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Abstract

People go to different places to engage
in activities that reflect their goals. For
example, people go to restaurants to eat,
libraries to study, and churches to pray.
We refer to an activity that represents a
common reason why people typically go
to a location as a prototypical goal activ-
ity (goal-act). Our research aims to learn
goal-acts for specific locations using a
text corpus and semi-supervised learning.
First, we extract activities and locations
that co-occur in goal-oriented syntactic
patterns. Next, we create an activity profile
matrix and apply a semi-supervised label
propagation algorithm to iteratively revise
the activity strengths for different loca-
tions using a small set of labeled data. We
show that this approach outperforms sev-
eral baseline methods when judged against
goal-acts identified by human annotators.

1 Introduction

Every day, people go to different places to accom-
plish goals. People go to stores to buy clothing,
go to restaurants to eat, and go to the doctor for
medical services. People travel to specific destina-
tions to enjoy the beach, go skiing, or see historical
sites. For most places, people typically go there
for a common set of reasons, which we will re-
fer to as prototypical goal activities (goal-acts) for
a location. For example, a prototypical goal-act
for restaurants would be “eat food” and for IKEA
would be “buy furniture”.

Previous research has established that recogniz-
ing people’s goals is essential for narrative text un-
derstanding and story comprehension (Schank and
Abelson, 1977; Wilensky, 1978; Lehnert, 1981;
Elson and McKeown, 2010; Goyal et al., 2013).

Goals and plans are essential to understand peo-
ple’s behavior and we use our knowledge of pro-
totypical goals to make inferences when reading.
For example, consider the following pair of sen-
tences: “Mary went to the supermarket. She
needed milk.” Most people will infer that Mary
purchased milk, unless told otherwise. But a pur-
chase event is not explicitly mentioned. In con-
trast, a similar sentence pair “Mary went to the
theatre. She needed milk.” feels incongruent
and does not produce that inference. Recognizing
goals is also critical for conversational dialogue
systems. For example, if a friend tells you that
they went to a restaurant, you might reply “What
did you eat?”, but if a friend says that they went
to Yosemite, a more appropriate response might be
“Did you hike?” or “Did you see the waterfalls?”.

Our knowledge of prototypical goal activities
also helps us resolve semantic ambiguity. For ex-
ample, consider the following sentences:

(a) She went to the kitchen and got chicken.
(b) She went to the supermarket and got chicken.
(c) She went to the restaurant and got chicken.

In sentence (a), we infer that she retrieved
chicken (e.g., from the refrigerator) but did not pay
for it. In (b), we infer that she paid for the chicken
but probably did not eat it at the supermarket. In
(c), we infer that she ate the chicken at the restau-
rant. Note how the verb “gor” maps to different
presumed events depending on the location.

Our research aims to learn the prototypical goal-
acts for locations using a text corpus. First, we ex-
tract activities that co-occur with locations in goal-
oriented syntactic patterns. Next, we construct
an activity profile matrix that consists of an activ-
ity vector (profile) for each of the locations. We
then apply a semi-supervised label propagation
algorithm to iteratively revise the activity profile
strengths based on a small set of labeled locations.
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Figure 1: Dependency relation structure for “go to” pattern.

We also incorporate external resources to measure
similarity between different activity expressions.
Our results show that this semi-supervised learn-
ing approach outperforms several baseline meth-
ods in identifying the prototypical goal activities
for locations.

2 Related Work

Recognizing plans and goals is fundamental to
narrative story understanding (Schank and Abel-
son, 1977; Bower, 1982). Conceptual knowledge
structures developed in prior work have shown
the importance of this type of knowledge, includ-
ing plans (Wilensky, 1978), goal trees (Carbonell,
1979), and plot units (Lehnert, 1981). Wilensky’s
research aimed to understand the actions of char-
acters in stories by analyzing their goals, and their
plans to accomplish those goals. For example,
someone’s goal might be to obtain food with a plan
to go to a restaurant. Our work aims to learn proto-
typical goals associated with a location, to support
similar inference capabilities during story under-
standing.

Goals and plans can also function to trigger
scripts (Cullingford, 1978), such as the SRESTAU-
RANT script. There has been growing interest in
learning narrative event chains and script knowl-
edge from large text corpora (e.g., (Chambers and
Jurafsky, 2008, 2009; Jans et al., 2012; Pichotta
and Mooney, 2014, 2016)). In addition, Goyal et
al. (2010; 2013) developed a system to automat-
ically produce plot unit representations for short
stories. A manual analysis of their stories revealed
that 61% of Positive/Negative Affect States orig-
inated from completed plans and goals, and 46%
of Mental Affect States originated from explicitly
stated or inferred plans and goals.

Elson & McKeown (2010) included plans and
goals in their work on creating extensive story
bank annotations that capture the knowledge
needed to understand narrative structure. Re-
searchers have also begun to explore NLP meth-
ods for recognizing the goals, desires, and plans

of characters in stories. Recent work has explored
techniques to detect wishes (desires) in natural
language text (Goldberg et al., 2009) and identify
desire fulfillment (Chaturvedi et al., 2016; Rahim-
toroghi et al., 2017).

Graph-based semi-supervised learning has been
successfully used for many tasks, including senti-
ment analysis (Rao and Ravichandran, 2009; Feng
etal., 2013), affective event recognition (Ding and
Riloff, 2016) and class-instance extraction (Taluk-
dar and Pereira, 2010). The semi-supervised
learning algorithm used in this paper is modeled
after a framework developed by Zhu et al. (2003)
based on harmonic energy minimization and a la-
bel propagation algorithm described in (Zhu and
Ghahramani, 2002).

3 Learning Prototypical Goal Activities

Our aim is to learn the most prototypical goal-acts
for locations. To tackle this problem, we first ex-
tract locations and related activities from a large
text corpus. Then we use a semi-supervised learn-
ing method to identify the goal activities for in-
dividual locations. In the following sections we
describe these processes in detail.

3.1 Location and Activity Extraction

To collect information about locations and activ-
ities, we use the 2011 Spinn3r dataset (Burton
et al., 2011). Since our interest is learning about
the activities of ordinary people in their daily lives,
we use the Weblog subset of the Spinn3r corpus,
which contains over 133 million blog posts.

We use the text data to identify activities that are
potential goal-acts for a location. However we also
need to identify locations and want to include both
proper names (e.g., Disneyland) as well as nomi-
nals (e.g., store, beach), so Named Entity Recog-
nition will not suffice. Consequently, we extract
(Loc, Act) pairs using syntactic patterns.

First, we apply the Stanford dependency parser
(Manning et al., 2014). We then extract sentences
that match the pattern “go to X to Y with the
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a1 = buy book ay = eat burger Gy, = pray
I3 = McDonald’s .10 .30 .01
lo = Burger King A2 .50 .02
l3 = bookstore 40 .02 .04
l,, = church .05 .01 .70

Table 1: An illustration of the activity profile matrix Y.

following conditions: (1) there exists a subject
connecting to “go”, (2) X has an nmod (nominal
modifier) relation to “go” (lemma), (3) X is a noun
or noun compound, (4) Y has an xcomp relation
(open clausal complement) with “go”, and (5) YV
is a verb. Figure 1 depicts the intended syntactic
structure, which we will informally call the “go to”
pattern. For sentences that match this pattern, we
extract X as a location and Y as an activity. If the
verb is followed by a particle and/or noun phrase
(NP), then we also include the particle and head
noun of the NP. For example, we extract activities

LR INT3

such as “pray”, “clean up”, and “buy sweater”.

This syntactic structure was chosen to identify
activities that are described as being the reason
why someone went to the location. However it is
not perfect. In some cases, X is not a location
(e.g., “go to great lengths to ...” yields “lengths”
as a location), or Y is not a goal-act for X (e.g.,
“go to the office to retrieve my briefcase ...” yields
“retrieve briefcase” which is not a prototypical
goal for “office”). Interestingly, the pattern ex-
tracts some nominals that are not locations in a
strict sense, but behave as locations. For example,
“go to the doctor” extracts “doctor” as a location.
Literally a doctor is a person, but in this context it
really refers to the doctor’s office, which is a lo-
cation. The pattern also extracts entities such as
“roof”’, which are not generally thought of as loca-
tions but do have a fixed physical location. Other
extracted entities are virtual but function as loca-
tions, such as “Internet”. For the purposes of this
work, we use the term location in a general sense
to include any place or object that has a physical,
virtual or implied location.

The “go to” pattern worked quite well at extract-
ing (Loc, Act) pairs, but in relatively small quanti-
ties due to the very specific nature of the syntactic
structure. So we tried to find additional activities
for those locations. Initially, we tried harvesting
activities that occurred in close proximity (within
5 words) to a known location, but the results were

too noisy. Instead, we used the pattern “Y in/at
X with the same syntactic constraints for Y (the
extracted activity) and X (a location extracted by
the “go to” pattern).

We discovered many sentences in the corpus
that were exactly or nearly the same, differing only
by a few words, which resulted in artificially high
frequency counts for some (Loc, Act) pairs. So
we filtered duplicate or near-duplicate sentences
by computing the longest common substring of
sentence pairs that extracted the same (Loc, Act).
If the shared substring had length > 5, then we
discarded the “duplicate” sentence.

Finally, we applied three filters. To keep the
size of the data manageable, we discarded loca-
tions and activities that were each extracted with
frequency < 30 by our patterns. And we manu-
ally filtered locations that are Named Entities cor-
responding to cities or larger geo-political regions
(e.g., provinces or countries). Large regions de-
fined by government boundaries fall outside the
scope of our task because the set of activities that
typically occur in (say) a city or country is so
broad. Finally, we added a filter to try to remove
extremely general activities that can occur almost
anywhere (e.g., visit). If an activity co-occurred
with > 20% of the extracted (distinct) locations,
then we discarded it.

After these filters, we extracted 451 distinct lo-
cations, 5143 distinct activities, roughly 200, 000
distinct (Loc, Act) pairs, and roughly 500, 000 in-
stances of (Loc, Act) pairs.

3.2 Activity Profiles for Locations

We define an activity profile matrix Y of size
n X m, where n is the number of distinct locations
and m is the number of distinct activities. Y; ; rep-
resents the strength of the jth activity a; being a
goal-act for [;. We use y; € R™ to denote the ith
row of Y. Table 1 shows an illustration of (partial)
activity profiles for four locations.! Our goal is

"Not actual values, for illustration only.
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to learn the Y; ; values so that activities with high
strength are truly goal-acts for location ;.

We could build the activity profile for location
l; using the co-occurrence data extracted from the
blog corpus. For example, we could estimate
P(a; | l;) directly from the frequency counts of
the activities extracted for /;. However, a high
co-occurrence frequency doesn’t necessarily mean
that the activity represents a prototypical goal.
For example, the activity “have appointment” fre-
quently co-occurs with “clinic” but doesn’t re-
veal the underlying reason for going to the clinic
(e.g., probably to see a doctor or undergo a med-
ical test). To appreciate the distinction, imagine
that you asked a friend why she went to a health
clinic, and she responded with “because I had an
appointment”. You would likely view her response
as being snarky or evasive (i.e., she didn’t want to
tell you the reason). In Section 4, we will evaluate
this approach as a baseline and show that it does
not perform well.

3.3 Semi-Supervised Learning of Goal-Act
Probabilities

Our aim is to learn the activity profiles for lo-
cations using a small amount of labeled data, so
we frame this problem as a semi-supervised learn-
ing task. Given a small number of “seed” loca-
tions coupled with predefined goal-acts, we want
to learn the goal-acts for new locations.

3.3.1 Location Similarity Graph

We use [; € L torepresent location /;, where |L| =
n. We define an undirected graph G = (V, E)
with vertices representing locations (|V'| = n) and
edges EF =V x V, such that each pair of vertices v;
and vy, is connected with an edge e;;, whose weight
represents the similarity between /; and [.

We can then represent the edge weights as an
n X n symmetric weight matrix W indicating the
similarity between locations. There could be many
ways to define the weights, but for now we use the
following definition from (Zhu et al., 2003), where

o2 is a hyper-parameter?:

1
Wi i = exp <—02 (1 — sim (1, lk))> (D

To assess the similarity between locations, we
measure the cosine similarity between vectors
of their co-occurrence frequencies with activi-
ties. Specifically, let matrix Fy,x,, = [f1, ..., £,]T

2We use the same value o = 0.03 as (Zhu et al., 2003).

where f; is a vector of length m capturing the
co-occurrence frequencies between location /; and
each activity a; in the extracted data (i.e., I ; is
the number of times that activity a; occurred with
location ;). We then define location similarity as:

fok
(s, ly) = it 2
similis be) = e @

3.3.2 Initializing Activity Profiles

We use semi-supervised learning with a set of
“seed” locations from human annotations, and
another set of locations that are unlabeled. So
we subdivide the set of locations into S =
{l1, ..., 15}, which are the seed locations, and U =
{ls41,--sls+u}, which are the unlabeled loca-
tions, such that s + v = n. For an unlabeled
location [; € U, the initial activity profile is the
normalized co-occurrence frequency vector f;.

For each seed location I; € S, we first automat-
ically construct an activity profile vector h; based
on the gold goal-acts which were obtained from
human annotators as described in Section 4.1. All
activities not in the gold set are assigned a value of
zero. Each activity a; in the gold set is assigned a
probability P(a; | ;) based on the gold answers.
However, the gold goal-acts may not match the ac-
tivity phrases found in the corpus (see discussion
in Section 4.3), so we smooth the vector created
with the gold goal-acts by averaging it with the
normalized co-occurrence frequency vector f; ex-
tracted from the corpus.

The activity profiles of seed locations stay con-
stant through the learning process. We use y? to
denote the initial activity profiles. So when l; € S,
yy = (fi + hy)/2.

3.3.3 Learning Goal-Act Strengths

We apply a learning framework developed by (Zhu
et al., 2003) based on harmonic energy minimiza-
tion and extend it to multiple labels. Intuitively,
we assume that similar locations should share sim-
ilar activity profiles,> which motivates the follow-
ing objective function over matrix Y:

arg min Z Wikllyi — yil?,
” 3)

s.t.y; =y9 foreachl; € S

Let D = (d;) denote an n x n diagonal matrix
where d; = > p_; W, ;. Let’s split Y by the sth

3This is a heuristic but is not always true.
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Ys

row: Y = ], then split W (similarly for D)

Yy
into four blocks by the sth row and column:
Wss W,
W — 8S su 4
[Wus Wuu] @
From (Zhu et al., 2003), Eq (3) is given by:
Yu - (Duu - Wuu>_1WusY:<3 (5)

We then use the label propagation algorithm de-
scribed in (Zhu and Ghahramani, 2002) to com-
pute Y:

Algorithm 1
repeat
Y <« D7'WY
Clamp y; = y? foreach ; € S
until convergence

3.3.4 Activity Similarity

One problem with the above algorithm is that it
only takes advantage of relations between vertices
(i.e., locations). If there are intrinsic relations
between activities, they could be exploited as a
complementary source of information to benefit
the learning. Intuitively, different pairs of activi-
ties share different similarities, e.g., “eat burgers”
should be more similar to “have lunch” than “read
books”.

Under this idea, similar to the previous loca-
tion similarity weight matrix W, we want to define
an activity similarity weight matrix A, ., where
Aj; i, indicates the similarity weight between activ-
ity a; and ay:

1
A =exp (—02 (1 —sim (ai,ak))) (6)

where o2 is the same as in Eq (1).

We explore 3 different similarity functions
sim(a;, ax) based on co-occurrence with loca-
tions, word matching, and embedding similarities.

First, similar to Eq (2), we can use each activ-
ity’s co-occurrence frequency with all locations as
its location profile and define a similarity score
based on cosine values of location profile vectors:

T
sim®(a;, ar,) = _8iBk (7
gillllg
where the predefined co-occurrence frequency
matrix F = [fy, ..., £,]T = [g1, ..., gm].

As a second option, the similarity between ac-
tivities can often be implied by their lexical over-
lap, e.g., two activities sharing the same verb or
noun might be related. For each word belonging
to any of our activities, we use WordNet (Miller,
1995) to find its synonyms. We also include the
word itself in the synonym set. If the synonym
sets of two words overlap, we call these two words
“match”. Then we define the lexical overlap sim-
ilarity function between a; and ay:

1 if verb and noun match

sim? (ai,ar) = < 0.5 if verb or noun match

0  otherwise

®)
As a third option, we can use 300-dimension
word embedding vectors (Pennington et al., 2014)
trained on 840 billion tokens of web data to com-
pute semantic similarity. We compute an activity’s
embedding as the average of its words’ embed-
dings. Let sim®(a;, a;,) be the cosine value be-

tween the embedding vectors of a; and ay:

sim®(a;, ai,) = cos(Embed(a;), Embed(ay))
(€))
Finally, we can plug these similarity functions
into Eq (6). We use A% A9 AP to denote the
corresponding matrix. We can also plug in mul-
tiple similarity metrics such as (sim’” 4 sim®) /2
and use combination symbols A“*¥ to denote the
matrix.

3.3.5 Injecting Activity Similarity

Once we have a similarity matrix for activities, the
next question is how will it help with the activ-
ity profile computation? Recall from Eq (5), we
know that the activity profile of an unlabeled loca-
tion can be represented by a linear combination of
other locations’ activity profiles. The activity pro-
file matrix Y is an n X m matrix where each row
is the activity profile for a location. We can also
view Y as a matrix whose each column is the lo-
cation profile for an activity. Using the same idea,
we can make each column approximate a linear
combination of its highly related columns (i.e., the
location profile of an activity will become more
similar to the location profiles of its similar activ-
ities). Our expectation is that this approximation
will help improve the quality of Y.

By being right multiplied by matrix A, Y gets
updated from manipulating its columns (activities)
as well. We modify the algorithm accordingly as
below:
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Figure 2: Percentage of locations that have at least
one goal-act assigned by multiple annotators.

Algorithm 2
repeat
Y « D7'WYA
Clamp y; = y? foreach ; € S
until convergence

4 Evaluation

4.1 Gold Standard Data

Since this is a new task and there is no existing
dataset for evaluation, we use crowd-sourcing via
Amazon Mechanical Turk (AMT) to acquire gold
standard data. First, we released a qualification
test containing 15 locations along with detailed an-
notation guidelines. 25 AMT workers finished our
assignment, and we chose 15 of them who did the
best job following our guidelines to continue. We
gave the 15 qualified workers 200 new locations,
consisting of 152 nominals and 48 proper names,*
randomly selected from our extracted data and set
aside as test data. For each location, we asked the
AMT workers to complete the following sentence:

People go to LOC to

VERB  NOUN

LOC was replaced by one of the 200 locations.
Annotators were asked to provide an activity that
is the primary reason why a person would go to
that location, in the form of just a VERB or a VERB
NOUN pair. Annotators also had the option to la-
bel a location as an “ERROR” if they felt that the
provided term is not a location, since our location
extraction was not perfect.

“Same distribution as in the whole location set.

Only 10 annotators finished labeling our test
cases, so we used their answers as the gold stan-
dard. We discarded 12 locations that were labeled
as an “ERROR” by > 3 workers.” This resulted in
a test set of 188 locations paired with 10 manually
defined goal-acts for each one.

A key question that we wanted to investigate
through this manual annotation effort is to know
whether people truly do associate the same pro-
totypical goal activities with locations. To what
extent do people agree when asked to list goal-
acts? Also, some places clearly have a smaller set
of goal-acts than others. For example, the primary
reason to go to an airport is to catch a flight, but
there’s a larger set of common reasons why peo-
ple go to Yosemite (e.g.,“hiking camping”, “rock
climbing”, “see waterfalls”, etc.).

Complicating matters, the AMT workers often
described the same activity with different words
(e.g., “buy book” vs. “purchase book). Automat-
ically recognizing synonymous event phrases is a
difficult NLP problem in its own right.® So solely
for the purpose of analysis, we manually merged
activities that have a nearly identical meaning. We
were extremely conservative and did not merge
similar or related phrases that were not synony-
mous because the granularity of terms may matter
for this task (e.g., we did not merge “eat burger”
and “eat lunch” because one may apply to a spe-
cific location while the other does not).

Figure 2 shows the results of our analysis. Only
1 location was assigned exactly the same goal-act
by all 10 annotators. But at least half (5) of the
annotators listed the same goal-act for 40% of the
locations. And nearly 80% of locations had one
or more goal-acts listed by > 3 people. These re-
sults show that people often do share the same as-
sociations between prototypical goal-acts and lo-
cations. These results are also very conservative
because many different answers were also similar
(e.g. “eat burger”, “eat meal”).

In Table 2 we show examples of locations and
the goal-acts listed for them by the human an-
notators. If multiple people gave the same an-
swer, we show the number in parentheses. For
example, given the location “Toys R Us”, 9 peo-
ple listed “buy toys” as a goal-act and 1 person
listed “browse gifts”. We see from Table 2 that

SWe found that the workers rarely used the “ERROR” la-
bel, so setting this threshold to be 3 was a strong signal.

SWe tried using WordNet synsets to conflate phrases, but
it didn’t help much.
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Location Gold Goal-Acts
Toys R Us buy toys (9), browse gifts
sink wash hands (7), wash dishes (3)

airport catch flight (7), board planes, take air-
plane, take trips
bookstore buy books (6), browse books (2),

browse bestsellers, read book
lake go fishing (3), go swimming (3), drive
boat (2), ride boat, see scenery

chiropractor | get treatment (3), adjust backs (3), al-
leviate pain (2), get adjustment, get
aligned

Chinatown buy goods (2), buy duck, buy sou-

venirs, eat dim sum, eat rice, eat won-
tons, find Chinese, speak Chinese,
visit restaurants

Table 2: Goal-acts provided by human annotators.

some locations yield very similar sets of goal-acts
(e.g., sink, airport, bookstore), while other loca-
tions show more diversity (e.g., lake, chiropractor,
Chinatown).

4.2 Baselines

To assess the difficulty of this NLP task, we cre-
ated 3 baseline systems for comparison with our
learning approach. All of these methods take the
list of activities that co-occurred with a location [;
in our extracted data and rank them.

The first baseline, FREQ, ranks the activities
based on the co-occurrence frequency F;; be-
tween /; and a; in our patterns. The second base-
line, PMI, ranks the activities using point-wise
mutual information. The third baseline, EMBED,
ranks the activities based on the cosine similar-
ity of the semantic embedding vectors for /; and
aj. We use GloVe (Pennington et al., 2014) 300-
dimension embedding vectors pre-trained on 840
billion tokens of web data. For locations and ac-
tivities with multiple words, we create an embed-
ding by averaging the vectors of their constituent
words.

4.3 Matching Activities

The gold standard contains a set of goal-acts for
each location. Since the same activity can be ex-
pressed with many different phrases, the only way
to truly know whether two phrases refer to the
same activity is manual evaluation, which is ex-
pensive. Furthermore, many activities are very
similar or highly related, but not exactly the same.
For example, “eat burger” and “eat food’ both
describe eating activities, but the latter is more
general than the former. Considering them to
be the same is not always warranted (e.g., “eat

MRRg | MRRp | TOPI | TOP2 | TOP3
EMBED 0.02 0.09 | 005 | 008 | 0.12
PMI 0.20 033 | 025 | 036 | 041
FREQ 0.23 034 | 023 | 032 | 040
AP 0.28 038 | 029 | 041 | 047
AP+AL 0.28 040 | 032 | 044 | 049
AP+A49 0.23 033 | 024 | 035 | 043
AP+AF 0.25 036 | 028 | 040 | 047
AP+AL+E | 0,29 042 | 035 | 044 | 0.52

Table 3: Scores for MRR and Top £ results.

burger” is a logical goal-act for McDonald’s but
not for Baskin-Robbins which primarily sells ice
cream). As another example, “buy chicken” and
“eat chicken” refer to different events (buying and
eating) so they are clearly not the same semanti-
cally. But at a place like KFC, buying chicken im-
plies eating chicken, and vice versa, so they seem
like equally good answers as goal-acts for KFC.
Due to the complexities of determining which gold
standard answers belong in equivalence classes,
we considered all of the goal-acts provided by the
human annotators to be acceptable answers.

To determine whether an activity a; produced
by our system matches any of the gold goal-acts
for a location I;, we report results using two types
of matching criteria. Exact Match judges a; to be
a correct answer for [; if (1) it exactly matches (af-
ter lemmatization) any activity in /;’s gold set, or
(2) a;’s verb and noun both appear in [;’s gold set,
though possibly in different phrases. For example,
if a gold set contains “buy novels” and “browse
books”, then “buy books” will be a match.

Since Exact Match is very conservative, we
also define a Partial Match criterion to give 50%
credit for answers that partially overlap with a gold
answer. An activity a; is a partial match for /; if
either its verb or noun matches any of the activi-
ties in [;’s gold set of goal-acts. For example, “buy
burger” would be a partial match with “buy food”
because their verbs match.

4.4 Evaluation Metrics

All of our methods produce a ranked list of hy-
pothesized goal-acts for a location. So we use
Mean Reciprocal Rank (MRR) to judge the qual-
ity of the top 10 activities in each ranked list. We
report two types of MRR scores.

MRR based on the Exact Match criteria
(MRRg) is computed as follows, where n is the
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number of locations in the test set:

n

1 1
MRRg = — 10
E n Z; rank of 1%¢ Exact Match (10)

=

We also compute MRR using both the Exact
Match and Partial Match criteria. First, we need
to identify the “best” answer among the 10 ac-
tivities in the ranked list, which depends both on
each activity’s ranking and its matching score. The
matching score for activity a; is defined as:

1 if a; is an Exact Match
score(a;) = ¢ 0.5 if a; is a Partial Match

0 otherwise

Given 10 ranked activities a ... a1g for [;, we then
compute:

best_score(l;) = max score(a; )
j=1..10 rank(a;)

And then finally define MRRp as follows:

1 n
MRRp = - Z best_score(l;) (11)
i=1

4.5 Experimental Results

Unless otherwise noted, all of our experiments re-
port results using 4-fold cross-validation on the
200 locations in our test set. We used 4 folds to
ensure 50 seed locations for each run (i.e., 1 fold
for training and 3 folds for testing).

The first two columns of Table 3 show the MRR
results under Exact Match and Partial Match con-
ditions. The first 3 rows show the results for the
baseline systems, and the remaining rows show re-
sults for our Activity Profile (AP) semi-supervised
learning method. We show results for 5 varia-
tions of the algorithm: AP uses Algorithm 1, and
the others use Algorithm 2 with different Activ-
ity Similarity measures: AP+AT (location profile
similarity), AP+A© (overlap similarity), AP+AF
(embedding similarity), and AP+AL+E (location
profiles plus embeddings).

Table 3 shows that our AP algorithm outper-
forms all 3 baseline methods. When adding Activ-
ity Similarity into the algorithm, we find that A
slightly improves performance, but A° and A¥ do
not. However, we also tried combining them and
obtained improved results by using A and AF to-
gether, yielding an MRRp score of 0.42.

To gain more insight about the behavior of the
models, Table 3 also shows results for the top-
ranked 1, 2, and 3 answers. For these experiments,
the system gets full credit if any of its top k an-
swers exactly matches the gold standard, or 50%
credit if a partial match is among its top k answers.
These results show that our AP method produces
more correct answers at the top of the list than the
baseline methods.

Table 4 shows six locations with their gold an-
swers and the Top 3 goal-acts hypothesized by
our best AP system and the PMI and FREQ base-
lines. The activities in boldface were deemed
correct (including Partial Match). For “book-
store” and “pharmacy”, all of the methods perform
well. Note the challenge of recognizing that differ-
ent phrases mean essentially the same thing (e.g.,
“fill prescription”, “pick up prescription”, “find
medicine”). For “university” and “Meijer”, the AP
method produces more appropriate answers than
the baseline methods. For “market” and “phone”,
all three methods struggle to produce good an-
swers. Since “market” is polysemous, we see ac-
tivities related to both stores and financial markets.
And “phone” arguably is not a location at all, but
most human annotators treated it as a virtual loca-
tion, listing goal-acts related to telephones. How-
ever our algorithm considered phones to be sim-
ilar to computers, which makes sense for today’s
smartphones. In general, we also observed that In-
ternet sites behave as virtual locations in language
(e.g., “I went to YouTube...”).

4.6 Discussion

The goal-acts learned by our system were ex-
tracted from the Spinn3r dataset, while the gold
standard answers were provided by human anno-
tators, so the same (or very similar) activities are
often expressed in different ways (see Section 4.3).
This raises the question: what is the upper bound
on system performance when evaluating against
human-provided goal-acts? To answer this, we
compared all of the activities that co-occurred with
each location in the corpus against its gold goal-
acts. Only 36% of locations had at least one
gold goal-act among its extracted activities when
matching identical strings (after lemmatization).
Because of this issue, our Exact Match criteria also
allowed for combining verbs and nouns from dif-
ferent gold answers. Under this Exact Match crite-
ria, 73% of locations had at least one gold goal-act
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Location Gold Activity List AP+AT E Top 3 PMI Top 3 FREQ Top 3
buy book (6) buy book buy cop buy book
browse book (2) y y y y
bookstore purchase book purchase book browse
browse bestseller
read book see book buy book find book
get drug (4) find medicine buy pill buy pill
fill prescription (3) . .. ..
pharmacy get prescription (2) get prescription fill prescription fill prescription
buy medicine pick up prescription | pick up prescription | pick up prescription
get degree (4) gain education study law enrol’
university gain education (5) further education study psychology enroll
watch sport gain knowledge pursue study take class
buy grocery (8) buy item check out deal get item
Meijer buy cream go shopping have shopping save money
obtain grocery get item post today check out
buy grocery (6) make money have demand trade
market buy fresh, buy goods eat out increase competition intervene
buy shirt, find produce eat lunch lead player make money
make call (4), ERROR (2)
. play game put number plug
answer call, call friend .
phone have conversation browse website have number glance
- view website put card have number
stop ring

Table 4: Examples of Top 3 hypothesized prototypical goal activities.

among the extracted activities, so this represents
an upper bound on performance using this metric.
Under the Partial Match criteria, 98% of locations
had at least one gold goal-act among the extracted
activities, but only 50% credit was awarded for
these cases so the maximum score possible would
be ~86%.

We also manually inspected 200 gold loca-
tions to analyze their types. We discovered some
related groups, but substantial diversity overall.
The largest group contains ~20% of the loca-
tions, which are many kinds of stores (e.g., Ikea,
WalMart, Apple store, shoe store). Even within a
group, different locations often have quite differ-
ent sets of co-occurring activities. In fact, we dis-
covered some spelling variants (e.g., “WalMart”
and “wal mart”), but they also have substan-
tially different activity vectors (e.g., because one
spelling is much more frequent), so the model
learns about them independently.® Other groups
include restaurants (~5%), home-related (e.g.,
bathroom) (~5%), education (~5%), virtual (e.g.,
Wikipedia) (~3%), medical (~3%) and landscape
(e.g., hill) (~3%). It is worth noting that our loca-
tions were extracted by two syntactic patterns and
it remains to be seen if this has brought in any bias
— detecting location nouns (especially nominals)

7 A lemmatization error for the verb “enrolled”.
80f course normalizing location names beforehand may
be beneficial in future work.

is a challenging problem in its own right.

5 Conclusions and Future Work

We introduced the problem of learning prototypi-
cal goal activities for locations. We obtained hu-
man annotations and showed that people do as-
sociate prototypical goal-acts with locations. We
then created an activity profile framework and ap-
plied a semi-supervised label propagation algo-
rithm to iteratively update the activity strengths for
locations. We demonstrated that our learning algo-
rithm identifies goal-acts for locations more accu-
rately than several baseline methods.

However, this problem is far from solved. Chal-
lenges also remain in how to evaluate the accu-
racy of goal knowledge extracted from text cor-
pora. Nevertheless, our work represents a first
step toward learning goal knowledge about lo-
cations, and we believe that learning knowledge
about plans and goals is an important direction for
natural language understanding research. In future
work, we hope to see if we can take advantage of
more contextual information as well as other exter-
nal knowledge to improve the recognition of goal-
acts.
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