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Abstract

We describe PARANMT-50M, a dataset
of more than 50 million English-English
sentential paraphrase pairs. We generated
the pairs automatically by using neural
machine translation to translate the non-
English side of a large parallel corpus, fol-
lowing Wieting et al. (2017). Our hope
is that PARANMT-50M can be a valu-
able resource for paraphrase generation
and can provide a rich source of seman-
tic knowledge to improve downstream nat-
ural language understanding tasks. To
show its utility, we use PARANMT-50M
to train paraphrastic sentence embeddings
that outperform all supervised systems on
every SemEval semantic textual similarity
competition, in addition to showing how it
can be used for paraphrase generation.1

1 Introduction

While many approaches have been developed for
generating or finding paraphrases (Barzilay and
McKeown, 2001; Lin and Pantel, 2001; Dolan
et al., 2004), there do not exist any freely-
available datasets with millions of sentential para-
phrase pairs. The closest such resource is the
Paraphrase Database (PPDB; Ganitkevitch et al.,
2013), which was created automatically from
bilingual text by pivoting over the non-English
language (Bannard and Callison-Burch, 2005).
PPDB has been used to improve word embed-
dings (Faruqui et al., 2015; Mrkšić et al., 2016).
However, PPDB is less useful for learning sen-
tence embeddings (Wieting and Gimpel, 2017).

In this paper, we describe the creation of a
dataset containing more than 50 million sentential

1 Dataset, code, and embeddings are available at https:
//www.cs.cmu.edu/˜jwieting.

paraphrase pairs. We create it automatically by
scaling up the approach of Wieting et al. (2017).
We use neural machine translation (NMT) to
translate the Czech side of a large Czech-English
parallel corpus. We pair the English translations
with the English references to form paraphrase
pairs. We call this dataset PARANMT-50M. It
contains examples illustrating a broad range of
paraphrase phenomena; we show examples in Sec-
tion 3. PARANMT-50M has the potential to be
useful for many tasks, from linguistically con-
trolled paraphrase generation, style transfer, and
sentence simplification to core NLP problems like
machine translation.

We show the utility of PARANMT-50M by us-
ing it to train paraphrastic sentence embeddings
using the learning framework of Wieting et al.
(2016b). We primarily evaluate our sentence em-
beddings on the SemEval semantic textual similar-
ity (STS) competitions from 2012-2016. Since so
many domains are covered in these datasets, they
form a demanding evaluation for a general purpose
sentence embedding model.

Our sentence embeddings learned from
PARANMT-50M outperform all systems in every
STS competition from 2012 to 2016. These tasks
have drawn substantial participation; in 2016,
for example, the competition attracted 43 teams
and had 119 submissions. Most STS systems use
curated lexical resources, the provided supervised
training data with manually-annotated similari-
ties, and joint modeling of the sentence pair. We
use none of these, simply encoding each sentence
independently using our models and computing
cosine similarity between their embeddings.

We experiment with several compositional ar-
chitectures and find them all to work well. We
find benefit from making a simple change to learn-
ing (“mega-batching”) to better leverage the large
training set, namely, increasing the search space

https://www.cs.cmu.edu/~jwieting
https://www.cs.cmu.edu/~jwieting
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of negative examples. In the supplementary, we
evaluate on general-purpose sentence embedding
tasks used in past work (Kiros et al., 2015; Con-
neau et al., 2017), finding our embeddings to per-
form competitively.

Finally, in Section 6, we briefly report re-
sults showing how PARANMT-50M can be used
for paraphrase generation. A standard encoder-
decoder model trained on PARANMT-50M can
generate paraphrases that show effects of “canon-
icalizing” the input sentence. In other work,
fully described by Iyyer et al. (2018), we used
PARANMT-50M to generate paraphrases that
have a specific syntactic structure (represented as
the top two levels of a linearized parse tree).

We release the PARANMT-50M dataset, our
trained sentence embeddings, and our code.
PARANMT-50M is the largest collection of sen-
tential paraphrases released to date. We hope it
can motivate new research directions and be used
to create powerful NLP models, while adding a
robustness to existing ones by incorporating para-
phrase knowledge. Our paraphrastic sentence em-
beddings are state-of-the-art by a significant mar-
gin, and we hope they can be useful for many ap-
plications both as a sentence representation func-
tion and as a general similarity metric.

2 Related Work

We discuss work in automatically building para-
phrase corpora, learning general-purpose sentence
embeddings, and using parallel text for learning
embeddings and similarity functions.

Paraphrase discovery and generation. Many
methods have been developed for generating
or finding paraphrases, including using multiple
translations of the same source material (Barzilay
and McKeown, 2001), using distributional similar-
ity to find similar dependency paths (Lin and Pan-
tel, 2001), using comparable articles from mul-
tiple news sources (Dolan et al., 2004; Dolan
and Brockett, 2005; Quirk et al., 2004), aligning
sentences between standard and Simple English
Wikipedia (Coster and Kauchak, 2011), crowd-
sourcing (Xu et al., 2014, 2015; Jiang et al., 2017),
using diverse MT systems to translate a single
source sentence (Suzuki et al., 2017), and using
tweets with matching URLs (Lan et al., 2017).

The most relevant prior work uses bilingual cor-
pora. Bannard and Callison-Burch (2005) used
methods from statistical machine translation to

find lexical and phrasal paraphrases in parallel
text. Ganitkevitch et al. (2013) scaled up these
techniques to produce the Paraphrase Database
(PPDB). Our goals are similar to those of PPDB,
which has likewise been generated for many lan-
guages (Ganitkevitch and Callison-Burch, 2014)
since it only needs parallel text. In particular, we
follow the approach of Wieting et al. (2017), who
used NMT to translate the non-English side of par-
allel text to get English-English paraphrase pairs.
We scale up the method to a larger dataset, pro-
duce state-of-the-art paraphrastic sentence embed-
dings, and release all of our resources.

Sentence embeddings. Our learning and eval-
uation setting is the same as that of our re-
cent work that seeks to learn paraphrastic sen-
tence embeddings that can be used for downstream
tasks (Wieting et al., 2016b,a; Wieting and Gim-
pel, 2017; Wieting et al., 2017). We trained mod-
els on noisy paraphrase pairs and evaluated them
primarily on semantic textual similarity (STS)
tasks. Prior work in learning general sentence
embeddings has used autoencoders (Socher et al.,
2011; Hill et al., 2016), encoder-decoder architec-
tures (Kiros et al., 2015; Gan et al., 2017), and
other sources of supervision and learning frame-
works (Le and Mikolov, 2014; Pham et al., 2015;
Arora et al., 2017; Pagliardini et al., 2017; Con-
neau et al., 2017).

Parallel text for learning embeddings. Prior
work has shown that parallel text, and resources
built from parallel text like NMT systems and
PPDB, can be used for learning embeddings for
words and sentences. Several have used PPDB
as a knowledge resource for training or improving
embeddings (Faruqui et al., 2015; Wieting et al.,
2015; Mrkšić et al., 2016). NMT architectures
and training settings have been used to obtain bet-
ter embeddings for words (Hill et al., 2014a,b)
and words-in-context (McCann et al., 2017). Hill
et al. (2016) evaluated the encoders of English-
to-X NMT systems as sentence representations.
Mallinson et al. (2017) adapted trained NMT mod-
els to produce sentence similarity scores in seman-
tic evaluations.

3 The PARANMT-50M Dataset

To create our dataset, we used back-translation of
bitext (Wieting et al., 2017). We used a Czech-
English NMT system to translate Czech sentences
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Dataset Avg. Length Avg. IDF Avg. Para. Score Vocab. Entropy Parse Entropy Total Size
Common Crawl 24.0±34.7 7.7±1.1 0.83±0.16 7.2 3.5 0.16M
CzEng 1.6 13.3±19.3 7.4±1.2 0.84±0.16 6.8 4.1 51.4M
Europarl 26.1±15.4 7.1±0.6 0.95±0.05 6.4 3.0 0.65M
News Commentary 25.2±13.9 7.5±1.1 0.92±0.12 7.0 3.4 0.19M

Table 1: Statistics of 100K-samples of Czech-English parallel corpora; standard deviations are shown
for averages.

Reference Translation Machine Translation
so, what’s half an hour? half an hour won’t kill you.
well, don’t worry. i’ve taken out tons and tons of guys. lots of guys. don’t worry, i’ve done it to dozens of men.
it’s gonna be ...... classic. yeah, sure. it’s gonna be great.
greetings, all! hello everyone!
but she doesn’t have much of a case. but as far as the case goes, she doesn’t have much.
it was good in spite of the taste. despite the flavor, it felt good.

Table 2: Example paraphrase pairs from PARANMT-50M, where each consists of an English reference
translation and the machine translation of the Czech source sentence (not shown).

from the training data into English. We paired the
translations with the English references to form
English-English paraphrase pairs.

We used the pretrained Czech-English model
from the NMT system of Sennrich et al. (2017).
Its training data includes four sources: Common
Crawl, CzEng 1.6 (Bojar et al., 2016), Europarl,
and News Commentary. We did not choose Czech
due to any particular linguistic properties. Wieting
et al. (2017) found little difference among Czech,
German, and French as source languages for back-
translation. There were much larger differences
due to data domain, so we focus on the question of
domain in this section. We leave the question of
investigating properties of back-translation of dif-
ferent languages to future work.

3.1 Choosing a Data Source

To assess characteristics that yield useful data, we
randomly sampled 100K English reference trans-
lations from each data source and computed statis-
tics. Table 1 shows the average sentence length,
the average inverse document frequency (IDF)
where IDFs are computed using Wikipedia sen-
tences, and the average paraphrase score for the
two sentences. The paraphrase score is calcu-
lated by averaging PARAGRAM-PHRASE embed-
dings (Wieting et al., 2016b) for the two sentences
in each pair and then computing their cosine sim-
ilarity. The table also shows the entropies of the
vocabularies and constituent parses obtained using
the Stanford Parser (Manning et al., 2014).2

Europarl exhibits the least diversity in terms of

2To mitigate sparsity in the parse entropy, we used only
the top two levels of each parse tree.

rare word usage, vocabulary entropy, and parse
entropy. This is unsurprising given its formu-
laic and repetitive nature. CzEng has shorter sen-
tences than the other corpora and more diverse
sentence structures, as shown by its high parse en-
tropy. In terms of vocabulary use, CzEng is not
particularly more diverse than Common Crawl and
News Commentary, though this could be due to
the prevalence of named entities in the latter two.

In Section 5.3, we empirically compare these
data sources as training data for sentence embed-
dings. The CzEng corpus yields the strongest per-
formance when controlling for training data size.
Since its sentences are short, we suspect this helps
ensure high-quality back-translations. A large por-
tion of it is movie subtitles which tend to use a
wide vocabulary and have a diversity of sentence
structures; however, other domains are included
as well. It is also the largest corpus, containing
over 51 million sentence pairs. In addition to pro-
viding a large number of training examples for
downstream tasks, this means that the NMT sys-
tem should be able to produce quality translations
for this subset of its training data.

For all of these reasons, we chose the CzEng
corpus to create PARANMT-50M. When doing
so, we used beam search with a beam size of 12
and selected the highest scoring translation from
the beam. It took over 10,000 GPU hours to back-
translate the CzEng corpus. We show illustrative
examples in Table 2.

3.2 Manual Evaluation

We conducted a manual analysis of our dataset in
order to quantify its noise level and assess how the
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Para. Score # Avg. Tri. Paraphrase Fluency
Range (M) Overlap 1 2 3 1 2 3

(-0.1, 0.2] 4.0 0.00±0.0 92 6 2 1 5 94
(0.2, 0.4] 3.8 0.02±0.1 53 32 15 1 12 87
(0.4, 0.6] 6.9 0.07±0.1 22 45 33 2 9 89
(0.6, 0.8] 14.4 0.17±0.2 1 43 56 11 0 89
(0.8, 1.0] 18.0 0.35±0.2 1 13 86 3 0 97

Table 3: Manual evaluation of PARANMT-50M.
100-pair samples were drawn from five ranges
of the automatic paraphrase score (first column).
Paraphrase strength and fluency were judged on a
1-3 scale and counts of each rating are shown.

noise can be ameliorated with filtering. Two na-
tive English speakers annotated a sample of 100
examples from each of five ranges of the Para-
phrase Score.3 We obtained annotations for both
the strength of the paraphrase relationship and the
fluency of the translations.

To annotate paraphrase strength, we adopted the
annotation guidelines used by Agirre et al. (2012).
The original guidelines specify six classes, which
we reduced to three for simplicity. We combined
the top two into one category, left the next, and
combined the bottom three into the lowest cate-
gory. Therefore, for a sentence pair to have a rat-
ing of 3, the sentences must have the same mean-
ing, but some unimportant details can differ. To
have a rating of 2, the sentences are roughly equiv-
alent, with some important information missing or
that differs slightly. For a rating of 1, the sentences
are not equivalent, even if they share minor details.

For fluency of the back-translation, we use the
following: A rating of 3 means it has no grammat-
ical errors, 2 means it has one to two errors, and 1
means it has more than two grammatical errors or
is not a natural English sentence.

Table 3 summarizes the annotations. For each
score range, we report the number of pairs, the
mean trigram overlap score, and the number of
times each paraphrase/fluency label was present in
the sample of 100 pairs. There is noise but it is
largely confined to the bottom two ranges which
together comprise only 16% of the entire dataset.
In the highest paraphrase score range, 86% of the
pairs possess a strong paraphrase relationship. The
annotations suggest that PARANMT-50M con-
tains approximately 30 million strong paraphrase
pairs, and that the paraphrase score is a good indi-

3Even though the similarity score lies in [−1, 1], most
observed scores were positive, so we chose the five ranges
shown in Table 3.

cator of quality. At the low ranges, we inspected
the data and found there to be many errors in the
sentence alignment in the original bitext. With re-
gards to fluency, approximately 90% of the back-
translations are fluent, even at the low end of the
paraphrase score range. We do see an outlier at the
second-highest range of the paraphrase score, but
this may be due to the small number of annotated
examples.

4 Learning Sentence Embeddings

To show the usefulness of the PARANMT-50M
dataset, we will use it to train sentence embed-
dings. We adopt the learning framework from
Wieting et al. (2016b), which was developed to
train sentence embeddings from pairs in PPDB.
We first describe the compositional sentence em-
bedding models we will experiment with, then
discuss training and our modification (“mega-
batching”).

Models. We want to embed a word sequence s
into a fixed-length vector. We denote the tth word
in s as st, and we denote its word embedding by
xt. We focus on three model families, though we
also experiment with combining them in various
ways. The first, which we call WORD, simply av-
erages the embeddings xt of all words in s. This
model was found by Wieting et al. (2016b) to per-
form strongly for semantic similarity tasks.

The second is similar to WORD, but instead of
word embeddings, we average character trigram
embeddings (Huang et al., 2013). We call this
TRIGRAM. Wieting et al. (2016a) found this to
work well for sentence embeddings compared to
other n-gram orders and to word averaging.

The third family includes long short-term mem-
ory (LSTM) networks (Hochreiter and Schmidhu-
ber, 1997). We average the hidden states to pro-
duce the final sentence embedding. For regular-
ization during training, we scramble words with
a small probability (Wieting and Gimpel, 2017).
We also experiment with bidirectional LSTMs
(BLSTM), averaging the forward and backward
hidden states with no concatenation.4

Training. The training data is a set S of para-
phrase pairs 〈s, s′〉 and we minimize a margin-

4Unlike Conneau et al. (2017), we found this to outper-
form max-pooling for both semantic similarity and general
sentence embedding tasks.
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based loss `(s, s′) =

max(0, δ − cos(g(s), g(s′)) + cos(g(s), g(t)))

where g is the model (WORD, TRIGRAM, etc.), δ
is the margin, and t is a “negative example” taken
from a mini-batch during optimization. The intu-
ition is that we want the two texts to be more sim-
ilar to each other than to their negative examples.
To select t we choose the most similar sentence in
some set. For simplicity we use the mini-batch for
this set, i.e.,

t = argmax
t′:〈t′,·〉∈Sb\{〈s,s′〉}

cos(g(s), g(t′))

where Sb ⊆ S is the current mini-batch.

Modification: mega-batching. By using the
mini-batch to select negative examples, we may
be limiting the learning procedure. That is, if all
potential negative examples in the mini-batch are
highly dissimilar from s, the loss will be too easy
to minimize. Stronger negative examples can be
obtained by using larger mini-batches, but large
mini-batches are sub-optimal for optimization.

Therefore, we propose a procedure we call
“mega-batching.” We aggregate M mini-batches
to create one mega-batch and select negative ex-
amples from the mega-batch. Once each pair in
the mega-batch has a negative example, the mega-
batch is split back up into M mini-batches and
training proceeds. We found that this provides
more challenging negative examples during learn-
ing as shown in Section 5.5. Table 6 shows re-
sults for different values of M , showing consis-
tently higher correlations with larger M values.

5 Experiments

We now investigate how best to use our generated
paraphrase data for training paraphrastic sentence
embeddings.

5.1 Evaluation
We evaluate sentence embeddings using the Sem-
Eval semantic textual similarity (STS) tasks from
2012 to 2016 (Agirre et al., 2012, 2013, 2014,
2015, 2016) and the STS Benchmark (Cer et al.,
2017). Given two sentences, the aim of the STS
tasks is to predict their similarity on a 0-5 scale,
where 0 indicates the sentences are on different
topics and 5 means they are completely equivalent.
As our test set, we report the average Pearson’s r

Training Corpus WORD TRIGRAM LSTM
Common Crawl 80.9 80.2 79.1
CzEng 1.6 83.6 81.5 82.5
Europarl 78.9 78.0 80.4
News Commentary 80.2 78.2 80.5

Table 4: Pearson’s r × 100 on STS2017 when
training on 100k pairs from each back-translated
parallel corpus. CzEng works best for all models.

over each year of the STS tasks from 2012-2016.
We use the small (250-example) English dataset
from SemEval 2017 (Cer et al., 2017) as a devel-
opment set, which we call STS2017 below.

The supplementary material contains a descrip-
tion of a method to obtain a paraphrase lexicon
from PARANMT-50M that is on par with that pro-
vided by PPDB 2.0. We also evaluate our sen-
tence embeddings on a range of additional tasks
that have previously been used for evaluating sen-
tence representations (Kiros et al., 2015).

5.2 Experimental Setup

For training sentence embeddings on PARANMT-
50M, we follow the experimental procedure of
Wieting et al. (2016b). We use PARAGRAM-
SL999 embeddings (Wieting et al., 2015) to ini-
tialize the word embedding matrix for all models
that use word embeddings. We fix the mini-batch
size to 100 and the margin δ to 0.4. We train all
models for 5 epochs. For optimization we use
Adam (Kingma and Ba, 2014) with a learning rate
of 0.001. For the LSTM and BLSTM, we fixed the
scrambling rate to 0.3.5

5.3 Dataset Comparison

We first compare parallel data sources. We evalu-
ate the quality of a data source by using its back-
translations paired with its English references as
training data for paraphrastic sentence embed-
dings. We compare the four data sources described
in Section 3. We use 100K samples from each
corpus and trained 3 different models on each:
WORD, TRIGRAM, and LSTM. Table 4 shows
that CzEng provides the best training data for all
models, so we used it to create PARANMT-50M
and for all remaining experiments.

5As in our prior work (Wieting and Gimpel, 2017), we
found that scrambling significantly improves results, even
with our much larger training set. But while we previously
used a scrambling rate of 0.5, we found that a smaller rate
of 0.3 worked better when training on PARANMT-50M, pre-
sumably due to the larger training set.
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Filtering Method Model Avg.
Translation Score 83.2
Trigram Overlap 83.1
Paraphrase Score 83.3

Table 5: Pearson’s r × 100 on STS2017 for the
best training fold across the average of WORD,
TRIGRAM, and LSTM models for each filtering
method.

CzEng is diverse in terms of both vocabulary
and sentence structure. It has significantly shorter
sentences than the other corpora, and has much
more training data, so its translations are ex-
pected to be better than those in the other corpora.
Wieting et al. (2017) found that sentence length
was the most important factor in filtering quality
training data, presumably due to how NMT qual-
ity deteriorates with longer sentences. We suspect
that better translations yield better data for training
sentence embeddings.

5.4 Data Filtering
Since the PARANMT-50M dataset is so large, it is
computationally demanding to train sentence em-
beddings on it in its entirety. So, we filter the data
to create a training set for sentence embeddings.

We experiment with three simple methods: (1)
the length-normalized translation score from de-
coding, (2) trigram overlap (Wieting et al., 2017),
and (3) the paraphrase score from Section 3. Tri-
gram overlap is calculated by counting trigrams
in the reference and translation, then dividing the
number of shared trigrams by the total number in
the reference or translation, whichever has fewer.

We filtered the back-translated CzEng data us-
ing these three strategies. We ranked all 51M+
paraphrase pairs in the dataset by the filtering mea-
sure under consideration and then split the data
into tenths (so the first tenth contains the bottom
10% under the filtering criterion, the second con-
tains those in the bottom 10-20%, etc.).

We trained WORD, TRIGRAM, and LSTM
models for a single epoch on 1M examples sam-
pled from each of the ten folds for each filter-
ing criterion. We averaged the correlation on the
STS2017 data across models for each fold. Ta-
ble 5 shows the results of the filtering methods.
Filtering based on the paraphrase score produces
the best data for training sentence embeddings.

We randomly selected 5M examples from the
top two scoring folds using paraphrase score fil-

M WORD TRIGRAM LSTM
1 82.3 81.5 81.5

20 84.0 83.1 84.6
40 84.1 83.4 85.0

Table 6: Pearson’s r× 100 on STS2017 with dif-
ferent mega-batch sizes M .

original sir, i’m just trying to protect.
negative examples:
M=1 i mean, colonel...
M=20 i only ask that the baby be safe.
M=40 just trying to survive. on instinct.
original i’m looking at him, you know?
M=1 they know that i’ve been looking for her.
M=20 i’m keeping him.
M=40 i looked at him with wonder.
original i’il let it go a couple of rounds.
M=1 sometimes the ball doesn’t go down.
M=20 i’ll take two.
M=40 i want you to sit out a couple of rounds, all right?

Table 7: Negative examples for various mega-
batch sizes M with the BLSTM model.

tering, ensuring that we only selected examples in
which both sentences have a maximum length of
30 tokens.6 These resulting 5M examples form the
training data for the rest of our experiments. Note
that many more than 5M pairs from the dataset
are useful, as suggested by our human evaluations
in Section 3.2. We have experimented with dou-
bling the training data when training our best sen-
tence similarity model and found the correlation
increased by more than half a percentage point on
average across all datasets.

5.5 Effect of Mega-Batching
Table 6 shows the impact of varying the mega-
batch size M when training for 5 epochs on our
5M-example training set. For all models, larger
mega-batches improve performance. There is a
smaller gain when moving from 20 to 40, but all
models show clear gains over M = 1.

Table 7 shows negative examples with differ-
ent mega-batch sizes M . We use the BLSTM
model and show the negative examples (nearest
neighbors from the mega-batch excluding the cur-
rent training example) for three sentences. Using
larger mega-batches improves performance, pre-
sumably by producing more compelling negative
examples for the learning procedure. This is likely
more important when training on sentences than

6Wieting et al. (2017) found that sentence length cutoffs
were effective for filtering back-translated parallel text.
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Training Data Model Dim. 2012 2013 2014 2015 2016
WORD 300 66.2 61.8 76.2 79.3 77.5
TRIGRAM 300 67.2 60.3 76.1 79.7 78.3
LSTM 300 67.0 62.3 76.3 78.5 76.0
LSTM 900 68.0 60.4 76.3 78.8 75.9

Our PARANMT BLSTM 900 67.4 60.2 76.1 79.5 76.5
Work WORD + TRIGRAM (addition) 300 67.3 62.8 77.5 80.1 78.2

WORD + TRIGRAM + LSTM (addition) 300 67.1 62.8 76.8 79.2 77.0
WORD, TRIGRAM (concatenation) 600 67.8 62.7 77.4 80.3 78.1
WORD, TRIGRAM, LSTM (concatenation) 900 67.7 62.8 76.9 79.8 76.8

SimpWiki WORD, TRIGRAM (concatenation) 600 61.8 58.4 74.4 77.0 74.0
1st Place System - 64.8 62.0 74.3 79.0 77.7

STS Competitions 2nd Place System - 63.4 59.1 74.2 78.0 75.7
3rd Place System - 64.1 58.3 74.3 77.8 75.7
InferSent (AllSNLI) (Conneau et al., 2017) 4096 58.6 51.5 67.8 68.3 67.2
InferSent (SNLI) (Conneau et al., 2017) 4096 57.1 50.4 66.2 65.2 63.5
FastSent (Hill et al., 2016) 100 - - 63 - -
DictRep (Hill et al., 2016) 500 - - 67 - -

Related Work SkipThought (Kiros et al., 2015) 4800 - - 29 - -
CPHRASE (Pham et al., 2015) - - - 65 - -
CBOW (from Hill et al., 2016) 500 - - 64 - -
BLEU (Papineni et al., 2002) - 39.2 29.5 42.8 49.8 47.4
METEOR (Denkowski and Lavie, 2014) - 53.4 47.6 63.7 68.8 61.8

Table 8: Pearson’s r× 100 on the STS tasks of our models and those from related work. We compare to
the top performing systems from each SemEval STS competition. Note that we are reporting the mean
correlations over domains for each year rather than weighted means as used in the competitions. Our
best performing overall model (WORD, TRIGRAM) is in bold.

Dim. Corr.
Our Work (Unsupervised)
WORD 300 79.2
TRIGRAM 300 79.1
LSTM 300 78.4
WORD + TRIGRAM (addition) 300 79.9
WORD + TRIGRAM + LSTM (addition) 300 79.6
WORD, TRIGRAM (concatenation) 600 79.9
WORD, TRIGRAM, LSTM (concatenation) 900 79.2
Related Work (Unsupervised)
InferSent (AllSNLI) (Conneau et al., 2017) 4096 70.6
C-PHRASE (Pham et al., 2015) 63.9
GloVe (Pennington et al., 2014) 300 40.6
word2vec (Mikolov et al., 2013) 300 56.5
sent2vec (Pagliardini et al., 2017) 700 75.5
Related Work (Supervised)
Dep. Tree LSTM (Tai et al., 2015) 71.2
Const. Tree LSTM (Tai et al., 2015) 71.9
CNN (Shao, 2017) 78.4

Table 9: Results on STS Benchmark test set.

prior work on learning from text snippets (Wieting
et al., 2015, 2016b; Pham et al., 2015).

5.6 Model Comparison

Table 8 shows results on the 2012-2016 STS tasks
and Table 9 shows results on the STS Benchmark.7

Our best models outperform all STS competition
systems and all related work of which we are

7Baseline results are from http://ixa2.si.ehu.
es/stswiki/index.php/STSbenchmark, except for
the unsupervised InferSent result which we computed.

Models Mean Pearson Abs. Diff.
WORD / TRIGRAM 2.75
WORD / LSTM 2.17
TRIGRAM / LSTM 2.89

Table 10: The means (over all 25 STS competi-
tion datasets) of the absolute differences in Pear-
son’s r between each pair of models.

aware on the 2012-2016 STS datasets. Note that
the large improvement over BLEU and METEOR
suggests that our embeddings could be useful for
evaluating machine translation output.

Overall, our individual models (WORD, TRI-
GRAM, LSTM) perform similarly. Using 300 di-
mensions appears to be sufficient; increasing di-
mensionality does not necessarily improve corre-
lation. When examining particular STS tasks, we
found that our individual models showed marked
differences on certain tasks. Table 10 shows the
mean absolute difference in Pearson’s r over all 25
datasets. The TRIGRAM model shows the largest
differences from the other two, both of which use
word embeddings. This suggests that TRIGRAM

may be able to complement the other two by pro-
viding information about words that are unknown
to models that rely on word embeddings.

We experiment with two ways of combining
models. The first is to define additive architectures

http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark
http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark
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Target Syntax Paraphrase
original with the help of captain picard, the borg will be prepared for everything.
(SBARQ(ADVP)(,)(S)(,)(SQ)) now, the borg will be prepared by picard, will it?
(S(NP)(ADVP)(VP)) the borg here will be prepared for everything.
original you seem to be an excellent burglar when the time comes.
(S(SBAR)(,)(NP)(VP)) when the time comes, you’ll be a great thief.
(S(‘‘)(UCP)(’’)(NP)(VP)) “you seem to be a great burglar, when the time comes.” you said.

Table 11: Syntactically controlled paraphrases generated by the SCPN trained on PARANMT-50M.

that form the embedding for a sentence by adding
the embeddings computed by two (or more) indi-
vidual models. All parameters are trained jointly
just like when we train individual models; that
is, we do not first train two simple models and
add their embeddings. The second way is to de-
fine concatenative architectures that form a sen-
tence embedding by concatenating the embed-
dings computed by individual models, and again
to train all parameters jointly.

In Table 8 and Table 9, these combinations show
consistent improvement over the individual mod-
els as well as the larger LSTM and BLSTM. Con-
catenating WORD and TRIGRAM results in the
best performance on average across STS tasks,
outperforming the best supervised systems from
each year. We have released the pretrained model
for these “WORD, TRIGRAM” embeddings. In ad-
dition to providing a strong baseline for future STS
tasks, these embeddings offer the advantages of
being extremely efficient to compute and being ro-
bust to unknown words.

We show the usefulness of PARANMT by also
reporting the results of training the “WORD, TRI-
GRAM” model on SimpWiki, a dataset of aligned
sentences from Simple English and standard En-
glish Wikipedia (Coster and Kauchak, 2011). It
has been shown useful for training sentence em-
beddings in past work (Wieting and Gimpel,
2017). However, Table 8 shows that training on
PARANMT leads to gains in correlation of 3 to 6
points compared to SimpWiki.

6 Paraphrase Generation

In addition to powering state-of-the-art paraphras-
tic sentence embeddings, our dataset is useful for
paraphrase generation. We briefly describe two ef-
forts in paraphrase generation here.

We have found that training an encoder-decoder
model on PARANMT-50M can produce a para-
phrase generation model that canonicalizes text.
For this experiment, we used a bidirectional
LSTM encoder and a two-layer LSTM decoder

original overall, i that it’s a decent buy, and am happy
that i own it.

paraphrase it’s a good buy, and i’m happy to own it.
original oh, that’s a handsome women, that is.
paraphrase that’s a beautiful woman.

Table 12: Examples from our paraphrase gener-
ation model that show the ability to canonicalize
text and correct grammatical errors.

with soft attention over the encoded states (Bah-
danau et al., 2015). The attention computation
consists of a bilinear product with a learned pa-
rameter matrix. Table 12 shows examples of out-
put generated by this model, showing how the
model is able to standardize the text and correct
grammatical errors. This model would be interest-
ing to evaluate for automatic grammar correction
as it does so without any direct supervision. Fu-
ture work could also use this canonicalization to
improve performance of models by standardizing
inputs and removing noise from data.

PARANMT-50M has also been used for
syntactically-controlled paraphrase generation;
this work is described in detail by Iyyer et al.
(2018). A syntactically controlled paraphrase net-
work (SCPN) is trained to generate a paraphrase
of a sentence whose constituent structure follows
a provided parse template. A parse template con-
tains the top two levels of a linearized parse tree.
Table 11 shows example outputs using the SCPN.
The paraphrases mostly preserve the semantics of
the input sentences while changing their syntax to
fit the target syntactic templates. The SCPN was
used for augmenting training data and finding ad-
versarial examples.

We believe that PARANMT-50M and future
datasets like it can be used to generate rich para-
phrases that improve the performance and robust-
ness of models on a multitude of NLP tasks.

7 Discussion

One way to view PARANMT-50M is as a way to
represent the learned translation model in a mono-
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lingual generated dataset. This raises the ques-
tion of whether we could learn an effective sen-
tence embedding model from the original parallel
text used to train the NMT system, rather than re-
quiring the intermediate step of generating a para-
phrase training set.

However, while Hill et al. (2016) and Mallinson
et al. (2017) used trained NMT models to produce
sentence similarity scores, their correlations are
considerably lower than ours (by 10% to 35% ab-
solute in terms of Pearson). It appears that NMT
encoders form representations that do not neces-
sarily encode the semantics of the sentence in a
way conducive to STS evaluations. They must
instead create representations suitable for a de-
coder to generate a translation. These two goals
of representing sentential semantics and produc-
ing a translation, while likely correlated, evidently
have some significant differences.

Our use of an intermediate dataset leads to the
best results, but this may be due to our efforts in
optimizing learning for this setting (Wieting et al.,
2016b; Wieting and Gimpel, 2017). Future work
will be needed to develop learning frameworks
that can leverage parallel text directly to reach the
same or improved correlations on STS tasks.

8 Conclusion

We described the creation of PARANMT-50M, a
dataset of more than 50M English sentential para-
phrase pairs. We showed how to use PARANMT-
50M to train paraphrastic sentence embeddings
that outperform supervised systems on STS tasks,
as well as how it can be used for generating para-
phrases for purposes of data augmentation, robust-
ness, and even grammar correction.

The key advantage of our approach is that it
only requires parallel text. There are hundreds
of millions of parallel sentence pairs, and more
are being generated continually. Our procedure is
immediately applicable to the wide range of lan-
guages for which we have parallel text.

We release PARANMT-50M, our code, and
pretrained sentence embeddings, which also ex-
hibit strong performance as general-purpose rep-
resentations for a multitude of tasks. We hope that
PARANMT-50M, along with our embeddings,
can impart a notion of meaning equivalence to im-
prove NLP systems for a variety of tasks. We are
actively investigating ways to apply these two new
resources to downstream applications, including

machine translation, question answering, and ad-
ditional paraphrase generation tasks.
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