Can Xu, Zhoujun Li, and
Ming Zhou. 2017. A sequential matching frame-
work for multi-turn response selection in retrieval-
based chatbots. CoRR, abs/1710.11344.

Rui Yan, Yiping Song, and Hua Wu. 2016a. Learning
to respond with deep neural networks for retrieval-
based human-computer conversation system. In SI-
GIR.

Rui Yan, Yiping Song, Xiangyang Zhou, and Hua Wu.
2016b. ”shall i be your chat companion?”: Towards
an online human-computer conversation system. In
CIKM.

Tiancheng Zhao, Ran Zhao, and Maxine Eskenazi.
2017. Learning discourse-level diversity for neural
dialog models using conditional variational autoen-
coders. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguis-
tics, volume 1, pages 654–664.

