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Abstract

The success of deep neural networks
(DNNs) is heavily dependent on the avail-
ability of labeled data. However, obtain-
ing labeled data is a big challenge in many
real-world problems. In such scenarios, a
DNN model can leverage labeled and un-
labeled data from a related domain, but it
has to deal with the shift in data distribu-
tions between the source and the target do-
mains. In this paper, we study the problem
of classifying social media posts during a
crisis event (e.g., Earthquake). For that,
we use labeled and unlabeled data from
past similar events (e.g., Flood) and unla-
beled data for the current event. We pro-
pose a novel model that performs adver-
sarial learning based domain adaptation
to deal with distribution drifts and graph
based semi-supervised learning to lever-
age unlabeled data within a single uni-
fied deep learning framework. Our exper-
iments with two real-world crisis datasets
collected from Twitter demonstrate signif-
icant improvements over several baselines.

1 Introduction

The application that motivates our work is the
time-critical analysis of social media (Twitter)
data at the sudden-onset of an event like natural or
man-made disasters (Imran et al., 2015). In such
events, affected people post timely and useful in-
formation of various types such as reports of in-
jured or dead people, infrastructure damage, ur-
gent needs (e.g., food, shelter, medical assistance)
on these social networks. Humanitarian organiza-
tions believe timely access to this important infor-
mation from social networks can help significantly
and reduce both human loss and economic dam-

age (Varga et al., 2013; Vieweg et al., 2014; Power
et al., 2013).

In this paper, we consider the basic task of
classifying each incoming tweet during a crisis
event (e.g., Earthquake) into one of the prede-
fined classes of interest (e.g., relevant vs. non-
relevant) in real-time. Recently, deep neural net-
works (DNNs) have shown great performance in
classification tasks in NLP and data mining. How-
ever the success of DNNs on a task depends heav-
ily on the availability of a large labeled dataset,
which is not a feasible option in our setting (i.e.,
classifying tweets at the onset of an Earthquake).
On the other hand, in most cases, we can have ac-
cess to a good amount of labeled and abundant un-
labeled data from past similar events (e.g., Floods)
and possibly some unlabeled data for the current
event. In such situations, we need methods that
can leverage the labeled and unlabeled data in a
past event (we refer to this as a source domain),
and that can adapt to a new event (we refer to
this as a target domain) without requiring any la-
beled data in the new event. In other words, we
need models that can do domain adaptation to deal
with the distribution drift between the domains
and semi-supervised learning to leverage the un-
labeled data in both domains.

Most recent approaches to semi-supervised
learning (Yang et al., 2016) and domain adapta-
tion (Ganin et al., 2016) use the automatic fea-
ture learning capability of DNN models. In this
paper, we extend these methods by proposing a
novel model that performs domain adaptation and
semi-supervised learning within a single unified
deep learning framework. In this framework, the
basic task-solving network (a convolutional neu-
ral network in our case) is put together with two
other networks – one for semi-supervised learning
and the other for domain adaptation. The semi-
supervised component learns internal representa-
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tions (features) by predicting contextual nodes in a
graph that encodes similarity between labeled and
unlabeled training instances. The domain adap-
tation is achieved by training the feature extractor
(or encoder) in adversary with respect to a domain
discriminator, a binary classifier that tries to dis-
tinguish the domains. The overall idea is to learn
high-level abstract representation that is discrim-
inative for the main classification task, but is in-
variant across the domains. We propose a stochas-
tic gradient descent (SGD) algorithm to train the
components of our model simultaneously.

The evaluation of our proposed model is con-
ducted using two Twitter datasets on scenarios
where there is only unlabeled data in the target do-
main. Our results demonstrate the following.

1. When the network combines the semi-
supervised component with the supervised
component, depending on the amount of la-
beled data used, it gives 5% to 26% absolute
gains in F1 compared to when it uses only the
supervised component.

2. Domain adaptation with adversarial training
improves over the adaptation baseline (i.e., a
transfer model) by 1.8% to 4.1% absolute F1.

3. When the network combines domain adver-
sarial training with semi-supervised learning,
we get further gains ranging from 5% to 7%
absolute in F1 across events.

Our source code is available on Github1 and the
data is available on CrisisNLP2.

The rest of the paper is organized as follows. In
Section 2, we present the proposed method, i.e.,
domain adaptation and semi-supervised graph em-
bedding learning. In Section 3, we present the ex-
perimental setup and baselines. The results and
analysis are presented in Section 4. In Section 5,
we present the works relevant to this study. Fi-
nally, conclusions appear in Section 6.

2 The Model

We demonstrate our approach for domain adapta-
tion with adversarial training and graph embed-
ding on a tweet classification task to support cri-
sis response efforts. Let DlS = {ti, yi}Lsi=1 and
DuS = {ti}Usi=1 be the set of labeled and un-
labeled tweets for a source crisis event S (e.g.,

1https://github.com/firojalam/
domain-adaptation

2http://crisisnlp.qcri.org

Nepal earthquake), where yi ∈ {1, . . . ,K} is the
class label for tweet ti, Ls and Us are the num-
ber of labeled and unlabeled tweets for the source
event, respectively. In addition, we have unla-
beled tweets DuT = {ti}Uti=1 for a target event T
(e.g., Queensland flood) with Ut being the num-
ber of unlabeled tweets in the target domain. Our
ultimate goal is to train a cross-domain model
p(y|t, θ) with parameters θ that can classify any
tweet in the target event T without having any in-
formation about class labels in T .

Figure 1 shows the overall architecture of our
neural model. The input to the network is a tweet
t = (w1, . . . , wn) containing words that come
from a finite vocabulary V defined from the train-
ing set. The first layer of the network maps each
of these words into a distributed representation Rd

by looking up a shared embedding matrix E ∈
R|V |×d. We initialize the embedding matrix E in
our network with word embeddings that are pre-
trained on a large crisis dataset (Subsection 2.5).
However, embedding matrix E can also be initial-
ize randomly. The output of the look-up layer is
a matrix X ∈ Rn×d, which is passed through a
number of convolution and pooling layers to learn
higher-level feature representations. A convolu-
tion operation applies a filter u ∈ Rk.d to a win-
dow of k vectors to produce a new feature ht as

ht = f(u.Xt:t+k−1) (1)

where Xt:t+k−1 is the concatenation of k look-up
vectors, and f is a nonlinear activation; we use
rectified linear units or ReLU. We apply this fil-
ter to each possible k-length windows in X with
stride size of 1 to generate a feature map hj as:

hj = [h1, . . . , hn+k−1] (2)

We repeat this process N times with N different
filters to get N different feature maps. We use
a wide convolution (Kalchbrenner et al., 2014),
which ensures that the filters reach the entire
tweet, including the boundary words. This is
done by performing zero-padding, where out-of-
range (i.e., t<1 or t>n) vectors are assumed to
be zero. With wide convolution, o zero-padding
size and 1 stride size, each feature map contains
(n + 2o − k + 1) convoluted features. After the
convolution, we apply a max-pooling operation to
each of the feature maps,

m = [µp(h
1), · · · , µp(hN )] (3)

https://github.com/firojalam/domain-adaptation
https://github.com/firojalam/domain-adaptation
http://crisisnlp.qcri.org
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Figure 1: The system architecture of the domain adversarial network with graph-based semi-supervised
learning. The shared components part is shared by supervised, semi-supervised and domain classifier.

where µp(hj) refers to the max operation applied
to each window of p features with stride size of
1 in the feature map hi. Intuitively, the convolu-
tion operation composes local features into higher-
level representations in the feature maps, and max-
pooling extracts the most important aspects of
each feature map while reducing the output dimen-
sionality. Since each convolution-pooling opera-
tion is performed independently, the features ex-
tracted become invariant in order (i.e., where they
occur in the tweet). To incorporate order infor-
mation between the pooled features, we include a
fully-connected (dense) layer

z = f(Vm) (4)

where V is the weight matrix. We choose a con-
volutional architecture for feature composition be-
cause it has shown impressive results on similar
tasks in a supervised setting (Nguyen et al., 2017).

The network at this point splits into three
branches (shaded with three different colors in
Figure 1) each of which serves a different purpose
and contributes a separate loss to the overall loss
of the model as defined below:

L(Λ,Φ,Ω,Ψ) = LC(Λ,Φ) + λgLG(Λ,Ω) + λdLD(Λ,Ψ) (5)

where Λ = {U, V } are the convolutional filters
and dense layer weights that are shared across the
three branches. The first componentLC(Λ,Φ) is a
supervised classification loss based on the labeled
data in the source event. The second component
LG(Λ,Ω) is a graph-based semi-supervised loss
that utilizes both labeled and unlabeled data in the

source and target events to induce structural simi-
larity between training instances. The third com-
ponent LD(Λ,Ω) is an adversary loss that again
uses all available data in the source and target do-
mains to induce domain invariance in the learned
features. The tunable hyperparameters λg and λd
control the relative strength of the components.

2.1 Supervised Component
The supervised component induces label informa-
tion (e.g., relevant vs. non-relevant) directly in the
network through the classification loss LC(Λ,Φ),
which is computed on the labeled instances in the
source event, DlS . Specifically, this branch of the
network, as shown at the top in Figure 1, takes
the shared representations z as input and pass it
through a task-specific dense layer

zc = f(Vcz) (6)

where Vc is the corresponding weight matrix. The
activations zc along with the activations from the
semi-supervised branch zs are used for classifica-
tion. More formally, the classification layer de-
fines a Softmax

p(y = k|t, θ) =
exp

(
W T
k [zc; zs]

)∑
k′ exp

(
W T
k′ [zc; zs]

) (7)

where [.; .] denotes concatenation of two column
vectors, Wk are the class weights, and θ =
{U, V, Vc,W} defines the relevant parameters for
this branch of the network with Λ = {U, V } being
the shared parameters and Φ = {Vc,W} being the
parameters specific to this branch. Once learned,



1080

we use θ for prediction on test tweets. The classi-
fication loss LC(Λ,Φ) (or LC(θ)) is defined as

LC(Λ,Φ) = − 1

Ls

Ls∑
i=1

I(yi = k) log p(yi = k|ti,Λ,Φ) (8)

where I(.) is an indicator function that returns 1
when the argument is true, otherwise it returns 0.

2.2 Semi-supervised Component

The semi-supervised branch (shown at the mid-
dle in Figure 1) induces structural similarity be-
tween training instances (labeled or unlabeled)
in the source and target events. We adopt the
recently proposed graph-based semi-supervised
deep learning framework (Yang et al., 2016),
which shows impressive gains over existing semi-
supervised methods on multiple datasets. In this
framework, a “similarity” graph G first encodes
relations between training instances, which is then
used by the network to learn internal representa-
tions (i.e., embeddings).

2.2.1 Learning Graph Embeddings
The semi-supervised branch takes the shared rep-
resentation z as input and learns internal represen-
tations by predicting a node in the graph context of
the input tweet. Following (Yang et al., 2016), we
use negative sampling to compute the loss for pre-
dicting the context node, and we sample two types
of contextual nodes: (i) one is based on the graph
G to encode structural information, and (ii) the
second is based on the labels in DlS to incorpo-
rate label information through this branch of the
network. The ratio of positive and negative sam-
ples is controlled by a random variable ρ1 ∈ (0, 1),
and the proportion of the two context types is con-
trolled by another random variable ρ2 ∈ (0, 1);
see Algorithm 1 of (Yang et al., 2016) for details
on the sampling procedure.

Let (j, γ) is a tuple sampled from the distribu-
tion p(j, γ|i,DlS , G), where j is a context node
of an input node i and γ ∈ {+1,−1} denotes
whether it is a positive or a negative sample;
γ = +1 if ti and tj are neighbors in the graph
(for graph-based context) or they both have same
labels (for label-based context), otherwise γ =
−1. The negative log loss for context prediction
LG(Λ,Ω) can be written as

LG(Λ,Ω) = −
1

Ls + Us

Ls+Us∑
i=1

E(j,γ) log σ
(
γCTj zg(i)

)
(9)

where zg(i) = f(Vgz(i)) defines another dense
layer (marked as Dense (zg) in Figure 1) having
weights Vg, and Cj is the weight vector associ-
ated with the context node tj . Note that here
Λ = {U, V } defines the shared parameters and
Ω = {Vg, C} defines the parameters specific to
the semi-supervised branch of the network.

2.2.2 Graph Construction
Typically graphs are constructed based on a re-
lational knowledge source, e.g., citation links in
(Lu and Getoor, 2003), or distance between in-
stances (Zhu, 2005). However, we do not have ac-
cess to such a relational knowledge in our setting.
On the other hand, computing distance between
n(n−1)/2 pairs of instances to construct the graph
is also very expensive (Muja and Lowe, 2014).
Therefore, we choose to use k-nearest neighbor-
based approach as it has been successfully used in
other study (Steinbach et al., 2000).

The nearest neighbor graph consists of n ver-
tices and for each vertex, there is an edge set con-
sisting of a subset of n instances, i.e., tweets in
our training set. The edge is defined by the dis-
tance measure d(i, j) between tweets ti and tj ,
where the value of d represents how similar the
two tweets are. We used k-d tree data structure
(Bentley, 1975) to efficiently find the nearest in-
stances. To construct the graph, we first represent
each tweet by averaging the word2vec vectors of
its words, and then we measure d(i, j) by com-
puting the Euclidean distance between the vectors.
The number of nearest neighbor k was set to 10.
The reason of averaging the word vectors is that it
is computationally simpler and it captures the rel-
evant semantic information for our task in hand.
Likewise, we choose to use Euclidean distance in-
stead of cosine for computational efficiency.

2.3 Domain Adversarial Component

The network described so far can learn abstract
features through convolutional and dense lay-
ers that are discriminative for the classification
task (relevant vs. non-relevant). The super-
vised branch of the network uses labels in the
source event to induce label information directly,
whereas the semi-supervised branch induces sim-
ilarity information between labeled and unlabeled
instances. However, our goal is also to make these
learned features invariant across domains or events
(e.g., Nepal Earthquake vs. Queensland Flood).
We achieve this by domain adversarial training of
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neural networks (Ganin et al., 2016).
We put a domain discriminator, another branch

in the network (shown at the bottom in Figure 1)
that takes the shared internal representation z as
input, and tries to discriminate between the do-
mains of the input — in our case, whether the in-
put tweet is from DS or from DT . The domain
discriminator is defined by a sigmoid function:

δ̂ = p(d = 1|t,Λ,Ψ) = sigm(wT
d zd) (10)

where d ∈ {0, 1} denotes the domain of the input
tweet t, wd are the final layer weights of the dis-
criminator, and zd = f(Vdz) defines the hidden
layer of the discriminator with layer weights Vd.
Here Λ = {U, V } defines the shared parameters,
and Ψ = {Vd,wd} defines the parameters specific
to the domain discriminator. We use the negative
log-probability as the discrimination loss:

Ji(Λ,Ψ) = −di log δ̂ − (1− di) log
(

1− δ̂
)

(11)

We can write the overall domain adversary loss
over the source and target domains as

LD(Λ,Ψ) = −
1

Ls + Us

Ls+Us∑
i=1

Ji(Λ,Ψ)−
1

Ut

Ut∑
i=1

Ji(Λ,Ψ) (12)

where Ls + Us and Ut are the number of training
instances in the source and target domains, respec-
tively. In adversarial training, we seek parameters
(saddle point) such that

θ∗ = argmin
Λ,Φ,Ω

max
Ψ
L(Λ,Φ,Ω,Ψ) (13)

which involves a maximization with respect to Ψ
and a minimization with respect to {Λ,Φ,Ω}. In
other words, the updates of the shared parameters
Λ = {U, V } for the discriminator work adversari-
ally to the rest of the network, and vice versa. This
is achieved by reversing the gradients of the dis-
crimination loss LD(Λ,Ψ), when they are back-
propagated to the shared layers (see Figure 1).

2.4 Model Training
Algorithm 1 illustrates the training algorithm
based on stochastic gradient descent (SGD). We
first initialize the model parameters. The word
embedding matrixE is initialized with pre-trained
word2vec vectors (see Subsection 2.5) and is kept
fixed during training.3 Other parameters are ini-
tialized with small random numbers sampled from

3Tuning E on our task by backpropagation increased the
training time immensely (3 days compared to 5 hours on a
Tesla GPU) without any significant performance gain.

Algorithm 1: Model Training with SGD
Input : data DlS , DuS , DuT ; graph G
Output: learned parameters θ = {Λ,Φ}
1. Initialize model parameters {E,Λ,Φ,Ω,Ψ};
2. repeat

// Semi-supervised

for each batch sampled from p(j, γ|i,DlS , G) do
a) Compute loss LG(Λ,Ω)
b) Take a gradient step for LG(Λ,Ω);

end
// Supervised & domain adversary

for each batch sampled from DlS do
a) Compute LC(Λ,Φ) and LD(Λ,Ψ)
b) Take gradient steps for LC(Λ,Φ) and
LD(Λ,Ψ);

end
// Domain adversary
for each batch sampled from DuS and DuT do

a) Compute LD(Λ,Ψ)
b) Take a gradient step for LD(Λ,Ψ);

end
until convergence;

a uniform distribution (Bengio and Glorot, 2010).
We use AdaDelta (Zeiler, 2012) adaptive update to
update the parameters.

In each iteration, we do three kinds of gradi-
ent updates to account for the three different loss
components. First, we do an epoch over all the
training instances updating the parameters for the
semi-supervised loss, then we do an epoch over
the labeled instances in the source domain, each
time updating the parameters for the supervised
and the domain adversary losses. Finally, we do
an epoch over the unlabeled instances in the two
domains to account for the domain adversary loss.

The main challenge in adversarial training is
to balance the competing components of the net-
work. If one component becomes smarter than the
other, its loss to the shared layer becomes useless,
and the training fails to converge (Arjovsky et al.,
2017). Equivalently, if one component becomes
weaker, its loss overwhelms that of the other, caus-
ing the training to fail. In our experiments, we
observed the domain discriminator is weaker than
the rest of the network. This could be due to the
noisy nature of tweets, which makes the job for
the domain discriminator harder. To balance the
components, we would want the error signals from
the discriminator to be fairly weak, also we would
want the supervised loss to have more impact than
the semi-supervised loss. In our experiments, the
weight of the domain adversary loss λd was fixed
to 1e − 8, and the weight of the semi-supervised
loss λg was fixed to 1e − 2. Other sophisticated
weighting schemes have been proposed recently
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(Ganin et al., 2016; Arjovsky et al., 2017; Metz
et al., 2016). It would be interesting to see how
our model performs using these advanced tuning
methods, which we leave as a future work.

2.5 Crisis Word Embedding

As mentioned, we used word embeddings that are
pre-trained on a crisis dataset. To train the word-
embedding model, we first pre-processed tweets
collected using the AIDR system (Imran et al.,
2014) during different events occurred between
2014 and 2016. In the preprocessing step, we
lowercased the tweets and removed URLs, digit,
time patterns, special characters, single character,
username started with the @ symbol. After pre-
processing, the resulting dataset contains about
364 million tweets and about 3 billion words.

There are several approaches to train word
embeddings such as continuous bag-of-words
(CBOW) and skip-gram models of wrod2vec
(Mikolov et al., 2013), and Glove (Pennington
et al., 2014). For our work, we trained the CBOW
model from word2vec. While training CBOW, we
filtered out words with a frequency less than or
equal to 5, and we used a context window size
of 5 and k = 5 negative samples. The resulting
embedding model contains about 2 million words
with vector dimensions of 300.

3 Experimental Settings

In this section, we describe our experimental set-
tings – datasets used, settings of our models, com-
pared baselines, and evaluation metrics.

3.1 Datasets

To conduct the experiment and evaluate our sys-
tem, we used two real-world Twitter datasets col-
lected during the 2015 Nepal earthquake (NEQ)
and the 2013 Queensland floods (QFL). These
datasets are comprised of millions of tweets col-
lected through the Twitter streaming API4 using
event-specific keywords/hashtags.

To obtain the labeled examples for our task we
employed paid workers from the Crowdflower5 –
a crowdsourcing platform. The annotation con-
sists of two classes relevant and non-relevant. For
the annotation, we randomly sampled 11,670 and
10,033 tweets from the Nepal earthquake and the
Queensland floods datasets, respectively. Given a

4https://dev.twitter.com/streaming/overview
5http://crowdflower.com

Dataset Relevant Non-relevant Train Dev Test

NEQ 5,527 6,141 7,000 1,167 3,503

QFL 5,414 4,619 6,019 1,003 3,011

Table 1: Distribution of labeled datasets for Nepal
earthquake (NEQ) and Queensland flood (QFL).

tweet, we asked crowdsourcing workers to assign
the “relevant” label if the tweet conveys/reports
information useful for crisis response such as a re-
port of injured or dead people, some kind of in-
frastructure damage, urgent needs of affected peo-
ple, donations requests or offers, otherwise assign
the “non-relevant” label. We split the labeled data
into 60% as training, 30% as test and 10% as de-
velopment. Table 1 shows the resulting datasets
with class-wise distributions. Data preprocessing
was performed by following the same steps used
to train the word2vec model (Subsection 2.5). In
all the experiments, the classification task consists
of two classes: relevant and non-relevant.

3.2 Model Settings and Baselines

In order to demonstrate the effectiveness of our
joint learning approach, we performed a series of
experiments. To understand the contribution of
different network components, we performed an
ablation study showing how the model performs
as a semi-supervised model alone and as a do-
main adaptation model alone, and then we com-
pare them with the combined model that incorpo-
rates all the components.

3.2.1 Settings for Semi-supervised Learning
As a baseline for the semi-supervised experi-
ments, we used the self-training approach (Scud-
der, 1965). For this purpose, we first trained a su-
pervised model using the CNN architecture (i.e.,
shared components followed by the supervised
part in Figure 1). The trained model was then
used to automatically label the unlabeled data. In-
stances with a classifier confidence score ≥ 0.75
were then used to retrain a new model.

Next, we run experiments using our graph-
based semi-supervised approach (i.e., shared com-
ponents followed by the supervised and semi-
supervised parts in Figure 1), which exploits unla-
beled data. For reducing the computational cost,
we randomly selected 50K unlabeled instances
from the same domain. For our semi-supervised
setting, one of the main goals was to understand
how much labeled data is sufficient to obtain a
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reasonable result. Therefore, we experimented
our system by incrementally adding batches of in-
stances, such as 100, 500, 2000, 5000, and all in-
stances from the training set. Such an understand-
ing can help us design the model at the onset of a
crisis event with sufficient amount of labeled data.
To demonstrate that the semi-supervised approach
outperforms the supervised baseline, we run su-
pervised experiments using the same number of la-
beled instances. In the supervised setting, only zc
activations in Figure 1 are used for classification.

3.2.2 Settings for Domain Adaptation
To set a baseline for the domain adaptation experi-
ments, we train a CNN model (i.e., shared compo-
nents followed by the supervised part in Figure 1)
on one event (source) and test it on another event
(target). We call this as transfer baseline.

To assess the performance of our domain adap-
tation technique alone, we exclude the semi-
supervised component from the network. We train
and evaluate models with this network configura-
tion using different source and target domains.

Finally, we integrate all the components of the
network as shown in Figure 1 and run domain
adaptation experiments using different source and
target domains. In all our domain adaptation ex-
periments, we only use unlabeled instances from
the target domain. In domain adaption literature,
this is known as unsupervised adaptation.

3.2.3 Training Settings
We use 100, 150, and 200 filters each having the
window size of 2, 3, and 4, respectively, and pool-
ing length of 2, 3, and 4, respectively. We do not
tune these hyperparameters in any experimental
setting since the goal was to have an end-to-end
comparison with the same hyperparameter setting
and understand whether our approach can outper-
form the baselines or not. Furthermore, we do not
filter out any vocabulary item in any settings.

As mentioned before in Subsection 2.4, we used
AdaDelta (Zeiler, 2012) to update the model pa-
rameters in each SGD step. The learning rate was
set to 0.1 when optimizing on the classification
loss and to 0.001 when optimizing on the semi-
supervised loss. The learning rate for domain ad-
versarial training was set to 1.0. The maximum
number of epochs was set to 200, and dropout rate
of 0.02 was used to avoid overfitting (Srivastava
et al., 2014). We used validation-based early stop-
ping using the F-measure with a patience of 25,

Experiments AUC P R F1

NEPAL EARTHQUAKE

Supervised 61.22 62.42 62.31 60.89

Semi-supervised (Self-training) 61.15 61.53 61.53 61.26

Semi-supervised (Graph-based) 64.81 64.58 64.63 65.11

QUEENSLAND FLOODS

Supervised 80.14 80.08 80.16 80.16

Semi-supervised (Self-training) 81.04 80.78 80.84 81.08

Semi-supervised (Graph-based) 92.20 92.60 94.49 93.54

Table 2: Results using supervised, self-training,
and graph-based semi-supervised approaches in
terms of Weighted average AUC, precision (P), re-
call (R) and F-measure (F1).

i.e., we stop training if the score does not increase
for 25 consecutive epochs.

3.2.4 Evaluation Metrics
To measure the performance of the trained mod-
els using different approaches described above, we
use weighted average precision, recall, F-measure,
and Area Under ROC-Curve (AUC), which are
standard evaluation measures in the NLP and ma-
chine learning communities. The rationale behind
choosing the weighted metric is that it takes into
account the class imbalance problem.

4 Results and Discussion

In this section, we present the experimental results
and discuss our main findings.

4.1 Semi-supervised Learning

In Table 2, we present the results obtained from the
supervised, self-training based semi-supervised,
and our graph-based semi-supervised experiments
for the both datasets. It can be clearly observed
that the graph-based semi-supervised approach
outperforms the two baselines – supervised and
self-training based semi-supervised. Specifically,
the graph-based approach shows 4% to 13% ab-
solute improvements in terms of F1 scores for the
Nepal and Queensland datasets, respectively.

To determine how the semi-supervised ap-
proach performs in the early hours of an event
when only fewer labeled instances are available,
we mimic a batch-wise (not to be confused with
minibatch in SGD) learning setting. In Table 3,
we present the results using different batch sizes –
100, 500, 1,000, 2,000, and all labels.

From the results, we observe that models’ per-
formance improve as we include more labeled data
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Exp. 100 500 1000 2000 All L

NEPAL EARTHQUAKE

L 43.63 52.89 56.37 60.11 60.89

L+50kU 52.32 59.95 61.89 64.05 65.11

QUEENSLAND FLOOD

L 48.97 76.62 80.62 79.16 80.16

L+∼21kU 75.08 85.54 89.08 91.54 93.54

Table 3: Weighted average F-measure for the
graph-based semi-supervised settings using differ-
ent batch sizes. L refers to labeled data, U refers to
unlabeled data, All L refers to all labeled instances
for that particular dataset.

— from 43.63 to 60.89 for NEQ and from 48.97
to 80.16 for QFL in the case of labeled only (L).
When we compare supervised vs. semi-supervised
(L vs. L+U), we observe significant improvements
in F1 scores for the semi-supervised model for all
batches over the two datasets. As we include un-
labeled instances with labeled instances from the
same event, performance significantly improves
in each experimental setting giving 5% to 26%
absolute improvements over the supervised mod-
els. These improvements demonstrate the effec-
tiveness of our approach. We also notice that our
semi-supervised approach can perform above 90%
depending on the event. Specifically, major im-
provements are observed from batch size 100 to
1,000, however, after that the performance im-
provements are comparatively minor. The results
obtained using batch sizes 500 and 1,000 are rea-
sonably in the acceptable range when labeled and
unlabeled instances are combined (i.e., L+50kU
for Nepal and L+∼21kU for Queensland), which
is also a reasonable number of training examples
to obtain at the onset of an event.

4.2 Domain Adaptation

In Table 4, we present domain adaptation results.
The first block shows event-specific (i.e., train and
test on the same event) results for the supervised
CNN model. These results set the upper bound
for our domain adaptation methods. The trans-
fer baselines are shown in the next block, where
we train a CNN model in one domain and test
it on a different domain. Then, the third block
shows the results for the domain adversarial ap-
proach without the semi-supervised loss. These
results show the importance of domain adversarial
component. After that, the fourth block presents
the performance of the model trained with graph

Source Target AUC P R F1

IN-DOMAIN SUPERVISED MODEL

Nepal Nepal 61.22 62.42 62.31 60.89

Queensland Queensland 80.14 80.08 80.16 80.16
TRANSFER BASELINES

Nepal Queensland 58.99 59.62 60.03 59.10

Queensland Nepal 54.86 56.00 56.21 53.63
DOMAIN ADVERSARIAL

Nepal Queensland 60.15 60.62 60.71 60.94

Queensland Nepal 57.63 58.05 58.05 57.79
GRAPH EMBEDDING WITHOUT DOMAIN ADVERSARIAL

Nepal Queensland 60.38 60.86 60.22 60.54

Queensland Nepal 54.60 54.58 55.00 54.79
GRAPH EMBEDDING WITH DOMAIN ADVERSARIAL

Nepal Queensland 66.49 67.48 65.90 65.92

Queensland Nepal 58.81 58.63 59.00 59.05

Table 4: Domain adaptation experimental results.
Weighted average AUC, precision (P), recall (R)
and F-measure (F1).

embedding without domain adaptation to show the
importance of semi-supervised learning. The final
block present the results for the complete model
that includes all the loss components.

The results with domain adversarial training
show improvements across both events – from
1.8% to 4.1% absolute gains in F1. These re-
sults attest that adversarial training is an effective
approach to induce domain invariant features in
the internal representation as shown previously by
Ganin et al. (2016).

Finally, when we do both semi-supervised
learning and unsupervised domain adaptation, we
get further improvements in F1 scores ranging
from 5% to 7% absolute gains. From these im-
provements, we can conclude that domain adap-
tation with adversarial training along with graph-
based semi-supervised learning is an effective
method to leverage unlabeled and labeled data
from a different domain.

Note that for our domain adaptation methods,
we only use unlabeled data from the target do-
main. Hence, we foresee future improvements of
this approach by utilizing a small amount of target
domain labeled data.

5 Related Work

Two lines of research are directly related to our
work: (i) semi-supervised learning and (ii) do-
main adaptation. Several models have been pro-
posed for semi-supervised learning. The earli-
est approach is self-training (Scudder, 1965), in
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which a trained model is first used to label un-
labeled data instances followed by the model re-
training with the most confident predicted labeled
instances. The co-training (Mitchell, 1999) ap-
proach assumes that features can be split into two
sets and each subset is then used to train a classi-
fier with an assumption that the two sets are con-
ditionally independent. Then each classifier clas-
sifies the unlabeled data, and then most confident
data instances are used to re-train the other classi-
fier, this process repeats multiple times.

In the graph-based semi-supervised approach,
nodes in a graph represent labeled and unlabeled
instances and edge weights represent the similar-
ity between them. The structural information en-
coded in the graph is then used to regularize a
model (Zhu, 2005). There are two paradigms in
semi-supervised learning: 1) inductive – learning
a function with which predictions can be made on
unobserved instances, 2) transductive – no explicit
function is learned and predictions can only be
made on observed instances. As mentioned be-
fore, inductive semi-supervised learning is prefer-
able over the transductive approach since it avoids
building the graph each time it needs to infer the
labels for the unlabeled instances.

In our work, we use a graph-based inductive
deep learning approach proposed by Yang et al.
(2016) to learn features in a deep learning model
by predicting contextual (i.e., neighboring) nodes
in the graph. However, our approach is different
from Yang et al. (2016) in several ways. First, we
construct the graph by computing the distance be-
tween tweets based on word embeddings. Second,
instead of using count-based features, we use a
convolutional neural network (CNN) to compose
high-level features from the distributed represen-
tation of the words in a tweet. Finally, for context
prediction, instead of performing a random walk,
we select nodes based on their similarity in the
graph. Similar similarity-based graph has shown
impressive results in learning sentence representa-
tions (Saha et al., 2017).

In the literature, the proposed approaches
for domain adaptation include supervised, semi-
supervised and unsupervised. It also varies from
linear kernelized approach (Blitzer et al., 2006) to
non-linear deep neural network techniques (Glo-
rot et al., 2011; Ganin et al., 2016). One direction
of research is to focus on feature space distribu-
tion matching by reweighting the samples from

the source domain (Gong et al., 2013) to map
source into target. The overall idea is to learn a
good feature representation that is invariant across
domains. In the deep learning paradigm, Glo-
rot et al. (Glorot et al., 2011) used Stacked De-
noising Auto-Encoders (SDAs) for domain adap-
tation. SDAs learn a robust feature representation,
which is artificially corrupted with small Gaussian
noise. Adversarial training of neural networks
has shown big impact recently, especially in areas
such as computer vision, where generative unsu-
pervised models have proved capable of synthe-
sizing new images (Goodfellow et al., 2014; Rad-
ford et al., 2015; Makhzani et al., 2015). Ganin
et al. (2016) proposed domain adversarial neural
networks (DANN) to learn discriminative but at
the same time domain-invariant representations,
with domain adaptation as a target. We extend this
work by combining with semi-supervised graph
embedding for unsupervised domain adaptation.

In a recent work, Kipf and Welling (2016)
present CNN applied directly on graph-structured
datasets - citation networks and on a knowledge
graph dataset. Their study demonstrate that graph
convolution network for semi-supervised classifi-
cation performs better compared to other graph
based approaches.

6 Conclusions

In this paper, we presented a deep learning frame-
work that performs domain adaptation with adver-
sarial training and graph-based semi-supervised
learning to leverage labeled and unlabeled data
from related events. We use a convolutional neu-
ral network to compose high-level representation
from the input, which is then passed to three com-
ponents that perform supervised training, semi-
supervised learning and domain adversarial train-
ing. For domain adaptation, we considered a sce-
nario, where we have only unlabeled data in the
target event. Our evaluation on two crisis-related
tweet datasets demonstrates that by combining
domain adversarial training with semi-supervised
learning, our model gives significant improve-
ments over their respective baselines. We have
also presented results of batch-wise incremen-
tal training of the graph-based semi-supervised
approach and show approximation regarding the
number of labeled examples required to get an ac-
ceptable performance at the onset of an event.



1086

References
Martı́n Arjovsky, Soumith Chintala, and Léon Bottou.
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