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Abstract

Bilingual tasks, such as bilingual lexicon
induction and cross-lingual classification,
are crucial for overcoming data sparsity in
the target language. Resources required
for such tasks are often out-of-domain,
thus domain adaptation is an important
problem here. We make two contributions.
First, we test a delightfully simple method
for domain adaptation of bilingual word
embeddings. We evaluate these embed-
dings on two bilingual tasks involving dif-
ferent domains: cross-lingual twitter sen-
timent classification and medical bilingual
lexicon induction. Second, we tailor a
broadly applicable semi-supervised clas-
sification method from computer vision to
these tasks. We show that this method
also helps in low-resource setups. Using
both methods together we achieve large
improvements over our baselines, by using
only additional unlabeled data.

1 Introduction

In this paper we study two bilingual tasks that
strongly depend on bilingual word embeddings
(BWEs). Previously, specialized domain adap-
tation approaches to such tasks were proposed.
We instead show experimentally that a simple
adaptation process involving only unlabeled text
is highly effective. We then show that a semi-
supervised classification method from computer
vision can be applied successfully for further gains
in cross-lingual classification.

Our BWE adaptation method is delightfully
simple. We begin by adapting monolingual word
embeddings to the target domain for source and
target languages by simply building them using
both general and target-domain unlabeled data. As

a second step we use post-hoc mapping (Mikolov
et al., 2013b), i.e., we use a seed lexicon to trans-
form the word embeddings of the two languages
into the same vector space. We show experimen-
tally for the first time that the domain-adapted
bilingual word embeddings we produce using this
extremely simple technique are highly effective.
We study two quite different tasks and domains,
where resources are lacking, showing that our sim-
ple technique performs well for both of them:
cross-lingual twitter sentiment classification and
medical bilingual lexicon induction. In previous
work, task-dependent approaches were used for
this type of domain adaptation. Our approach is
simple and task independent.

Second, we adapt the semi-supervised image
classification system of Häusser et al. (2017) for
NLP problems for the first time. This approach
is broadly applicable to many NLP classification
tasks where unlabeled data is available. We tai-
lor it to both of our cross-lingual tasks. The sys-
tem exploits unlabeled data during the training of
classifiers by learning similar features for similar
labeled and unlabeled training examples, thereby
extracting information from unlabeled examples
as well. As we show experimentally, the system
further improves cross-lingual knowledge transfer
for both of our tasks.

After combining both techniques, the results of
sentiment analysis are competitive with systems
that use annotated data in the target language, an
impressive result considering that we require no
target-language annotated data. The method also
yields impressive improvements for bilingual lex-
icon induction compared with baselines trained on
in-domain data. We show that this system re-
quires the high-quality domain-adapted bilingual
word embeddings we previously created to use un-
labeled data well.
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2 Previous Work

2.1 Bilingual Word Embeddings
Many approaches have been proposed for creating
high quality BWEs using different bilingual sig-
nals. Following Mikolov et al. (2013b), many au-
thors (Faruqui and Dyer, 2014; Xing et al., 2015;
Lazaridou et al., 2015; Vulić and Korhonen, 2016)
map monolingual word embeddings (MWEs) into
the same bilingual space. Others leverage paral-
lel texts (Hermann and Blunsom, 2014; Gouws
et al., 2015) or create artificial cross-lingual cor-
pora using seed lexicons or document alignments
(Vulić and Moens, 2015; Duong et al., 2016) to
train BWEs.

In contrast, our aim is not to improve the in-
trinsic quality of BWEs, but to adapt BWEs to
specific domains to enhance their performance on
bilingual tasks in these domains. Faruqui et al.
(2015), Gouws and Søgaard (2015), Rothe et al.
(2016) have previously studied domain adaptation
of bilingual word embeddings, showing it to be
highly effective for improving downstream tasks.
However, importantly, their proposed methods are
based on specialized domain lexicons (such as,
e.g., sentiment lexicons) which contain task spe-
cific word relations. Our delightfully simple ap-
proach is, in contrast, effectively task independent
(in that it only requires unlabeled in-domain text),
which is an important strength.

2.2 Cross-Lingual Sentiment Analysis
Sentiment analysis is widely applied, and thus ide-
ally we would have access to high quality super-
vised models in all human languages. Unfortu-
nately, good quality labeled datasets are missing
for many languages. Training models on resource
rich languages and applying them to resource poor
languages is therefore highly desirable. Cross-
lingual sentiment classification (CLSC) tackles
this problem (Mihalcea et al., 2007; Banea et al.,
2010; Wan, 2009; Lu et al., 2011; Balamurali and
Joshi, 2012; Gui et al., 2013). Recent CLSC ap-
proaches use BWEs as features of deep learn-
ing architectures which allows us to use a model
for target-language sentiment classification, even
when the model was trained only using source-
language supervised training data. Following this
approach we perform CLSC on Spanish tweets us-
ing English training data. Even though Spanish is
not resource-poor we simulate this by using only
English annotated data.

Xiao and Guo (2013) proposed a cross-lingual
log-bilinear document model to learn distributed
representations of words, which can capture both
the semantic similarities of words across lan-
guages and the predictive information with respect
to the classification task. Similarly, Tang and Wan
(2014) jointly embedded texts in different lan-
guages into a joint semantic space representing
sentiment. Zhou et al. (2014) employed aligned
sentences in the BWE learning process, but in the
sentiment classification process only representa-
tions in the source language are used for training,
and representations in the target language are used
for predicting labels. An important weakness of
these three works was that aligned sentences were
required.

Some work has trained sentiment-specific
BWEs using annotated sentiment information in
both languages (Zhou et al., 2015, 2016), which
is desirable, but this is not applicable to our sce-
nario. Our goal is to adapt BWEs to a specific
domain without requiring additional task-specific
engineering or knowledge sources beyond having
access to plentiful target-language in-domain un-
labeled text. Both of the approaches we study in
this work fit this criterion, the delightfully sim-
ple method for adapting BWEs can improve the
performance of any off-the-shelf classifier that is
based on BWEs, while the broadly applicable
semi-supervised approach of Häusser et al. (2017)
can improve the performance of any off-the-shelf
classifier.

2.3 Bilingual Lexicon Induction (BLI)

BLI is an important task that has been addressed
by a large amount of previous work. The goal
of BLI is to automatically extract word translation
pairs using BWEs. While BLI is often used to pro-
vide an intrinsic evaluation of BWEs (Lazaridou
et al., 2015; Vulić and Moens, 2015; Vulić and
Korhonen, 2016) it is also useful for tasks such
as machine translation (Madhyastha and España
Bohnet, 2017). Most work on BLI using BWEs fo-
cuses on frequent words in high-resource domains
such as parliament proceedings or news texts. Re-
cently Heyman et al. (2017) tackled BLI of words
in the medical domain. This task is useful for
many applications such as terminology extraction
or OOV mining for machine translation of medi-
cal texts. Heyman et al. (2017) show that when
only a small amount of medical data is available,
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BLI using BWEs tends to perform poorly. Es-
pecially BWEs obtained using post-hoc mapping
(Mikolov et al., 2013b; Lazaridou et al., 2015) fail
on this task. Consequently, Heyman et al. (2017)
build BWEs using aligned documents and then en-
gineer a specialized classification-based approach
to BLI. In contrast, our delightfully simple ap-
proach to create high-quality BWEs for the med-
ical domain requires only monolingual data. We
show that our adapted BWEs yield impressive im-
provements over non-adapted BWEs in this task
with both cosine similarity and with the classifier
of Heyman et al. (2017). In addition, we show
that the broadly applicable method can push per-
formance further using easily accessible unlabeled
data.

3 Adaptation of BWEs

BWEs trained on general domain texts usually re-
sult in lower performance when used in a system
for a specific domain. There are two reasons for
this. (i) Vocabularies of specific domains contain
words that are not used in the general case, e.g.,
names of medicines or diseases. (ii) The mean-
ing of a word varies across domains; e.g., “apple”
mostly refers to a fruit in general domains, but is
an electronic device in many product reviews.

The delightfully simple method adapts general
domain BWEs in a way that preserves the seman-
tic knowledge from general domain data and lever-
ages monolingual domain specific data to create
domain-specific BWEs. Our domain-adaptation
approach is applicable to any language-pair in
which monolingual data is available. Unlike other
methods, our approach is task independent: it only
requires unlabeled in-domain target language text.

3.1 Approach

To create domain adapted BWEs, we first train
MWEs (monolingual word embeddings) in both
languages and then map those into the same space
using post-hoc mapping (Mikolov et al., 2013b).
We train MWEs for both languages by concate-
nating monolingual out-of-domain and in-domain
data. The out-of-domain data allows us to cre-
ate accurate distributed representations of com-
mon vocabulary while the in-domain data embeds
domain specific words. We then map the two
MWEs using a small seed lexicon to create the
adapted BWEs. Because post-hoc mapping only
requires a seed lexicon as bilingual signal it can

easily be used with (cheap) monolingual data.
For post-hoc mapping, we use Mikolov et al.

(2013b)’s approach. This model assumes a W ∈
Rd1×d2 matrix which maps vectors from the
source to the target MWEs where d1 and d2 are
the embedding space dimensions. A seed lexicon
of (xi, yi) ∈ L ⊆ Rd1×Rd2 pairs is needed where
xi and yi are source and target MWEs. W can be
learned using ridge regression by minimizing the
L2-regularized mapping error between the source
xi and the target yi vectors:

min
W

∑
i

||Wxi − yi||22 + λ||W ||22 (1)

where λ is the regularization weight. Based on
the source embedding x, we then compute a target
embedding as Wx.

We create MWEs with word2vec skipgram
(Mikolov et al., 2013a)1 and estimate W with
scikit-learn (Pedregosa et al., 2011). We use de-
fault parameters.

4 Cross-Lingual Sentiment Classification

In CLSC, an important application of BWEs, we
train a supervised sentiment model on training
data available in the source (a resource rich lan-
guage) and apply it to the target (a resource poor
language, for which there is typically no train-
ing data available). Because BWEs embed source
and target words in the same space, annotations
in the source (represented as BWEs) enable trans-
fer learning. For CLSC of tweets, a drawback of
BWEs trained on non-twitter data is that they do
not produce embeddings for twitter-specific vo-
cabulary, e.g., slang words like English coool and
(Mexican) Spanish chido, resulting in lost infor-
mation when a sentiment classifier uses them.

4.1 Training Data for Twitter Specific BWEs
As comparable non-twitter data we use OpenSub-
titles (Lison and Tiedemann, 2016) which contains
49.2M English and Spanish subtitle sentences re-
spectively (Subtitle). The reason behind choos-
ing Subtitles is that although it is out-of-domain it
contains slang words similar to tweets thus serving
as a strong baseline in our setup. We experiment
with two monolingual twitter data sets:

(i) 22M tweets: Downloaded2 English (17.2M)
and Spanish (4.8M) tweets using the public

1https://github.com/dav/word2vec
2We downloaded for a month starting on 2016-10-15.

https://github.com/dav/word2vec
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Twitter Streaming API3 with language filters
en and es

(ii) a BACKGROUND corpus of 296K English
and 150K Spanish (non-annotated) tweets re-
leased with the test data of the RepLab task
(Amigó et al., 2013) described below

All twitter data was tokenized using Bird et al.
(2009) and lowercased. User names, URLs, num-
bers, emoticons and punctuation were removed.

As lexicon for the mapping, we use the BNC
word frequency list (Kilgarriff, 1997), a list of
6,318 frequent English lemmas and their Span-
ish translations, obtained from Google Translate.
Note that we do not need a domain-specific lexi-
con in order to get good quality adapted BWEs.

4.2 Training Data for Sentiment Classifiers
For sentiment classification, we use data from the
RepLab 2013 shared task (Amigó et al., 2013).
The data is annotated with positive, neutral and
negative labels and contains English and Spanish
tweets. We used the official English training set
(26.6K tweets) and the Spanish test set (14.9K)
in the resource-poor setup. We only use the 7.2K
Spanish labeled training data for comparison rea-
sons in §6.2, which we will discuss later.

The shared task was on target-level sentiment
analysis, i.e., given a pair (document, target en-
tity), the gold annotation is based on whether the
sentiment expressed by the document is about the
target. For example: I cried on the back seat of
my BMW! where BMW is the target would be neg-
ative in the sentence-level scenario. However, it
is neutral in the target-level case because the neg-
ative sentiment is not related to BMW. The rea-
son for using this dataset is that it contains com-
parable English and Spanish tweets annotated for
sentiment. There are other twitter datasets for En-
glish (Nakov et al., 2016) and Spanish (Garcıa-
Cumbreras et al., 2016), but they were down-
loaded at different times and were annotated using
different annotation methodologies, thus impeding
a clean and consistent evaluation.

4.3 Sentiment Systems
For evaluating our adapted BWEs on the RepLab
dataset we used a target-aware sentiment classi-
fier introduced by Zhang et al. (2016). The net-
work first embeds input words using pre-trained

3dev.twitter.com/streaming/overview

BWEs and feeds them to a bi-directional gated
neural network. Pooling is applied on the hidden
representations of the left and right context of the
target mention respectively. Finally, gated neurons
are used to model the interaction between the tar-
get mention and its surrounding context. During
training we hold our pre-trained BWEs fixed and
keep the default parameters of the model.

We also implement Kim (2014)’s CNN-non-
static system, which does not use the target in-
formation in a given document (target-ignorant).
The network first embeds input words using pre-
trained BWEs and feeds them to a convolutional
layer with multiple window sizes. Max pooling
is applied on top of convolution followed by a
fully connected network with one hidden layer.
We used this system as well because it performed
comparably to the target-aware system. The rea-
son for this is that only 1% of the used data con-
tains more than one target and out of these rare
cases only 14% have differing sentiment labels in
the same sentence, which are the difficult cases of
target-level sentiment analysis. We used the de-
fault parameters as described in (Kim, 2014) with
the exception of using 1000 feature maps and 30
epochs, based on our initial experiments. Word
embeddings are fixed during the training just as
for the target-aware classifier.

4.4 Results

As we previously explained we evaluate our adap-
tation method on the task of target-level senti-
ment classification using both target-aware and
target-ignorant classifiers. For all experiments,
our two baselines are off-the-shelf classifiers us-
ing non-adapted BWEs, i.e., BWEs trained only
using Subtitles. Our goal is to show that our BWE
adaptation method can improve the performance
of such classifiers. We train our adapted BWEs
on the concatenation of Subtitle and 22M tweets
or BACKGROUND respectively. In addition, we
also report results with BWEs trained only on
tweets.

To train the sentiment classifiers we use the En-
glish Replab training set and we evaluate on the
Spanish test set. To show the performance that
can be reached in a monolingual setup, we report
results obtained by using annotated Spanish sen-
timent data instead of English (oracle). We train
two oracle sentiment classifiers using (i) MWEs
trained on only the Spanish part of Subtitle and (ii)

dev.twitter.com/streaming/overview
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Baseline 55.14% 59.05%
de
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e BACKGROUND 56.79% 58.50%
22M tweets 59.44% 61.14%

Subtitle+BACKGROUND 58.64% 59.34%
Subtitle+22M tweets 60.99% 61.06%

Table 1: Accuracy of the BWE adaptation ap-
proach on the target-level sentiment classification
task. The oracle systems used Spanish sentiment
training data instead of English.

BWEs trained on Subtitle using posthoc mapping.
The difference between the two is that the em-
beddings of (ii) are enriched with English words
which can be beneficial for the classification of
Spanish tweets because they often contain a few
English words.

We do not compare with word embedding adap-
tation methods relying on specialized resources.
The point of our work is to study task-independent
methods and to the best of our knowledge ours is
the first such attempt. Similarly, we do not com-
pare against machine translation based sentiment
classifiers (e.g., (Zhou et al., 2016)) because for
their adaptation in-domain parallel data would be
needed.

Table 1 gives results for both classifiers. It
shows that the adaptation of Subtitle based BWEs
with data from Twitter (22M tweets and BACK-
GROUND) clearly outperforms the Baseline in
all cases. The target-aware system performed
poorly with the baseline BWEs and could bene-
fit significantly from the adaptation approach. The
target-ignorant performed better with the baseline
BWEs but could also benefit from the adaptation.
Comparing results with the Twitter-dataset-only
based BWEs, the 22M tweets performed better
even though the BACKGROUND dataset is from
the same topic as the RepLab train and test sets.
Our conjecture is that the latter is too small to cre-
ate good BWEs. In combination with Subtitles,
22M tweets also yields better results than when
combined with BACKGROUND. Although the
best accuracy was reached using the 22M tweets-
only based BWEs, it is only slightly better then
the adapted Subtitles+22M tweets based BWEs.
In §6 we show that both the semantic knowledge
from Subtitles and the domain-specific informa-
tion from tweets are needed to further improve re-
sults.

Comparing the two classifiers we can say that
they performed similarly in terms of their best re-
sults. On the other hand, the target-ignorant sys-
tem had better results on average. This might
seem surprising at first because the system does
not use the target as information. But considering
the characteristics of RepLab, i.e., that the number
of tweets that contains multiple targets is negligi-
ble, using the target offers no real advantage.

Although we did not focus on the impact of
the seed lexicon size, we ran post-hoc mapping
with different sizes during our preliminary experi-
ments. With 1,000 and 100 word pairs in the lex-
icon the target-ignorant system suffered 0.5% and
4.0% drop in average of our setups respectively.

To summarize the result: using adapted BWEs
for the Twitter CLSC task improves the perfor-
mance of off-the-shelf classifiers.

5 Medical Bilingual Lexicon Induction

Another interesting downstream task for BWEs is
bilingual lexicon induction. Given a list of words
in a source language, the goal of BLI is to mine
translations for each word in a chosen target lan-
guage. The medical bilingual lexicon induction
task proposed in (Heyman et al., 2017) aims to
mine medical words using BWEs trained on a very
small amount of English and Dutch monolingual
medical data. Due to the lack of resources in this
domain, good quality BWEs are hard to build us-
ing in-domain data only. We show that by enrich-
ing BWEs with general domain knowledge (in the
form of general domain monolingual corpora) bet-
ter results can be achieved on this medical domain
task.

5.1 Experimental Setup

We evaluate our improved BWEs on the dataset
provided by Heyman et al. (2017). The mono-
lingual medical data consists of English and
Dutch medical articles from Wikipedia. The En-
glish (resp. Dutch) articles contain 52,336 (resp.
21,374) sentences. A total of 7,368 manually an-
notated word translation pairs occurring in the En-
glish (source) and Dutch (target) monolingual cor-
pora are provided as gold data. This set is split
64%/16%/20% into trn/dev/test. 20% of the En-
glish words have multiple translations. Given an
English word, the task is to find the correct Dutch
translation.

As monolingual general-domain data we use
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cosine similarity classifier
F1 (top) F1 (all) F1 (top) F1 (all)

Baseline 13.43 9.84 37.73 36.61
Baseline BNC lexicon - - 20.73 21.78

Adapted medical lexicon 14.18 14.15 40.71 38.09
Adapted BNC lexicon 16.29 16.71 22.10 21.50

Table 2: We report F1 results for medical BLI with the cosine similarity and the classifier based sys-
tems. We present baseline and our proposed domain adaptation method using both general and medical
lexicons.

the English and Dutch data from Europarl (v7)
(Koehn, 2005), a corpus of 2 million sentence
pairs. Although Europarl is a parallel corpus, we
use it in a monolingual way and shuffle each side
of the corpus before training. By using massive
cheap data we create high-quality MWEs in each
language which are still domain-specific (due to
inclusion of medical data). To obtain an out-of-
domain seed lexicon, we translated the English
words in BNC to Dutch using Google Translate
(just as we did before for the Twitter CLSC task).
We then use the out-of-domain BNC and the in-
domain medical seed lexicons in separate exper-
iments to create BWEs with post-hoc mapping.
Note, we did not concatenate the two lexicons
because (i) they have a small common subset of
source words which have different target words,
thus having a negative effect on the mapping and
(ii) we did not want to modify the medical seed
lexicon because it was taken from previous work.

5.2 BLI Systems

To perform BLI we use two methods. Because
BWEs represent words from different languages
in a shared space, BLI can be performed via co-
sine similarity in this space. In other words, given
a BWE representing two languages Vs and Vt, the
translation of each word s ∈ Vs can be induced by
taking the word t ∈ Vt whose representation ~xt in
the BWE is closest to the representation ~xs.

As the second approach we use a classifier
based system proposed by Heyman et al. (2017).
This neural network based system is comprised of
two main modules. The first is a character-level
LSTM which aims to learn orthographic similar-
ity of word pairs. The other is the concatenation
of the embeddings of the two words using embed-
ding layers with the aim of learning the similar-
ity among semantic representations of the words.
Dense layers are applied on top of the two mod-
ules before the output soft-max layer. The clas-
sifier is trained using positive and negative word

pair examples and a pre-trained word embedding
model. Negative examples are randomly gener-
ated for each positive one in the training lexi-
con. We used default parameters as reported by
Heyman et al. (2017) except for the t classifica-
tion thresholds (used at prediction time). We fine-
tuned these on dev. We note that the system works
with pre-trained MWEs as well (and report these
as official baseline results) but it requires BWEs
for candidate generation at prediction time, thus
we use BWEs for the system’s input for all exper-
iments. In preliminary work, we had found that
MWE and BWE results are similar.

5.3 Results

Heyman et al. (2017)’s results are our base-
line. Table 2 compares its performance with our
adapted BWEs, with both cosine similarity and
classification based systems. “top” F1 scores are
based on the most probable word as prediction
only; “all” F1 scores use all words as prediction
whose probability is above the threshold. It can
be seen that the cosine similarity based system us-
ing adapted BWEs clearly outperforms the non-
adapted BWEs which were trained in a resource
poor setup.4 Moreover, the best performance was
reached using the general seed lexicon for the
mapping which is due to the fact that general do-
main words have better quality embeddings in the
MWE models, which in turn gives a better quality
mapping.

The classification based system performs sig-
nificantly better comparing to cosine similarity by
exploiting the seed lexicon better. Using adapted
BWEs as input word embeddings for the system
further improvements were achieved which shows
the better quality of our BWEs. Simulating an
even poorer setup by using a general lexicon, the

4The results for cosine similarity in (Heyman et al., 2017)
are based on BWESG-based BWEs (Vulić and Moens, 2016)
trained on a small document aligned parallel corpus without
using a seed lexicon.
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performance gain of the classifier is lower. This
shows the significance of the medical seed lexicon
for this system. On the other hand, adapted BWEs
have better performance compared to non-adapted
ones using the best translation while they have just
slightly lower F1 using multiple translations. This
result shows that while with adapted BWEs the
system predicts better “top” translations, it has a
harder time when predicting “all” due to the in-
creased vocabulary size.

To summarize: we have shown that adapted
BWEs increase performance for this task and do-
main; and they do so independently of the task-
specific system that is used.

6 Semi-Supervised Learning

In addition to the experiments that show our BWE-
adaptation method’s task and language indepen-
dence, we investigate ways to further incorporate
unlabeled data to overcome data sparsity.

Häusser et al. (2017) introduce a semi-
supervised method for neural networks that makes
associations from the vector representation of la-
beled samples to those of unlabeled ones and back.
This lets the learning exploit unlabeled samples as
well. While Häusser et al. (2017) use their model
for image classification, we adapt it to CLSC of
tweets and medical BLI. We show that our semi-
supervised model requires adapted BWEs to be ef-
fective and yields significant improvements. This
innovative method is general and can be applied to
any classification when unlabeled text is available.

6.1 Model

Häusser et al. (2017)’s basic assumption is that the
embeddings of labeled and unlabeled samples –
i.e., the representations in the neural network on
which the classification layer is applied – are sim-
ilar within the same class. To achieve this, walking
cycles are introduced: a cycle starts from a labeled
sample, goes to an unlabeled one and ends at a la-
beled one. A cycle is correct if the start and end
samples are in the same class. The probability of
going from sample A to B is proportional to the
cosine similarity of their embeddings. To maxi-
mize the number of correct cycles, two loss func-
tions are employed: Walker loss and Visit loss.

Walker loss penalizes incorrect walks and en-
courages a uniform probability distribution of

walks to the correct class. It is defined as:

Lwalker := H(T, P aba) (2)

where H is the cross-entropy function, P aba
ij is

the probability that a cycle starts from sample i
and ends at j and T is the uniform target distribu-
tion:

Tij :=

{
1/(#c(i)) if c(i) = c(j)

0 otherwise
(3)

where c(i) is the class of sample i and #c(i) is
the number of occurrences of c(i) in the labeled
set.

Visit loss encourages cycles to visit all unla-
beled samples, rather than just those which are the
most similar to labeled samples. It is defined as:

Lvisit := H(V, P visit)

P visit
j := 〈P ab

ij 〉i (4)

Vj :=
1

U

whereH is cross-entropy, P ab
ij is the probability

that a cycle starts from sample i and goes to j and
U is the number of unlabeled samples.

The total loss during training is the sum of the
walker, visit and classification (cross-entropy be-
tween predicted and gold labels) losses which is
minimized using Adam (Kingma and Ba, 2015).

We adapt this model (including the two losses)
to sentiment classification, focusing on the target-
ignorant classifier, and the classifier based ap-
proach for BLI. We will call these systems
semisup5. Due to the fact that we initialize the
embedding layers for both classifiers with BWEs
the models are able to make some correct cycles
at the beginning of the training and improve them
later on. We will describe the labeled and unla-
beled datasets used in the subsequent sections be-
low.

We use Häusser et al. (2017)’s implementation
of the losses, with 1.0, 0.5 and 1.0 weights for the
walker, visit and classification losses, respectively,
for CLSC based on preliminary experiments. We
fine-tuned the weights for BLI on dev for each ex-
periment.

5We publicly release our implementation: https://
github.com/hangyav/biadapt

https://github.com/hangyav/biadapt
https://github.com/hangyav/biadapt
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n Baseline 58.67% (-0.38%)
BACKGROUND 57.41% (-1.09%)

22M tweets 60.19% (-0.95%)
Subtitle+BACKGROUND 60.31% (0.97%)

Subtitle+22M tweets 63.23% (2.17%)

Table 3: Accuracy on CLSC of the adapted BWE
approach with the semisup (target-ignorant with
additional loss functions) system comparing to the
target-ignorant in brackets.

6.2 Semi-Supervised CLSC

As in §4.4, we use pre-trained BWEs to initialize
the classifier and use English sentiment training
data as the labeled set. Furthermore, we use the
Spanish sentiment training data as the unlabeled
set, ignoring its annotation. This setup is very
similar to real-word low-resource scenarios: unla-
beled target-language tweets are easy to download
while labeled English ones are available.

Table 3 gives results for adapted BWEs and
shows that semisup helps only when word embed-
dings are adapted to the Twitter domain. As men-
tioned earlier, semisup compares labeled and un-
labeled samples based on their vector representa-
tions. By using BWEs based on only Subtitles, we
lose too many embeddings of similar English and
Spanish tweets. On the other hand, if we use only
tweet-based BWEs we lose good quality seman-
tic knowledge which can be learned from more
standard text domains. By combining the two do-
mains we were able to capture both sides. For Sub-
title+22M tweets, we even get very close to the
best oracle (BWE Subtitle) in Table 1 getting only
0.27% less accuracy – an impressive result keep-
ing in mind that we did not use labeled Spanish
data.

The RepLab dataset contains tweets from 4 top-
ics: automotive, banking, university, music. We
manually analyzed similar tweets from the labeled
and unlabeled sets. We found that when using
semisup, English and Spanish tweets from the
same topics are more similar in the embedding
space than occurs without the additional losses.
Topics differ in how they express sentiment – this
may explain why semisup increases performance
for RepLab.

Adding supervision. To show how well
semisup can exploit the unlabeled data we used
both English and Spanish sentiment training
data together to train the sentiment classifiers.

Table 4 shows that by using annotated data in
both languages we get clearly better results
than when using only one language. Tables
3 and 4 show that for Subtitle+22M tweets
based BWEs, the semisup approach achieved
high improvement (2.17%) comparing to target-
ignorant with English training data only, while
it achieved lower improvement (0.97%) with the
Subtitle+BACKGROUND based BWEs. On the
other hand, adding labeled Spanish data caused
just a slight increase comparing to semisup with
Subtitle+22M tweets based BWEs (0.59%), while
in case of Subtitle+BACKGROUND we got
significant additional improvement (2.61%). This
means that with higher quality BWEs, unlabeled
target-language data can be exploited better.

It can also be seen that the target-aware system
outperformed the target-ignorant system using ad-
ditional labeled target-language data. The reason
could be that it is a more complex network and
therefore needs more data to reach high perfor-
mance.

The results in table 4 are impressive: our target-
level system is strongly competitive with the of-
ficial shared task results. We achieved high ac-
curacy on the Spanish test set by using only En-
glish training data. Comparing our best system
which used all training data to the official results
(Amigó et al., 2013) we would rank 2nd even
though our system is not fine-tuned for the Re-
pLab dataset. Furthermore, we also outperformed
the oracles when using annotated data from both
languages which shows the additional advantage
of using BWEs.

6.3 Semi-Supervised BLI

For BLI experiments with semisup we used word
pairs from the medical seed lexicon as the la-
beled set (with negative word pairs generated as
described in §5.2). As opposed to CLSC and the
work of (Häusser et al., 2017), for this task we do
not have an unlabeled set, and therefore we need to
generate it. We developed two scenarios. For the
first, BNC, we generate a general unlabeled set us-
ing English words from the BNC lexicon and gen-
erate 10 pairs out of each word by using the 5 most
similar Dutch words based on the corresponding
BWEs and 5 random Dutch words. For the sec-
ond scenario, medical, we generate an in-domain
unlabeled set by generating for each English word
in the medical lexicon the 3 most similar Dutch
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lang target-aware target-ignorant

or
ac

le MWE Subtitle Es 62.17% 63.27%
BWE Subtitle Es 62.46% 63.50%

do
m

ai
n

ad
ap

ta
tio

n Subtitle+BACKGROUND En 58.64% 59.34%
Subtitle+BACKGROUND En+Es 64.01% 62.92% (2.61%)

Subtitle+22M tweets En 60.99% 61.06%
Subtitle+22M tweets En+Es 64.24% 63.82% (0.59%)

Table 4: Accuracy on CLSC of both target-aware and target-ignorant systems using English or/and
Spanish sentiment training data. Column lang shows the language of the used training data. Differences
comparing to semisup are indicated in brackets.

F1 (top) F1 (all)
Baseline+BNC 35.04 (-0.66) 34.98 (-1.40)

Baseline+medical 36.20 (0.50) 36.55 (0.16)
Adapted+BNC 41.01 (0.30) 39.04 (0.95)

Adapted+medical 41.44 (0.73) 37.51 (-0.57)

Table 5: Results with the semi-supervised system
for BLI. Differences comparing to previous re-
sults are indicated in brackets. Baseline results are
compared to rerun experiments of Heyman et al.
(2017) using BWEs instead of MWEs.

words based on BWEs and for each of these we
use the 5 most similar English words (ignoring the
words which are in the original medical lexicon)
and 5 negative words. The idea behind these meth-
ods is to automatically generate an unlabeled set
that hopefully has a similar positive and negative
word pair distribution to the distribution in the la-
beled set.

Results in Table 5 show that adding semisup
to the classifier further increases performance for
BLI as well. For the baseline system, when using
only in-domain text for creating BWEs, only the
medical unlabeled set was effective, general do-
main word pairs could not be exploited due to the
lack of general semantic knowledge in the BWE
model. On the other hand, by using our domain
adapted BWEs, which contain both general do-
main and in-domain semantical knowledge, we
can exploit word pairs from both domains. Results
for adapted BWEs increased in 3 out of 4 cases,
where the only exception is when using multiple
translations for a given source word (which may
have been caused by the bigger vocabulary size).

These results show that adapted BWEs are
needed to exploit unlabeled data well which leads
to an impressive overall 3.71 increase compared
with the best result in previous work (Heyman
et al., 2017), by using only unlabeled data.

7 Conclusion

Bilingual word embeddings trained on general
domain data yield poor results in out-of-domain
tasks. We presented experiments on two different
low-resource task/domain combinations. Our de-
lightfully simple task independent method to adapt
BWEs to a specific domain uses unlabeled mono-
lingual data only. We showed that with the sup-
port of adapted BWEs the performance of off-
the-shelf methods can be increased for both cross-
lingual Twitter sentiment classification and medi-
cal bilingual lexicon induction. Furthermore, by
adapting the broadly applicable semi-supervised
approach of Häusser et al. (2017) (which until now
has only been applied in computer vision) we were
able to effectively exploit unlabeled data to fur-
ther improve performance. We showed that, when
also using high-quality adapted BWEs, the per-
formance of the semi-supervised systems can be
significantly increased by using unlabeled data at
classifier training time. In addition, CLSC results
are competitive with a system that uses target-
language labeled data, even when we use no such
target-language labeled data.

Acknowledgments

We would like to thank the anonymous review-
ers for their valuable input. This project has re-
ceived funding from the European Research Coun-
cil (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant
agreement№ 640550).

References
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