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Abstract

In this work we focus on confidence mod-

eling for neural semantic parsers which

are built upon sequence-to-sequence mod-

els. We outline three major causes of un-

certainty, and design various metrics to

quantify these factors. These metrics are

then used to estimate confidence scores

that indicate whether model predictions

are likely to be correct. Beyond confi-

dence estimation, we identify which parts

of the input contribute to uncertain pre-

dictions allowing users to interpret their

model, and verify or refine its input. Ex-

perimental results show that our confi-

dence model significantly outperforms a

widely used method that relies on poste-

rior probability, and improves the quality

of interpretation compared to simply rely-

ing on attention scores.

1 Introduction

Semantic parsing aims to map natural language

text to a formal meaning representation (e.g., log-

ical forms or SQL queries). The neural sequence-

to-sequence architecture (Sutskever et al., 2014;

Bahdanau et al., 2015) has been widely adopted

in a variety of natural language processing tasks,

and semantic parsing is no exception. However,

despite achieving promising results (Dong and

Lapata, 2016; Jia and Liang, 2016; Ling et al.,

2016), neural semantic parsers remain difficult to

interpret, acting in most cases as a black box,

not providing any information about what made

them arrive at a particular decision. In this work,

we explore ways to estimate and interpret the

∗Work carried out during an internship at Microsoft Re-
search.

model’s confidence in its predictions, which we ar-

gue can provide users with immediate and mean-

ingful feedback regarding uncertain outputs.

An explicit framework for confidence modeling

would benefit the development cycle of neural se-

mantic parsers which, contrary to more traditional

methods, do not make use of lexicons or templates

and as a result the sources of errors and inconsis-

tencies are difficult to trace. Moreover, from the

perspective of application, semantic parsing is of-

ten used to build natural language interfaces, such

as dialogue systems. In this case it is important

to know whether the system understands the input

queries with high confidence in order to make de-

cisions more reliably. For example, knowing that

some of the predictions are uncertain would al-

low the system to generate clarification questions,

prompting users to verify the results before trig-

gering unwanted actions. In addition, the training

data used for semantic parsing can be small and

noisy, and as a result, models do indeed produce

uncertain outputs, which we would like our frame-

work to identify.

A widely-used confidence scoring method is

based on posterior probabilities p (y|x) where x
is the input and y the model’s prediction. For a

linear model, this method makes sense: as more

positive evidence is gathered, the score becomes

larger. Neural models, in contrast, learn a compli-

cated function that often overfits the training data.

Posterior probability is effective when making de-

cisions about model output, but is no longer a good

indicator of confidence due in part to the nonlin-

earity of neural networks (Johansen and Socher,

2017). This observation motivates us to develop

a confidence modeling framework for sequence-

to-sequence models. We categorize the causes of

uncertainty into three types, namely model uncer-
tainty, data uncertainty, and input uncertainty and

design different metrics to characterize them.
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We compute these confidence metrics for a

given prediction and use them as features in a re-

gression model which is trained on held-out data

to fit prediction F1 scores. At test time, the re-

gression model’s outputs are used as confidence

scores. Our approach does not interfere with

the training of the model, and can be thus ap-

plied to various architectures, without sacrificing

test accuracy. Furthermore, we propose a method

based on backpropagation which allows to inter-

pret model behavior by identifying which parts of

the input contribute to uncertain predictions.

Experimental results on two semantic parsing

datasets (IFTTT, Quirk et al. 2015; and DJANGO,

Oda et al. 2015) show that our model is supe-

rior to a method based on posterior probability.

We also demonstrate that thresholding confidence

scores achieves a good trade-off between coverage

and accuracy. Moreover, the proposed uncertainty

backpropagation method yields results which are

qualitatively more interpretable compared to those

based on attention scores.

2 Related Work

Confidence Estimation Confidence estimation

has been studied in the context of a few NLP

tasks, such as statistical machine translation (Blatz

et al., 2004; Ueffing and Ney, 2005; Soricut and

Echihabi, 2010), and question answering (Gondek

et al., 2012). To the best of our knowledge, con-

fidence modeling for semantic parsing remains

largely unexplored. A common scheme for model-

ing uncertainty in neural networks is to place dis-

tributions over the network’s weights (Denker and

Lecun, 1991; MacKay, 1992; Neal, 1996; Blun-

dell et al., 2015; Gan et al., 2017). But the result-

ing models often contain more parameters, and the

training process has to be accordingly changed,

which makes these approaches difficult to work

with. Gal and Ghahramani (2016) develop a the-

oretical framework which shows that the use of

dropout in neural networks can be interpreted as

a Bayesian approximation of Gaussian Process.

We adapt their framework so as to represent un-

certainty in the encoder-decoder architectures, and

extend it by adding Gaussian noise to weights.

Semantic Parsing Various methods have been

developed to learn a semantic parser from natural

language descriptions paired with meaning repre-

sentations (Tang and Mooney, 2000; Zettlemoyer

and Collins, 2007; Lu et al., 2008; Kwiatkowski

et al., 2011; Andreas et al., 2013; Zhao and Huang,

2015). More recently, a few sequence-to-sequence

models have been proposed for semantic parsing

(Dong and Lapata, 2016; Jia and Liang, 2016;

Ling et al., 2016) and shown to perform compet-

itively whilst eschewing the use of templates or

manually designed features. There have been sev-

eral efforts to improve these models including the

use of a tree decoder (Dong and Lapata, 2016),

data augmentation (Jia and Liang, 2016; Kočiský

et al., 2016), the use of a grammar model (Xiao

et al., 2016; Rabinovich et al., 2017; Yin and Neu-

big, 2017; Krishnamurthy et al., 2017), coarse-to-

fine decoding (Dong and Lapata, 2018), network

sharing (Susanto and Lu, 2017; Herzig and Berant,

2017), user feedback (Iyer et al., 2017), and trans-

fer learning (Fan et al., 2017). Current semantic

parsers will by default generate some output for

a given input even if this is just a random guess.

System results can thus be somewhat unexpected

inadvertently affecting user experience. Our goal

is to mitigate these issues with a confidence scor-

ing model that can estimate how likely the predic-

tion is correct.

3 Neural Semantic Parsing Model

In the following section we describe the neural se-

mantic parsing model (Dong and Lapata, 2016; Jia

and Liang, 2016; Ling et al., 2016) we assume

throughout this paper. The model is built upon

the sequence-to-sequence architecture and is illus-

trated in Figure 1. An encoder is used to encode

natural language input q = q1 · · · q|q| into a vec-

tor representation, and a decoder learns to gen-

erate a logical form representation of its mean-

ing a = a1 · · · a|a| conditioned on the encoding

vectors. The encoder and decoder are two differ-

ent recurrent neural networks with long short-term

memory units (LSTMs; Hochreiter and Schmid-

huber 1997) which process tokens sequentially.

The probability of generating the whole sequence

p (a|q) is factorized as:

p (a|q) =
|a|∏

t=1

p (at|a<t, q) (1)

where a<t = a1 · · · at−1.

Let et ∈ R
n denote the hidden vector of

the encoder at time step t. It is computed via

et = fLSTM (et−1,qt), where fLSTM refers to the

LSTM unit, and qt ∈ R
n is the word embedding
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Figure 1: We use dropout as approximate

Bayesian inference to obtain model uncertainty.

The dropout layers are applied to i) token vectors;

ii) the encoder’s output vectors; iii) bridge vectors;

and iv) decoding vectors.

of qt. Once the tokens of the input sequence are

encoded into vectors, e|q| is used to initialize the

hidden states of the first time step in the decoder.

Similarly, the hidden vector of the de-

coder at time step t is computed by dt =
fLSTM (dt−1,at−1), where at−1 ∈ R

n is the word

vector of the previously predicted token. Addi-

tionally, we use an attention mechanism (Luong

et al., 2015a) to utilize relevant encoder-side con-

text. For the current time step t of the decoder, we

compute its attention score with the k-th hidden

state in the encoder as:

rt,k ∝ exp{dt · ek} (2)

where
∑|q|

j=1 rt,j = 1. The probability of generat-

ing at is computed via:

ct =

|q|∑

k=1

rt,kek (3)

datt
t = tanh (W1dt +W2ct) (4)

p (at|a<t, q) = softmaxat
(
Wod

att
t

)
(5)

where W1,W2 ∈ R
n×n and Wo ∈ R

|Va|×n are

three parameter matrices.

The training objective is to maximize the like-

lihood of the generated meaning representation a
given input q, i.e., maximize

∑
(q,a)∈D log p (a|q),

where D represents training pairs. At test time,

the model’s prediction for input q is obtained via

â = argmaxa′ p (a
′|q), where a′ represents can-

didate outputs. Because p (a|q) is factorized as

shown in Equation (1), we can use beam search

to generate tokens one by one rather than iterating

over all possible results.

4 Confidence Estimation

Given input q and its predicted meaning rep-

resentation a, the confidence model estimates

Algorithm 1 Dropout Perturbation

Input: q, a: Input and its prediction
M: Model parameters

1: for i ← 1, · · · , F do
2: M̂i ← Apply dropout layers to M � Figure 1
3: Run forward pass and compute p̂(a|q;M̂i)

4: Compute variance of {p̂(a|q;M̂i)}Fi=1 � Equation (6)

score s (q, a) ∈ (0, 1). A large score indicates

the model is confident that its prediction is correct.

In order to gauge confidence, we need to estimate

“what we do not know”. To this end, we iden-

tify three causes of uncertainty, and design various

metrics characterizing each one of them. We then

feed these metrics into a regression model in order

to predict s (q, a).

4.1 Model Uncertainty
The model’s parameters or structures contain un-

certainty, which makes the model less confident

about the values of p (a|q). For example, noise in

the training data and the stochastic learning algo-

rithm itself can result in model uncertainty. We

describe metrics for capturing uncertainty below:

Dropout Perturbation Our first metric uses

dropout (Srivastava et al., 2014) as approxi-

mate Bayesian inference to estimate model un-

certainty (Gal and Ghahramani, 2016). Dropout

is a widely used regularization technique during

training, which relieves overfitting by randomly

masking some input neurons to zero according

to a Bernoulli distribution. In our work, we use

dropout at test time, instead. As shown in Algo-

rithm 1, we perform F forward passes through the

network, and collect the results {p̂(a|q;M̂i)}Fi=1

where M̂i represents the perturbed parameters.

Then, the uncertainty metric is computed by the

variance of results. We define the metric on the

sequence level as:

var{p̂(a|q;M̂i)}Fi=1. (6)

In addition, we compute uncertainty uat at the

token-level at via:

uat = var{p̂(at|a<t, q;M̂i)}Fi=1 (7)

where p̂(at|a<t, q;M̂i) is the probability of

generating token at (Equation (5)) using per-

turbed model M̂i. We operationalize token-

level uncertainty in two ways, as the aver-

age score avg{uat}|a|t=1 and the maximum score
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max{uat}|a|t=1 (since the uncertainty of a sequence

is often determined by the most uncertain token).

As shown in Figure 1, we add dropout layers in

i) the word vectors of the encoder and decoder

qt,at; ii) the output vectors of the encoder et;
iii) bridge vectors e|q| used to initialize the hid-

den states of the first time step in the decoder; and

iv) decoding vectors datt
t (Equation (4)).

Gaussian Noise Standard dropout can be

viewed as applying noise sampled from a

Bernoulli distribution to the network parameters.

We instead use Gaussian noise, and apply the

metrics in the same way discussed above. Let v
denote a vector perturbed by noise, and g a vector

sampled from the Gaussian distribution N (0, σ2).
We use v̂ = v + g and v̂ = v + v � g as two

noise injection methods. Intuitively, if the model

is more confident in an example, it should be more

robust to perturbations.

Posterior Probability Our last class of metrics

is based on posterior probability. We use the log

probability log p(a|q) as a sequence-level metric.

The token-level metric min{p(at|a<t, q)}|a|t=1 can

identify the most uncertain predicted token. The

perplexity per token − 1
|a|

∑|a|
t=1 log p (at|a<t, q) is

also employed.

4.2 Data Uncertainty

The coverage of training data also affects the un-

certainty of predictions. If the input q does not

match the training distribution or contains un-

known words, it is difficult to predict p (a|q) re-

liably. We define two metrics:

Probability of Input We train a language model

on the training data, and use it to estimate the

probability of input p(q|D) where D represents the

training data.

Number of Unknown Tokens Tokens that do

not appear in the training data harm robustness,

and lead to uncertainty. So, we use the number of

unknown tokens in the input q as a metric.

4.3 Input Uncertainty

Even if the model can estimate p (a|q) reliably, the

input itself may be ambiguous. For instance, the

input the flight is at 9 o’clock can be interpreted as

either flight time(9am) or flight time(9pm). Se-

lecting between these predictions is difficult, es-

pecially if they are both highly likely. We use the

following metrics to measure uncertainty caused

by ambiguous inputs.

Variance of Top Candidates We use the vari-

ance of the probability of the top candidates to in-

dicate whether these are similar. The sequence-

level metric is computed by:

var{p(ai|q)}Ki=1

where a1 . . . aK are the K-best predictions ob-

tained by the beam search during inference (Sec-

tion 3).

Entropy of Decoding The sequence-level en-

tropy of the decoding process is computed via:

H[a|q] = −
∑

a′
p(a′|q) log p(a′|q)

which we approximate by Monte Carlo sampling

rather than iterating over all candidate predic-

tions. The token-level metrics of decoding en-

tropy are computed by avg{H[at|a<t, q]}|a|t=1 and

max{H[at|a<t, q]}|a|t=1.

4.4 Confidence Scoring
The sentence- and token-level confidence metrics

defined in Section 4 are fed into a gradient tree

boosting model (Chen and Guestrin, 2016) in or-

der to predict the overall confidence score s (q, a).
The model is wrapped with a logistic function so

that confidence scores are in the range of (0, 1).
Because the confidence score indicates whether

the prediction is likely to be correct, we can use the

prediction’s F1 (see Section 6.2) as target value.

The training loss is defined as:

∑

(q,a)∈D
ln(1+e−ŝ(q,a))yq,a+ ln(1+eŝ(q,a))(1−yq,a)

where D represents the data, yq,a is the target F1

score, and ŝ(q, a) the predicted confidence score.

We refer readers to Chen and Guestrin (2016)

for mathematical details of how the gradient tree

boosting model is trained. Notice that we learn

the confidence scoring model on the held-out set

(rather than on the training data of the semantic

parser) to avoid overfitting.

5 Uncertainty Interpretation

Confidence scores are useful in so far they can be

traced back to the inputs causing the uncertainty

in the first place. For semantic parsing, identifying
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Backpropagation

: score of neuron 
: contribution ratio
(from to )

Figure 2: Uncertainty backpropagation at the neu-

ron level. Neuron m’s score um is collected from

child neurons c1 and c2 by um = vc1muc1 + vc2muc2 .

The score um is then redistributed to its parent

neurons p1 and p2, which satisfies vmp1 + vmp2 = 1.

which input words contribute to uncertainty would

be of value, e.g., these could be treated explicitly

as special cases or refined if they represent noise.

In this section, we introduce an algorithm

that backpropagates token-level uncertainty scores

(see Equation (7)) from predictions to input to-

kens, following the ideas of Bach et al. (2015) and

Zhang et al. (2016). Let um denote neuron m’s

uncertainty score, which indicates the degree to

which it contributes to uncertainty. As shown in

Figure 2, um is computed by the summation of the

scores backpropagated from its child neurons:

um =
∑

c∈Child(m)

vcmuc

where Child(m) is the set of m’s child neurons,

and the non-negative contribution ratio vcm indi-

cates how much we backpropagate uc to neu-

ron m. Intuitively, if neuron m contributes more

to c’s value, ratio vcm should be larger.

After obtaining score um, we redistribute it to

its parent neurons in the same way. Contribution

ratios from m to its parent neurons are normalized

to 1: ∑

p∈Parent(m)

vmp = 1

where Parent(m) is the set of m’s parent neurons.

Given the above constraints, we now define

different backpropagation rules for the operators

used in neural networks. We first describe the rules

used for fully-connected layers. Let x denote the

input. The output is computed by z = σ(Wx+b),
where σ is a nonlinear function, W ∈ R

|z|∗|x| is

the weight matrix, b ∈ R
|z| is the bias, and neu-

ron zi is computed via zi = σ(
∑|x|

j=1Wi,jxj +
bi). Neuron xk’s uncertainty score uxk

is gath-

Algorithm 2 Uncertainty Interpretation

Input: q, a: Input and its prediction

Output: {ûqt}|q|t=1: Interpretation scores for input tokens
Function: TokenUnc: Get token-level uncertainty

1: � Get token-level uncertainty for predicted tokens
2: {uat}|a|t=1 ← TokenUnc(q, a)
3: � Initialize uncertainty scores for backpropagation
4: for t ← 1, · · · , |a| do
5: Decoder classifier’s output neuron ← uat

6: � Run backpropagation
7: for m ← neuron in backward topological order do
8: � Gather scores from child neurons
9: um ← ∑

c∈Child(m) v
c
muc

10: � Summarize scores for input words
11: for t ← 1, · · · , |q| do
12: uqt ←

∑
c∈qt

uc

13: {ûqt}|q|t=1 ← normalize {uqt}|q|t=1

ered from the next layer:

uxk
=

|z|∑

i=1

vzixk
uzi =

|z|∑

i=1

|Wi,kxk|
∑|x|

j=1 |Wi,jxj |
uzi

ignoring the nonlinear function σ and the bias b.

The ratio vzixk
is proportional to the contribution of

xk to the value of zi.

We define backpropagation rules for element-

wise vector operators. For z = x± y, these are:

uxk
= |xk|

|xk|+|yk|uzk uyk = |yk|
|xk|+|yk|uzk

where the contribution ratios vzkxk
and vzkyk are de-

termined by |xk| and |yk|. For multiplication, the

contribution of two elements in 1
3 ∗3 should be the

same. So, the propagation rules for z = x�y are:

uxk
= | log |xk||

| log |xk||+| log |yk||uzk uyk=
| log |yk||

| log |xk||+| log |yk||uzk

where the contribution ratios are determined by

| log |xk|| and | log |yk||.
For scalar multiplication, z = λx where λ de-

notes a constant. We directly assign z’s uncer-

tainty scores to x and the backpropagation rule is

uxk
= uzk .

As shown in Algorithm 2, we first initial-

ize uncertainty backpropagation in the decoder

(lines 1–5). For each predicted token at, we com-

pute its uncertainty score uat as in Equation (7).

Next, we find the dimension of at in the decoder’s

softmax classifier (Equation (5)), and initialize the

neuron with the uncertainty score uat . We then

backpropagate these uncertainty scores through
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Dataset Example

IFTTT
turn android phone to full volume at 7am monday to friday
date time−every day of the week at−((time of day (07)(:)(00)) (days of the week

(1)(2)(3)(4)(5))) THEN android device−set ringtone volume−(volume ({’
volume level’:1.0,’name’:’100%’}))

DJANGO
for every key in sorted list of user settings
for key in sorted(user settings):

Table 1: Natural language descriptions and their meaning representations from IFTTT and DJANGO.

the network (lines 6–9), and finally into the neu-

rons of the input words. We summarize them and

compute the token-level scores for interpreting the

results (line 10–13). For input word vector qt, we

use the summation of its neuron-level scores as the

token-level score:

ûqt ∝
∑

c∈qt

uc

where c ∈ qt represents the neurons of word vec-

tor qt, and
∑|q|

t=1 ûqt = 1. We use the normalized

score ûqt to indicate token qt’s contribution to pre-

diction uncertainty.

6 Experiments

In this section we describe the datasets used in

our experiments and various details concerning

our models. We present our experimental re-

sults and analysis of model behavior. Our code is

publicly available at https://github.com/
donglixp/confidence.

6.1 Datasets
We trained the neural semantic parser introduced

in Section 3 on two datasets covering different do-

mains and meaning representations. Examples are

shown in Table 1.

IFTTT This dataset (Quirk et al., 2015) con-

tains a large number of if-this-then-that programs

crawled from the IFTTT website. The programs

are written for various applications, such as home

security (e.g., “email me if the window opens”),

and task automation (e.g., “save instagram pho-
tos to dropbox”). Whenever a program’s trigger is

satisfied, an action is performed. Triggers and ac-

tions represent functions with arguments; they are

selected from different channels (160 in total) rep-

resenting various services (e.g., Android). There

are 552 trigger functions and 229 action func-

tions. The original split contains 77, 495 training,

5, 171 development, and 4, 294 test instances. The

subset that removes non-English descriptions was

used in our experiments.

DJANGO This dataset (Oda et al., 2015) is built

upon the code of the Django web framework. Each

line of Python code has a manually annotated nat-

ural language description. Our goal is to map the

English pseudo-code to Python statements. This

dataset contains diverse use cases, such as itera-

tion, exception handling, and string manipulation.

The original split has 16, 000 training, 1, 000 de-

velopment, and 1, 805 test examples.

6.2 Settings
We followed the data preprocessing used in previ-

ous work (Dong and Lapata, 2016; Yin and Neu-

big, 2017). Input sentences were tokenized us-

ing NLTK (Bird et al., 2009) and lowercased.

We filtered words that appeared less than four

times in the training set. Numbers and URLs in

IFTTT and quoted strings in DJANGO were re-

placed with place holders. Hyperparameters of the

semantic parsers were validated on the develop-

ment set. The learning rate and the smoothing con-

stant of RMSProp (Tieleman and Hinton, 2012)

were 0.002 and 0.95, respectively. The dropout

rate was 0.25. A two-layer LSTM was used for

IFTTT, while a one-layer LSTM was employed

for DJANGO. Dimensions for the word embedding

and hidden vector were selected from {150, 250}.

The beam size during decoding was 5.

For IFTTT, we view the predicted trees as a set

of productions, and use balanced F1 as evaluation

metric (Quirk et al., 2015). We do not measure ac-

curacy because the dataset is very noisy and there

rarely is an exact match between the predicted out-

put and the gold standard. The F1 score of our

neural semantic parser is 50.1%, which is compa-

rable to Dong and Lapata (2016). For DJANGO,

we measure the fraction of exact matches, where

F1 score is equal to accuracy. Because there are

unseen variable names at test time, we use atten-

tion scores as alignments to replace unknown to-
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Method IFTTT DJANGO

POSTERIOR 0.477 0.694

CONF 0.625 0.793
− MODEL 0.595 0.759
− DATA 0.610 0.787
− INPUT 0.608 0.785

Table 2: Spearman ρ correlation between confi-

dence scores and F1. Best results are shown in

bold. All correlations are significant at p < 0.01.

kens in the prediction with the input words they

align to (Luong et al., 2015b). The accuracy of

our parser is 53.7%, which is better than the re-

sult (45.1%) of the sequence-to-sequence model

reported in Yin and Neubig (2017).

To estimate model uncertainty, we set dropout

rate to 0.1, and performed 30 inference passes.

The standard deviation of Gaussian noise was

0.05. The language model was estimated using

KenLM (Heafield et al., 2013). For input un-

certainty, we computed variance for the 10-best

candidates. The confidence metrics were imple-

mented in batch mode, to take full advantage of

GPUs. Hyperparameters of the confidence scor-

ing model were cross-validated. The number of

boosted trees was selected from {20, 50}. The

maximum tree depth was selected from {3, 4, 5}.

We set the subsample ratio to 0.8. All other hyper-

parameters in XGBoost (Chen and Guestrin, 2016)

were left with their default values.

6.3 Results

Confidence Estimation We compare our ap-

proach (CONF) against confidence scores based

on posterior probability p(a|q) (POSTERIOR). We

also report the results of three ablation variants

(−MODEL, −DATA, −INPUT) by removing each

group of confidence metrics described in Sec-

tion 4. We measure the relationship between con-

fidence scores and F1 using Spearman’s ρ corre-

lation coefficient which varies between −1 and 1
(0 implies there is no correlation). High ρ indi-

cates that the confidence scores are high for cor-

rect predictions and low otherwise.

As shown in Table 2, our method CONF outper-

forms POSTERIOR by a large margin. The ablation

results indicate that model uncertainty plays the

most important role among the confidence met-

rics. In contrast, removing the metrics of data un-

certainty affects performance less, because most

examples in the datasets are in-domain. Improve-

F1 Dout Noise PR PPL LM #UNK Var

Dout 0.59
Noise 0.59 0.90
PR 0.52 0.84 0.82
PPL 0.48 0.78 0.78 0.89
LM 0.30 0.26 0.32 0.27 0.25
#UNK 0.27 0.31 0.33 0.29 0.25 0.32
Var 0.49 0.83 0.78 0.88 0.79 0.25 0.27
Ent 0.53 0.78 0.78 0.80 0.75 0.27 0.30 0.76

Table 3: Correlation matrix for F1 and individual

confidence metrics on the IFTTT dataset. All cor-

relations are significant at p < 0.01. Best predic-

tors are shown in bold. Dout is short for dropout,

PR for posterior probability, PPL for perplexity,

LM for probability based on a language model,

#UNK for number of unknown tokens, Var for

variance of top candidates, and Ent for Entropy.

F1 Dout Noise PR PPL LM #UNK Var

Dout 0.76
Noise 0.78 0.94
PR 0.73 0.89 0.90
PPL 0.64 0.80 0.81 0.84
LM 0.32 0.41 0.40 0.38 0.30
#UNK 0.27 0.28 0.28 0.26 0.19 0.35
Var 0.70 0.87 0.87 0.89 0.87 0.37 0.23
Ent 0.72 0.89 0.90 0.92 0.86 0.38 0.26 0.90

Table 4: Correlation matrix for F1 and individual

confidence metrics on the DJANGO dataset. All

correlations are significant at p < 0.01. Best pre-

dictors are shown in bold. Same shorthands apply

as in Table 3.

ments for each group of metrics are significant

with p < 0.05 according to bootstrap hypothesis

testing (Efron and Tibshirani, 1994).

Tables 3 and 4 show the correlation matrix for

F1 and individual confidence metrics on the IFTTT

and DJANGO datasets, respectively. As can be

seen, metrics representing model uncertainty and

input uncertainty are more correlated to each other

compared with metrics capturing data uncertainty.

Perhaps unsurprisingly metrics of the same group

are highly inter-correlated since they model the

same type of uncertainty. Table 5 shows the rel-

ative importance of individual metrics in the re-

gression model. As importance score we use the

average gain (i.e., loss reduction) brought by the

confidence metric once added as feature to the

branch of the decision tree (Chen and Guestrin,

2016). The results indicate that model uncer-

tainty (Noise/Dropout/Posterior/Perplexity) plays
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Metric Dout Noise PR PPL LM #UNK Var Ent

IFTTT 0.39 1.00 0.89 0.27 0.26 0.46 0.43 0.34
DJANGO 1.00 0.59 0.22 0.58 0.49 0.14 0.24 0.25

Table 5: Importance scores of confidence metrics

(normalized by maximum value on each dataset).

Best results are shown in bold. Same shorthands

apply as in Table 3.

the most important role. On IFTTT, the number of

unknown tokens (#UNK) and the variance of top

candidates (var(K-best)) are also very helpful be-

cause this dataset is relatively noisy and contains

many ambiguous inputs.

Finally, in real-world applications, confidence

scores are often used as a threshold to trade-off

precision for coverage. Figure 3 shows how F1

score varies as we increase the confidence thresh-

old, i.e., reduce the proportion of examples that

we return answers for. F1 score improves mono-

tonically for POSTERIOR and our method, which,

however, achieves better performance when cov-

erage is the same.

Uncertainty Interpretation We next evaluate

how our backpropagation method (see Section 5)

allows us to identify input tokens contributing to

uncertainty. We compare against a method that in-

terprets uncertainty based on the attention mech-

anism (ATTENTION). As shown in Equation (2),

attention scores rt,k can be used as soft alignments

between the time step t of the decoder and the

k-th input token. We compute the normalized un-

certainty score ûqt for a token qt via:

ûqt ∝
|a|∑

t=1

rt,kuat (8)

where uat is the uncertainty score of the predicted

token at (Equation (7)), and
∑|q|

t=1 ûqt = 1.

Unfortunately, the evaluation of uncertainty in-

terpretation methods is problematic. For our se-

mantic parsing task, we do not a priori know which

tokens in the natural language input contribute to

uncertainty and these may vary depending on the

architecture used, model parameters, and so on.

We work around this problem by creating a proxy

gold standard. We inject noise to the vectors rep-

resenting tokens in the encoder (see Section 4.1)

and then estimate the uncertainty caused by each

token qt (Equation (6)) under the assumption that
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Figure 3: Confidence scores are used as thresh-

old to filter out uncertain test examples. As the

threshold increases, performance improves. The

horizontal axis shows the proportion of examples

beyond the threshold.

addition of noise should only affect genuinely un-

certain tokens. Notice that here we inject noise

to one token at a time1 instead of all parameters

(see Figure 1). Tokens identified as uncertain by

the above procedure are considered gold standard

and compared to those identified by our method.

We use Gaussian noise to perturb vectors in our

experiments (dropout obtained similar results).

We define an evaluation metric based on the

overlap (overlap@K) among tokens identified as

uncertain by the model and the gold standard.

Given an example, we first compute the interpre-

tation scores of the input tokens according to our

method, and obtain a list τ1 of K tokens with high-

est scores. We also obtain a list τ2 of K tokens

with highest ground-truth scores and measure the

degree of overlap between these two lists:

overlap@K =
|τ1 ∩ τ2|

K

1Noise injection as described above is used for evaluation
purposes only since we need to perform forward passes mul-
tiple times (see Section 4.1) for each token, and the running
time increases linearly with the input length.
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Method IFTTT DJANGO

@2 @4 @2 @4

ATTENTION 0.525 0.737 0.637 0.684
BACKPROP 0.608 0.791 0.770 0.788

Table 6: Uncertainty interpretation against in-

ferred ground truth; we compute the overlap be-

tween tokens identified as contributing to uncer-

tainty by our method and those found in the gold

standard. Overlap is shown for top 2 and 4 tokens.

Best results are in bold.

google calendar−any event starts THEN facebook
−create a status message−(status message
({description}))

ATT post calendar event to facebook
BP post calendar event to facebook

feed−new feed item−(feed url(
url sports.espn.go.com)) THEN ...

ATT espn mlb headline to readability
BP espn mlb headline to readability

weather−tomorrow’s low drops below−((
temperature(0)) (degrees in(c))) THEN ...

ATT warn me when it’s going to be freezing tomorrow
BP warn me when it’s going to be freezing tomorrow

if str number[0] == ’ STR ’:
ATT if first element of str number equals a string STR .
BP if first element of str number equals a string STR .

start = 0
ATT start is an integer 0 .
BP start is an integer 0 .

if name.startswith(’ STR ’):
ATT if name starts with an string STR ,
BP if name starts with an string STR ,

Table 7: Uncertainty interpretation for ATTEN-

TION (ATT) and BACKPROP (BP) . The first line in

each group is the model prediction. Predicted to-

kens and input words with large scores are shown

in red and blue, respectively.

where K ∈ {2, 4} in our experiments. For ex-

ample, the overlap@4 metric of the lists τ1 =
[q7, q8, q2, q3] and τ2 = [q7, q8, q3, q4] is 3/4, be-

cause there are three overlapping tokens.

Table 6 reports results with overlap@2 and

overlap@4. Overall, BACKPROP achieves bet-

ter interpretation quality than the attention mech-

anism. On both datasets, about 80% of the

top-4 tokens identified as uncertain agree with the

ground truth. Table 7 shows examples where our

method has identified input tokens contributing to

the uncertainty of the output. We highlight to-

ken at if its uncertainty score uat is greater than

0.5 ∗ avg{uat′}
|a|
t′=1. The results illustrate that the

parser tends to be uncertain about tokens which are

function arguments (e.g., URLs, and message con-

tent), and ambiguous inputs. The examples show

that BACKPROP is qualitatively better compared to

ATTENTION; attention scores often produce inac-

curate alignments while BACKPROP can utilize in-

formation flowing through the LSTMs rather than

only relying on the attention mechanism.

7 Conclusions

In this paper we presented a confidence estimation

model and an uncertainty interpretation method

for neural semantic parsing. Experimental results

show that our method achieves better performance

than competitive baselines on two datasets. Direc-

tions for future work are many and varied. The

proposed framework could be applied to a variety

of tasks (Bahdanau et al., 2015; Schmaltz et al.,

2017) employing sequence-to-sequence architec-

tures. We could also utilize the confidence esti-

mation model within an active learning framework

for neural semantic parsing.
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Tomáš Kočiský, Gábor Melis, Edward Grefenstette,
Chris Dyer, Wang Ling, Phil Blunsom, and
Karl Moritz Hermann. 2016. Semantic parsing with
semi-supervised sequential autoencoders. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1078–
1087, Austin, Texas.

Jayant Krishnamurthy, Pradeep Dasigi, and Matt Gard-
ner. 2017. Neural semantic parsing with type con-
straints for semi-structured tables. In Proceedings of
the 2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1517–1527, Copen-
hagen, Denmark.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwa-
ter, and Mark Steedman. 2011. Lexical generaliza-
tion in CCG grammar induction for semantic pars-
ing. In Proceedings of the 2011 Conference on Em-
pirical Methods in Natural Language Processing,
pages 1512–1523, Edinburgh, Scotland.

Wang Ling, Phil Blunsom, Edward Grefenstette,
Karl Moritz Hermann, Tomáš Kočiský, Fumin
Wang, and Andrew Senior. 2016. Latent predictor
networks for code generation. In Proceedings of the
54th Annual Meeting of the Association for Com-
putational Linguistics, pages 599–609, Berlin, Ger-
many.

Wei Lu, Hwee Tou Ng, Wee Sun Lee, and Luke Zettle-
moyer. 2008. A generative model for parsing natural
language to meaning representations. In Proceed-
ings of the 2008 Conference on Empirical Methods
in Natural Language Processing, pages 783–792,
Honolulu, Hawaii.



753

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015a. Effective approaches to attention-
based neural machine translation. In Proceedings of
the 2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1412–1421, Lisbon,
Portugal.

Thang Luong, Ilya Sutskever, Quoc Le, Oriol Vinyals,
and Wojciech Zaremba. 2015b. Addressing the rare
word problem in neural machine translation. In Pro-
ceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing, pages 11–19, Beijing, China.

David J. C. MacKay. 1992. A practical bayesian frame-
work for backpropagation networks. Neural Com-
putation, 4(3):448–472.

Radford M Neal. 1996. Bayesian learning for neural
networks, volume 118. Springer Science & Business
Media.

Yusuke Oda, Hiroyuki Fudaba, Graham Neubig,
Hideaki Hata, Sakriani Sakti, Tomoki Toda, and
Satoshi Nakamura. 2015. Learning to generate
pseudo-code from source code using statistical ma-
chine translation. In Proceedings of the 2015 30th
IEEE/ACM International Conference on Automated
Software Engineering, pages 574–584, Washington,
DC.

Chris Quirk, Raymond Mooney, and Michel Galley.
2015. Language to code: Learning semantic parsers
for if-this-then-that recipes. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing, pages
878–888, Beijing, China.

Maxim Rabinovich, Mitchell Stern, and Dan Klein.
2017. Abstract syntax networks for code genera-
tion and semantic parsing. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1139–1149, Vancouver,
Canada.

Allen Schmaltz, Yoon Kim, Alexander Rush, and Stu-
art Shieber. 2017. Adapting sequence models for
sentence correction. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2797–2803, Copenhagen,
Denmark.

Radu Soricut and Abdessamad Echihabi. 2010.
Trustrank: Inducing trust in automatic translations
via ranking. In Proceedings of the 48th Annual
Meeting of the Association for Computational Lin-
guistics, pages 612–621, Uppsala, Sweden.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15:1929–1958.

Raymond Hendy Susanto and Wei Lu. 2017. Neural
architectures for multilingual semantic parsing. In
Proceedings of the 55th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 38–44,
Vancouver, Canada.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in Neural Information Process-
ing Systems, pages 3104–3112, Montreal, Canada.

Lappoon R. Tang and Raymond J. Mooney. 2000. Au-
tomated construction of database interfaces: Inter-
grating statistical and relational learning for seman-
tic parsing. In 2000 Joint SIGDAT Conference on
Empirical Methods in Natural Language Process-
ing and Very Large Corpora, pages 133–141, Hong
Kong, China.

T. Tieleman and G. Hinton. 2012. Lecture 6.5—
RMSProp: Divide the gradient by a running average
of its recent magnitude. Technical report.

Nicola Ueffing and Hermann Ney. 2005. Word-level
confidence estimation for machine translation us-
ing phrase-based translation models. In Proceedings
of the Conference on Human Language Technology
and Empirical Methods in Natural Language Pro-
cessing, pages 763–770, Vancouver, Canada.

Chunyang Xiao, Marc Dymetman, and Claire Gardent.
2016. Sequence-based structured prediction for se-
mantic parsing. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1341–1350, Berlin, Germany.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics, pages 440–
450, Vancouver, Canada.

Luke Zettlemoyer and Michael Collins. 2007. Online
learning of relaxed CCG grammars for parsing to
logical form. In Proceedings of the 2007 Joint Con-
ference on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning, pages 678–687, Prague, Czech Republic.

Jianming Zhang, Zhe Lin, Jonathan Brandt, Xiaohui
Shen, and Stan Sclaroff. 2016. Top-down neural at-
tention by excitation backprop. In European Con-
ference on Computer Vision, pages 543–559, Ams-
terdam, Netherlands.

Kai Zhao and Liang Huang. 2015. Type-driven in-
cremental semantic parsing with polymorphism. In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1416–1421, Denver, Colorado.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


