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Abstract

Language variation and change are driven
both by individuals’ internal cognitive pro-
cesses and by the social structures through
which language propagates. A wide range
of computational frameworks have been
proposed to connect these drivers. We
compare the strengths and weaknesses of
existing approaches and propose a new
analytic framework which combines pre-
vious network models’ ability to capture
realistic social structure with practically
and more elegant computational proper-
ties. The framework privileges the pro-
cess of language acquisition and embeds
learners in a social network but is mod-
ular so that population structure can be
combined with different acquisition mod-
els. We demonstrate two applications for
the framework: a test of practical concerns
that arise when modeling acquisition in a
population setting and an application of
the framework to recent work on phono-
logical mergers in progress.

1 Introduction

The process of language change should be thought
of as a two-step cycle in which 1) individuals
acquire their native languages from their prede-
cessors then 2) pass them on to their successors.
Small changes accrue over time this way and cre-
ate both small-scale interpersonal variation and
large-scale typological differences. It is easy to
draw a strong analogy here between linguistic evo-
lution and biological evolution. Both feature clas-
sic descent with modification, except while phe-
notypes are transmitted through genes and acted
on by natural selection, language is both trans-
mitted through and constrained by the individual
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(Cavalli-Sforza and Feldman, 1981; Ritt, 2004,
etc.).

But while evolution, linguistic or otherwise, is
driven by forces acting on the individual, it un-
folds on the level of populations (Cavalli-Sforza
and Feldman, 1981). The influence of community-
level social factors on the path of language change
is a major focus of sociolinguistics (Labov, 2001;
Milroy and Milroy, 1985; Rogers Everett, 1995).
Ideally, one could observe population-level vari-
ation unfold in real time while testing out indi-
vidual factors, but this is impossible because no-
body can travel back in time or fit entire natu-
ral environments into a lab. Change that has al-
ready happened is out of reach, and change in
progress is buried in a world of confounds. The
classic sociolinguistic method instead approaches
the problem by inferring causal factors from pat-
terns discovered in field interviews and corpora
(Labov, 1994; Labov et al., 2005, etc.). This is
the primary source of empirical data in the field
and the only way to look at language change in a
naturalistic setting, but it is limited in that it can-
not test cause and effect directly. More recently,
controlled experimental studies have emerged as
a complementary line of research which manipu-
late causal factors directly (Johnson et al., 1999;
Campbell-Kibler, 2009, etc.), but are inherently
removed natural time and scale. A third approach,
the one we build upon here, relies on computa-
tional modeling to simulate how sociolinguistic
factors might work together in larger populations
(Klein, 1966; Blythe and Croft, 2012; Kauhanen,
2016, etc.).

It has long been argued that language acqui-
sition is the primary cause of language change
(Sweet, 1899; Lightfoot, 1979; Niyogi, 1998,
etc.). In the last few decades, this connection
has been modeled computationally (Gibson and
Wexler, 1994; Kirby et al., 2000; Yang, 2000,
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etc.), leading to the strong conclusion that change
is the inevitable consequence of mixed linguis-
tic input or finite learning periods (Niyogi and
Berwick, 1996), even if children are “perfect”
learners. An important result connecting the
learner and population emphasizes the need for
this line of work: the space of paths of change
available in populations is formally larger than the
paths available to linear chains of iterated learn-
ers. Niyogi and Berwick (2009) prove formally
that even perfectly-mixed (i.e., uniform and homo-
geneous social network) populations admit phase
transitions in the path of change unavailable to
chains of single learners commonly implemented
in iterated learning (Kirby et al., 2000). This sug-
gests that small-population experimental studies in
sociolinguistics and in child language acquisition
do not paint the full picture of language change.

We introduce a new framework for modeling
language change in populations. It has an outer
loop to represent generational progression, but it
replaces the inner loop which calculates random-
ized interactions between agents with a single for-
mula that is defined generally enough to allow
the simulation of a wide range of scenarios. It
builds upon the principled formalism described by
Niyogi and Berwick (1996, et seq.), privileging the
acquisition model and separating it from the pop-
ulation model. The resulting modular framework
is described in the following sections. First, Sec-
tion 1.1 presents a survey of previous simulation
work followed by a description of the new popula-
tion model in Section 2. Next, Section 3 addresses
practical concerns relating population size to as-
sumptions about language acquisition. Finally,
Section 4 introduces a case study on phonological
change which demonstrates the need for appropri-
ate models both of acquisition and populations.

1.1 Related Work

Computational models for the propagation of lin-
guistic variation have been employed with a vari-
ety of research goals in mind. Every paper imple-
ments its own framework with few exceptions, so
comparison across studies is difficult. Addition-
ally, since each model is essentially ‘boutique,’ it
is always possible that models are designed con-
sciously or unconsciously to achieve a specific
outcome rather driven by underlying principles.
We group these frameworks into three classes ac-
cording to their implementation, swarm, network,

and algebraic, and discusses their strengths and
weaknesses.

The first class, called swarm here, models
populations as collections of agents placed on a
grid. They “swarm” around randomly accord-
ing to some movement function, and “interact”
when they occupy adjacent grid spaces (Satter-
field, 2001; Harrison et al., 2002; Ke et al., 2008;
Stanford and Kenny, 2013). This tends toward
concrete interpretation, for example, more mobile
populations are expressed directly by more mo-
bile agents. They capture Bloomfield (1933)’s
“principle of density” which describes the obser-
vation that geographically or socially close indi-
viduals interact more frequently than those far-
ther away. On the other hand, they provide little
control over network structure, relying on series
of explicit movement constraints in order to di-
rect their agents, and since each one moves ran-
domly at each iteration, these models have poten-
tially thousands of degrees of freedom. Such sim-
ulations should be run many times if any sort of
statistically expected results are to be computed.

The second class, network frameworks, model
speakers as nodes and interaction probabilities as
weighted edges on network graphs (Minett and
Wang, 2008; Baxter et al., 2009; Fagyal et al.,
2010; Blythe and Croft, 2012; Kauhanen, 2016).
These frameworks offer precise control over social
network structure and can test specific community
models from within sociolinguistics. However,
implementations usually proceed by some kind
of iterative probabilistic node-pair selection pro-
cess, and in this way suffer from the same statis-
tical pitfalls as swarm frameworks. In contrast to
swarm models, interaction is rigidly restricted to
immediately connected nodes, so to achieve gra-
dient interaction probabilities, edges must be fre-
quently updated or nearly fully-connected graphs
with carefully assigned edge weights would need
to be constructed and motivated.

The third class, algebraic frameworks, present
analytic methods for determining the state of the
network at the end of each iteration rather than re-
lying on stochastic simulation of individual agents
(Niyogi and Berwick, 1996, 1997; Yang, 2000;
Baxter et al., 2006; Minett and Wang, 2008;
Niyogi and Berwick, 2009). Removing that inner
loop is a more mathematically elegant approach
and avoids dealing unnecessarily with statistics
behind random trials. Removing that loop speeds
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up calculation as well, making larger simulations
more tractable than with network or swarm frame-
works. But this power is achieved by sacrificing
the social network. Up to this point, such models
have, to our knowledge, only been defined over
perfectly-mixed (i.e., no network effects) popu-
lations. That assumption is useful for reasoning
about the mathematical theory behind language
change, but it hinders such models’ utility in em-
pirical studies. For example, though Baxter et al.
(2006) and Minett and Wang (2008) implement al-
gebraic models for perfectly mixed populations,
they fall back on network models to model net-
work effects.

2 Framework for Transmission in Social
Networks

Algebraic frameworks have their mathematical
advantage, but network frameworks provide a
richer model for representing real-world popula-
tion structures and swarm models capture density
effects by default. An ideal framework would
combine the benefits of all three of these. Here we
do just that. We introduce a framework that instan-
tiates Niyogi and Berwick (1996)’s acquisition-
driven formalism where change is handled explic-
itly as a two-step alternation between individual
learners learning and populations interacting. It
provides an analytic solution to the state of a net-
work structure over which swarm-like behavior
can be modeled.

We begin by conceptualizing the framework in
terms of agents traveling probabilistically over a
network structure as in Algo. 1 before introduc-
ing the analytic solution. There is an individual
standing at every node in the graph, and at every
iteration, each individual begins at some location
and travels along the network’s edges, at each step
deciding to continue on or to stop and interact with
the agent at that node. Any two agents with a non-
zero weight path between them could potentially
interact, so the overall probability of an interaction
is a function of the shape of the network and the
decay rate of the step probability. The shorter and
higher weighted the path between two agents, the
more likely they are to interact. This corresponds
to the gradient interaction probabilities of swarm
frameworks.

Algorithm 1: One iteration of the propagation
model conceptualized on the level of an indi-
vidual agent

for each individual node do
Begin traveling;
while traveling do
Randomly select an outgoing edge by
weight and follow it OR stop travel;
increase chance of stopping next time;
end
Interact with the individual at the current
node;

end

2.1 Representing the Network

Social networks are typically conceived of as
graph structures with individuals as vertices and
the social or geographical connections between
individuals as edges, and this allows for a great
deal of flexibility. If edges are undirected, then
all interactions are equal and bidirectional, but if
edges are directed, interactions may or may not
be. Edges can be weighted to represent likelihood
of interaction or some measure of social valuation,
and this too can vary over time. Lastly, it is possi-
ble to add and remove nodes themselves to capture
births, deaths, or migration.

The network structure is represented computa-
tionally here as an adjacency matrix A. In a pop-
ulation of n individuals, this is n X n where each
element a;; is the weight of the connection from
individual j to individual 7. The matrix must be
column stochastic (all columns sum to 1 and con-
tain only positive elements) so that edge weights
can be interpreted as probabilities. The special
case where the matrix is symmetric (every a;; =
a;;) models undirected edges, and more strongly,
the model reduces to perfectly-mixed populations

1

when each a;; = .

We define a notion of communities over the
nodes of the network in order to add the option
to categorize groups of individuals. Membership
among ¢ communities is identified with an n X ¢
indicator matrix C. Depending on the problem at
hand, it is possible to calculate the average behav-
ior of the learners within each community directly
without having to calculate the behavior of each
individual member.
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2.2 Propagation in the Network

In a typical network model, the edge weights be-
tween nodes in A are interpreted directly as inter-
action probabilities, meaning that individuals only
ever interact with their immediate graph neigh-
bors. We take a different approach by allowing
the agents to “travel” and potentially interact with
any other agent whose node is connected by a path
of non-zero edges. If the number of traveling steps
were fixed at &, the probability of each pair inter-
acting would be defined as A*. It is more compli-
cated for us since the number of steps traveled is a
random variable. The probability of j interacting
with i (p(i7)) is the probability of them interact-
ing after k steps times the probability of £ for all
values of k as in Eqn. 1. Combining this intuition
with A yields the interaction probabilities for all
1, J pairs.

p(ij) = p(ij|k steps) p(k steps) (1)
k

The pattern of linguistic variants or grammars
(in the formal sense where grammar g is the inten-
sional equivalent of language L) within a network
unfolds as a dynamical system over the course of
many iterations, and learners’ positions within the
network mediate which ones they eventually ac-
quire. In a system with g grammars and n indi-
viduals, a n x g row-stochastic matrix G spec-
ifies the probability with which each community
expresses each grammar. Given this notion of in-
teraction and the specification of grammars ex-
pressed within a network, it is possible to compute
the distribution of grammars presented to each
learner. This is the learners’ linguistic environ-
ment and is represented by a matrix E in the same
form as G .

An environment function E,(G¢, A) = E;4q
shown in Eqn. 2 calculates E by first calculating
all the interaction probabilities in the network then
multiplying those by the grammars which every
agent expresses to get the environment E. The «
parameter from the geometric distribution! defines
the travel decay rate. A lower « defines conceptu-
ally more mobile agents.

More generally, &, is a special case of
E(G¢, Cy, Ay) = Ey11 where the number of com-
munities equals the number of individuals (¢ = n).

In this paper, jump probabilities decay according to a

geometric distribution, but other distributions including the
Poisson have been implemented as well.

C becomes the identity matrix without loss of gen-
erality, so the network’s initial condition does not
have to be defined explicitly. For any other com-
munity definition, an initial condition has to be de-
fined as in Eqn. 3 which specifies the starting point
in the network that each agent conceptually begins
traveling from. The output of £ is a g X ¢ ma-
trix giving the environment of the average agent in
each community.”

(G, A)=Gla(I-(1-a)A)™' (2
6(G’t> C,A) = gn(G'b A)C(CTC)_I (3)

The output of £ must be broadcast to g x n,
which would result in the loss of some informa-
tion unless the assumption can be made that each
community is internally uniform. However, when
that assumption can be made, the n x n adjacency
matrix admits a ¢ X ¢ equitable partition A™ (Eqn.
4) (Schaub et al., 2016) which permits an alter-
nate environment function Egp(Gy, C, A) shown
in Eqn. 5 that is equivalent to the lossless &, if A.
If n > ¢, Egp is much faster to calculate because
it only inverts a small ¢ X ¢ matrix rather than a
large n x n. This makes it feasible to run much
larger simulations than what has been done in the
past.

A" — (c'e)y'cTac )

Epp= oG CI-(01—-a)A™) ' (CTC)™ 3

2.3 Learning in the Network

The environment function describes what inputs
E,;,; are available to learners given the language
expressed by the mature speakers of the previ-
ous age cohort with grammars G¢. The second
component of the framework describes the learn-
ing algorithm A(E;;1) = Gyy1, how individu-
als respond to their input environment. The result-
ing Gy describes which grammars those learn-
ers will eventually contribute to the subsequent
generation’s environment E; 5. This back-and-
forth between adults’ grammars G and childrens’
environment E is the two-step cycle of language
change (Fig. 1).

In neutral change, learners would acquire gram-
mars at the rates that they are expressed in their
environments, but there is good reason to believe

2I-(1—a)A)™" and C(CTC)™! can be pre-
computed if network structure does not change over time.
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Figure 1: Language change as an alternation be-
tween G and E matrices

that most language change involves differential fit-
ness between competing variants, and most non-
trivial learning algorithms yield some kind of fit-
ness (Kroch, 1989; Yang, 2000; Blythe and Croft,
2012, etc.), so A is rarely neutral. A neutral and
simple advantaged model are both considered in
Section 3, and a more complex learning algorithm
is described for Section 4.

3 Application: Testing Assumptions

The general nature of the framework described
here renders it suitable for reproducing the results
of previous works and evaluating their assump-
tions. To demonstrate this, we reproduce the ma-
jor result from Kauhanen (2016), which tested the
behavior of neutral change in networks of single-
grammar learners, in order to dissect two of its
primary assumptions. Implemented in a typical
network framework, the original setup contains
n = 200 individuals in probabilistically generated
centralized networks in which individuals mature
categorically to the single most frequent grammar
in their input. The author found that categorical
neutral change produced chaotic paths of change
regardless of network shape and that periodically
“rewiring” some of the network edges smoothed
this out. Without commenting on rewiring, we find
that the combination of n and choice of categorical
learners conspire to create the chaotic results.

We create two communities, both centralized
along the lines of the single cluster in Kauhanen
(2016), initialize all members of cluster 1 with
grammar g; and all members of cluster 2 with
grammar g, and additional edges are added be-
tween members of clusters 1 and 2 to allow inter-
action. G is converted to an indicator matrix at the
end of each learning iteration by rounding values
to 0 and 1 in order to model categorical learners
who only internalize the most common grammar
in their inputs as in the original model.

In a pair of infinitely large clusters or two clus-
ters where individuals are permitted to learn a
probabilistic distribution of grammars, each clus-
ter should homogenize to a 50/50 distribution of

g1 and go after some number of iterations depend-
ing on the specifics of the network shape and set-
ting for « creating the red curves in Fig. 2. At
n = 20000, each of 10 trials roughly follows the
path of the predicted curve, but when run at the
original n = 200 for 10 trials, this produces the
type of chaotic behavior which Kauhanen (2016)
attempts to repair. The outcome appears to be the
result of an assumption made out of convenience
(n = 200) rather than a principled decision.
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Figure 2: Predicted curve (red); neutral change at
n = 200 (left; Kauhanen (2016)); neutral change
at n = 20000 (right)

To further explore the impact of the population
size assumption, we experiment on a model of
advantaged change, which is typically contrasted
with neutral change because of its tendency to
produce “well-behaved” S-curve change (Blythe
and Croft, 2012; Kauhanen, 2016). This time,
only a single cluster is created, and the advantaged
grammar is initially assigned to 1% of the pop-
ulation. As seen in Figure 3, results are chaotic
for n = 200 once again and near predicted for
n = 20000. This is important because at n = 200,
advantaged change is chaotic, and most simula-
tions both rise and fall. An experimenter who
only studied advantaged change in small popula-
tion might concluded that it is as ill-behaved as
neutral change. While the conclusions that Kauha-
nen (2016) draws appear valid for n = 200, it
is not clear to what extent they can be projected
onto larger populations. This demonstrates the
need for carefully choosing one’s modeling as-
sumptions and testing them out when possible.

4 Application: Mergers in Progress

The acquisition of phonological mergers in mixed
input settings presents an interesting problem. It
appears that mergers have an inherent advantage
because they tend to spread at the expense of dis-
tinctions, and once they begin, they are rarely re-
versed (Labov, 1994). Yang (2009)’s acquisition
model quantifies this advantage as the relatively
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Figure 3: predicted curve (red); advantaged
change at n = 200 (left; cf. Kauhanen (2016));
advantaged change at n = 20000 (right)

lower chance of misinterpretation if a listener as-
sumes the merged grammar instead of the non-
merged grammar once a sufficient proportion of
the environment is merged. Applied to Johnson
(2007)’s detailed population study of the frontier
of the COT-CAUGHT merger in the small towns
along the border between Rhode Island and Mas-
sachusetts, this accurately predicts the ratio of
merged input for a child to acquire the merged
grammar, however when applied to a perfectly
mixed population of learners, it fails to model the
spread of the merged grammar in the population.
Yang’s model is input-driven, so it is conducive
to simulation with minimal assumptions past those
drawn from the empirical data. We test the behav-
ior of this learning model in a typical population
network and demonstrate that it produces a rea-
sonable path of change.

4.1 Background

The COT-CAUGHT merger, also called the low
back merger describes the phenomenon present
in varieties of North American English spoken in
eastern New England, western Pennsylvania, the
American West, and Canada among others where
the vowel in words like cot and the vowel in
words like caught have come to be pronounced
the same (Labov et al., 2005, pp. 58-65). The
geographical extent of the merger is currently ex-
panding, which might be expected if the merger
has a cognitive or social advantage associated with
it. Johnson (2007)’s study of the merger’s fron-
tier on the border Rhode Island and Massachusetts
uncovered an interesting social dynamic that il-
lustrates the merger’s speed: there are families
where the parents and older siblings non-merged,
but the younger siblings are. The merger has swept
through in only a few years and passed between
the siblings.

Yang (2009) seeks to understand why mergers
have an advantage from a cognitive perspective,
and his model treats the acquisition of mergers
as an evolutionary process. Learners who receive
both merged (M) and non-merged (M_) input
entertain both a merged (¢ ) and non-merged (g_)
grammar and reward whichever grammar success-
fully parses the input. This kind of variational
learner (Yang, 2000) is essentially an adaptation
of the classic evolutionary Linear Reward Punish-
ment model (Bush and Mosteller, 1953). The fit-
ness of each grammar is the probability in the limit
that it will fail to parse any given input, and since
it is virtually always the case that this probabil-
ity is different for both grammars, fitness is virtu-
ally always asymmetric. The variational learner is
characterized as follows.

Given two grammars and an input token s, The
learner parses s with g; with probability p and
with go with probability ¢ = 1 — p. p is rewarded
according to whether the choice of g successfully
parses s (g — s) or it fails to (g - s), where 7 is
some small constant.

;_ Jp+q,
p =

{(1 —)p,

Given a specific problem, one can calculate a
penalty probability C for each g, the proportion
of input that would cause g - s. The grammar
with the lower C has the advantage, so the other
one will be driven down in the long run. C can be
estimated from type frequencies in a corpus, and

the model is non-parametric because these values
do not depend on .

_ G m g — _ CL
Ci+ Co "= ot o

g—S

g—=s

lim p; =

t—o00 t—o0

To understand the COT-CAUGHT merger empir-
ically, one must reason about what kind of in-
put would trigger a penalty and then calculate the
penalty probabilities of the merged grammar C;
and non-merged grammar C_ from a corpus. This
model considers parsing failure to be the rate of
initial misinterpretation, and for a vowel merger,
the only inputs that could create an initial misinter-
pretation are minimal pairs because they become
homophones. Examples of COT-CAUGHT minimal
pairs include cot-caught, Don-Dawn, stock-stalk,
odd-awed, collar-caller, and so on.

The merged g, grammar collapses would-be
minimal pairs into homophones, so the penalty
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rate C comes down to lexical access. Under
the observation that more frequent homophones
are retrieved first regardless of syntactic context
(Caramazza et al., 2001), g listeners only suf-
fer initial misinterpretation when the less frequent
member of a pair is uttered regardless of the rate of
M. If H is the sum token frequency of all mini-
mal pairs and h? hf)h are the frequencies of the ith
pair’s members, then C'+- is calculated by Eqn. 6.

In contrast, g_ listeners are sensitive to the
phonemic distinction, so they misinterpret M_ in-
put at the rate of mishearing one vowel for the
other ¢ (Peterson and Barney, 1952) (second half
of Eqn. 7). And given M, input, they misinter-
pret whenever they hear the phoneme which g_
does not expect (e.g., a merged speaker pronounc-
ing cot with the CAUGHT vowel) times the prob-
ability of not mishearing that vowel (1-€) plus €
times the probability of hearing the right vowel
(i.e., the merged speaker pronounces cot with the
CcoT vowel but it is misheard anyway) (first half
of Eqn. 7). Since g_ misinterpretation rates are a
function of the rate of M (p) in the environment,
there is a threshold of M speakers above which
the merged grammar has a fitness advantage over
the non-merged one.

1 Z . i1

C+ = E : mln(ho7 Oh) (6)
1 i )

C_ = i E [po((l — €on)hy, + €onhgy)  (7)

+qo(€on hf) + €on héh)]

Calculating this threshold for the frequent min-
imal pairs that Yang extracts from the Wortschatz
project (Biemann et al., 2004) corpus® and mis-
hearing rates from Peterson and Barney (1952),
the Yang model predicts that a learner exposed
to at least ~ 17% COT-CAUGHT-merged input
will acquire the merger. This threshold repre-
sents a strong advantage for M, because it is
well under the 50% threshold expected for neu-
tral (non-advantaged) change and it is very close
to what was found in Johnson (2007)’s sociolin-
guistic study. It predicts that younger children may
have g while their parents and even older siblings

3Don (1052) — Dawn (736); collar (403) — caller (23);
knotty (25) — naughty (195); odd (830) — awed (80); Otto
(67) — auto (260); tot (9) — taught (1327); cot (39) — caught
(2444); pond (258) — pawned (31); hock (25) — hawk (127);
nod (180) — gnawed (53); sod (30) — sawed (37)

have g_ if the 17% threshold was crossed in E af-
ter the acquisition period of the older sibling but
before that of the younger sibling.

4.2 Model Setup

All the mechanics behind the learning model re-
duce to a simple statement: learners acquires g
iff > 17% of their input is M and they acquire
g— otherwise. However, this kind of categorical
learner in a perfectly-mixed population leads to
immediate fixation at either g_ or g, in a single it-
eration, since the proportion of g speakers in the
population is equivalent to the proportion of M
input in every learner’s environment. This is not
realistic change. Clearly, social network structure
is at least as important as the learning algorithm in
modeling the spread of the merger.

We model the change in a non-uniform social
network of 100 centralized clusters of 75 individu-
als each. 75 was chosen as half Dunbar’s number,
the maximum number of reliable social connec-
tions that an adult can maintain (Dunbar, 2010).
There are two grammars, g4 and g_, and learn-
ers internalize one or the other according to the
17% threshold of M, in their input. One cluster
represents the source of the merger and is initial-
ized at 100% g, while the rest begin 100% g_.
Inter-cluster connections are chosen randomly so
that some connections are between central mem-
bers of the clusters and some are between periph-
eral members. The one merged cluster is con-
nected to half the other clusters representing those
at the frontier of the change, and each other clus-
ter is connected to five randomly chosen ones.*
This network structure echoes work in sociolin-
guistics, in particular, Milroy and Milroy (1985)’s
notion of strong and weak connections in language
change, where weak connections between social
clusters are particularly important for propagation
of a change.

Propagation of the merged grammar is calcu-
lated by &, because we are interested in the behav-
ior of individuals without loss of precision and be-
cause it cannot be assumed that each cluster is in-
ternally uniform.”> Since the spread of the merger
has been rapid enough to detect over a period of a
few years, iterations are modeled as short age co-

*Originally, the clusters were set up as a “stepping-stone”
chain with the merged community at one end, and that pro-
duced a similar S-curve. The structure presented here is more
geographically plausible but not crucial for the results.

Sa = 0.45.

1155



horts rather than full generations in the first exper-
iments by updating only a randomly chosen 10%
of nodes at each iteration because only a fraction
of the population is learning at any given time. A
model where every node is updated is investigated
as well.

4.3 Results

The behavior of this simulation is shown graphi-
cally in Figure 4. The fine/colored lines indicate
the rate of M within each initially non-merged
cluster, and the bold/black line shows the average
rate across all initially non-merged. The merger
spreads from cluster to cluster in succession over
the “weak” inter-cluster connections and through
each cluster over the ‘strong’ connections before
moving on to the next ones.

100,
80+
601

40+

Percent Merged

20

0 20 40 60 80 100
lteration #

Figure 4: Spread of merger across communities
(fine/colored) and population average (bold/black)

Most individual clusters exhibit a period of time
in which only a few early adopter (Rogers Everett,
1995) members have the merger, a period of rapid
diffusion of the merger, then some time where a
few laggards resist the merger. As a result, most
clusters exhibit an S-like shape. A few clusters
change rapidly because of their especially well-
connected positions in the network, and some lag
behind the rest because they are poorly connected
to the rest of the network. More interestingly,
the population-wide average, the population-level
data at the kind of granularity that is often studied,
yields a smooth S-curve with a shallower slope
than the individual clusters. The fact that it arises
naturally here in a network that conforms with typ-
ical network shapes but was otherwise randomly
generated is encouraging because the experiment
was not set up so that it would produce such a
curve, and the steep rate of change in individual

clusters is what is expected for a change that is
rapid enough to affect siblings differently.

In the above simulation, only a fraction of nodes
were updated at each iteration in order to model a
rapid change. In order to confirm that this choice
is not affecting the results and to test a purer imple-
mentation of the framework presented here, we re-
move that constraint and update every node at each
iteration. Figure 5 shows what happens over 20 it-
erations in a network that is otherwise identical but
with 2/5 as many inter-cluster connections as the
original. A qualitatively similar pattern arises, so
the choice to update only a fraction of the popula-
tion is not crucially affecting the results.

100

80

60

40+

Percent Merged

20+

0 5 10 15 20
lteration #

Figure 5: Spread of merger across communities
(fine/colored) and population average (bold/black)

In all experiments so far, social connections
were fixed at the first iteration even though con-
nections in real populations tend to change over
time. To investigate that modeling assumption, we
perform another simulation in which connections
are randomly updated both within and across clus-
ters at each iteration akin to Kauhanen (2016)’s
rewiring. The result as shown in Figure 6 is simi-
lar to before, with one major difference. The in-
dividual clusters transition more closely in time
because no individual cluster remains poorly con-
nected or especially well connected throughout the
entire simulation.

Finally, we test our assumptions about popula-
tion size by repeating the experiments on a smaller
network of 40 clusters of 18 individuals. The re-
sults are qualitatively similar, but the S-curve ap-
pears to be more sensitive to probabilistic connec-
tions in the network. To explore this, we present
the average network-wide rate of (M) across 10
trials, revealing that an S-like curve is formed each
time but that its slope varies. A few trials never
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Figure 6: Spread of merger within commu-
nities (fine/colored) and as population average
(bold/black). Network updated.

reach 100% because some of the clusters are not
connected to the innovative one. The slope varies
between trials, indicating that the rate of change is
a function of both the population structure and the
learning algorithm, but the network size does not
substantially affect these results.
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) 1
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Figure 7: Single small network trial (left); average
curves from 10 trials (right)

5 Discussion

The algebraic-network framework for modeling
population-level language change presented here
has substantial practical and theoretical advan-
tages over previous ones. It is much simpler com-
putationally than previous frameworks because
it calculates the statistically expected behavior
of each generation analytically and therefore re-
moves the entire inner loop of calculating stochas-
tic inter-agent interactions from the simulation. It
follows the Niyogi and Berwick (1996) formalism
for language change which presents a clean and
modular way of reasoning about the problem and
promotes the centrality of language acquisition.
In addition to the core algorithm, the framework
offers enough flexibility to represent a wide va-
riety of processes from the highly abstract (e.g.,
Kauhanen (2016)) to those grounded in soci-

olinguistic and acquisition research (e.g., Yang
(2009)). In our investigation of Kauhanen’s basic
assumptions, we discover how seemingly innocu-
ous decisions about population size and learning
conspire to drive simulation results. If learners are
conceived as categorical learners, population size
becomes a deciding factor in the path of change.
So while the original results are interesting and
meaningful, they may only valid for small (on the
order of 10?) populations.

In our simulation of the spread of the COT-
CAUGHT merger, we show how a cognitively-
motivated model of acquisition requires a network
model in order to represent population-level lan-
guage change. The population is represented as
a collection of individual clusters based on socio-
logical work, but the clusters themselves are con-
nected randomly. The fact that S-curves arise nat-
urally from these networks underscores their cen-
trality to language change.

One problem that this line of simulation work
has always faced has been the lack of viable com-
parison between models because every study im-
plements its own learning, network, and interac-
tion models. The modular nature of our frame-
work advances against this trend since it is now
possible to hold the population model constant
while slotting in various learning models to test
them against one another and vice-versa. Fi-
nally, since this framework reduces to Niyogi &
Berwick’s models in perfectly-mixed populations,
it can be used to reason about the formal dynamics
of language change as well.

Without simulation, it would be difficult or im-
possible to undercover the interplay between ac-
quisition and social structure on the propagation
of language change. Neither factor alone can ac-
count for the theoretical or empirically observed
patterns. Simulations of this kind which explic-
itly model both simultaneously is well equipped
to provide insights that fieldwork and laboratory
work cannot. As such, it is an invaluable comple-
ment to those more traditional methodologies.
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