
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 317–327
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

317

Sentence-State LSTM for Text Representation

Yue Zhang1, Qi Liu1 and Linfeng Song2

1Singapore University of Technology and Design
2Department of Computer Science, University of Rochester

{yue zhang, qi liu}@sutd.edu.sg, lsong10@cs.rochester.edu

Abstract

Bi-directional LSTMs are a powerful tool
for text representation. On the other
hand, they have been shown to suffer var-
ious limitations due to their sequential na-
ture. We investigate an alternative LSTM
structure for encoding text, which consists
of a parallel state for each word. Re-
current steps are used to perform local
and global information exchange between
words simultaneously, rather than incre-
mental reading of a sequence of words.
Results on various classification and se-
quence labelling benchmarks show that
the proposed model has strong representa-
tion power, giving highly competitive per-
formances compared to stacked BiLSTM
models with similar parameter numbers.

1 Introduction

Neural models have become the dominant ap-
proach in the NLP literature. Compared to hand-
crafted indicator features, neural sentence repre-
sentations are less sparse, and more flexible in en-
coding intricate syntactic and semantic informa-
tion. Among various neural networks for encod-
ing sentences, bi-directional LSTMs (BiLSTM)
(Hochreiter and Schmidhuber, 1997) have been a
dominant method, giving state-of-the-art results in
language modelling (Sundermeyer et al., 2012),
machine translation (Bahdanau et al., 2015), syn-
tactic parsing (Dozat and Manning, 2017) and
question answering (Tan et al., 2015).

Despite their success, BiLSTMs have been
shown to suffer several limitations. For example,
their inherently sequential nature endows com-
putation non-parallel within the same sentence
(Vaswani et al., 2017), which can lead to a compu-
tational bottleneck, hindering their use in the in-

...

...

...

...

...

...

...

...
time

0 1 ... t-1

t

Figure 1: Sentence-State LSTM

dustry. In addition, local ngrams, which have been
shown a highly useful source of contextual infor-
mation for NLP, are not explicitly modelled (Wang
et al., 2016). Finally, sequential information flow
leads to relatively weaker power in capturing long-
range dependencies, which results in lower perfor-
mance in encoding longer sentences (Koehn and
Knowles, 2017).

We investigate an alternative recurrent neural
network structure for addressing these issues. As
shown in Figure 1, the main idea is to model the
hidden states of all words simultaneously at each
recurrent step, rather than one word at a time. In
particular, we view the whole sentence as a sin-
gle state, which consists of sub-states for individ-
ual words and an overall sentence-level state. To
capture local and non-local contexts, states are up-
dated recurrently by exchanging information be-
tween each other. Consequently, we refer to our
model as sentence-state LSTM, or S-LSTM in
short. Empirically, S-LSTM can give effective
sentence encoding after 3 – 6 recurrent steps. In
contrast, the number of recurrent steps necessary
for BiLSTM scales with the size of the sentence.

318

At each recurrent step, information exchange is
conducted between consecutive words in the sen-
tence, and between the sentence-level state and
each word. In particular, each word receives in-
formation from its predecessor and successor si-
multaneously. From an initial state without infor-
mation exchange, each word-level state can obtain
3-gram, 5-gram and 7-gram information after 1,
2 and 3 recurrent steps, respectively. Being con-
nected with every word, the sentence-level state
vector serves to exchange non-local information
with each word. In addition, it can also be used
as a global sentence-level representation for clas-
sification tasks.

Results on both classification and sequence la-
belling show that S-LSTM gives better accuracies
compared to BiLSTM using the same number of
parameters, while being faster. We release our
code and models at https://github.com/
leuchine/S-LSTM, which include all base-
lines and the final model.

2 Related Work

LSTM (Graves and Schmidhuber, 2005) showed
its early potentials in NLP when a neural machine
translation system that leverages LSTM source
encoding gave highly competitive results com-
pared to the best SMT models (Bahdanau et al.,
2015). LSTM encoders have since been explored
for other tasks, including syntactic parsing (Dyer
et al., 2015), text classification (Yang et al., 2016)
and machine reading (Hermann et al., 2015). Bi-
directional extensions have become a standard
configuration for achieving state-of-the-art accu-
racies among various tasks (Wen et al., 2015; Ma
and Hovy, 2016; Dozat and Manning, 2017). S-
LSTMs are similar to BiLSTMs in their recurrent
bi-directional message flow between words, but
different in the design of state transition.

CNNs (Krizhevsky et al., 2012) also allow bet-
ter parallelisation compared to LSTMs for sen-
tence encoding (Kim, 2014), thanks to parallelism
among convolution filters. On the other hand, con-
volution features embody only fix-sized local n-
gram information, whereas sentence-level feature
aggregation via pooling can lead to loss of infor-
mation (Sabour et al., 2017). In contrast, S-LSTM
uses a global sentence-level node to assemble and
back-distribute local information in the recurrent
state transition process, suffering less information
loss compared to pooling.

Attention (Bahdanau et al., 2015) has recently
been explored as a standalone method for sentence
encoding, giving competitive results compared to
Bi-LSTM encoders for neural machine translation
(Vaswani et al., 2017). The attention mechanism
allows parallelisation, and can play a similar role
to the sentence-level state in S-LSTMs, which uses
neural gates to integrate word-level information
compared to hierarchical attention. S-LSTM fur-
ther allows local communication between neigh-
bouring words.

Hierarchical stacking of CNN layers (LeCun
et al., 1995; Kalchbrenner et al., 2014; Papan-
dreou et al., 2015; Dauphin et al., 2017) allows
better interaction between non-local components
in a sentence via incremental levels of abstraction.
S-LSTM is similar to hierarchical attention and
stacked CNN in this respect, incrementally refin-
ing sentence representations. However, S-LSTM
models hierarchical encoding of sentence structure
as a recurrent state transition process. In nature,
our work belongs to the family of LSTM sentence
representations.

S-LSTM is inspired by message passing over
graphs (Murphy et al., 1999; Scarselli et al., 2009).
Graph-structure neural models have been used for
computer program verification (Li et al., 2016) and
image object detection (Liang et al., 2016). The
closest previous work in NLP includes the use
of convolutional neural networks (Bastings et al.,
2017; Marcheggiani and Titov, 2017) and DAG
LSTMs (Peng et al., 2017) for modelling syntactic
structures. Compared to our work, their motiva-
tions and network structures are highly different.
In particular, the DAG LSTM of Peng et al. (2017)
is a natural extension of tree LSTM (Tai et al.,
2015), and is sequential rather than parallel in na-
ture. To our knowledge, we are the first to investi-
gate a graph RNN for encoding sentences, propos-
ing parallel graph states for integrating word-level
and sentence-level information. In this perspec-
tive, our contribution is similar to that of Kim
(2014) and Bahdanau et al. (2015) in introducing
a neural representation to the NLP literature.

3 Model

Given a sentence s = w1, w2, . . . , wn, where
wi represents the ith word and n is the sentence
length, our goal is to find a neural representation
of s, which consists of a hidden vector hi for each
input word wi, and a global sentence-level hid-

319

den vector g. Here hi represents syntactic and se-
mantic features forwi under the sentential context,
while g represents features for the whole sentence.
Following previous work, we additionally add 〈s〉
and 〈/s〉 to the two ends of the sentence as w0 and
wn+1, respectively.

3.1 Baseline BiLSTM

The baseline BiLSTM model consists of two
LSTM components, which process the input in
the forward left-to-right and the backward right-
to-left directions, respectively. In each direction,
the reading of input words is modelled as a recur-
rent process with a single hidden state. Given an
initial value, the state changes its value recurrently,
each time consuming an incoming word.

Take the forward LSTM component for exam-
ple. Denoting the initial state as

�→
h 0, which is

a model parameter, the recurrent state transition
step for calculating

�→
h 1, . . . ,

�→
h n+1 is defined as

follows (Graves and Schmidhuber, 2005):

ît = σ(Wixt +Ui
�→
h t−1 + bi)

f̂ t = σ(Wfxt +Uf
�→
h t−1 + bf)

ot = σ(Woxt +Uo
�→
h t−1 + bo)

ut = tanh(Wuxt +Uu
�→
h t−1 + bu)

it,f t = softmax (̂it, f̂ t)

ct = ct−1 � f t + ut � it
�→
h t = ot � tanh(ct)

(1)

where xt denotes the word representation of wt;
it, ot, f t and ut represent the values of an input
gate, an output gate, a forget gate and an actual in-
put at time step t, respectively, which controls the
information flow for a recurrent cell �→c t and the
state vector

�→
h t;Wx,Ux and bx (x ∈ {i, o, f, u})

are model parameters. σ is the sigmoid function.
The backward LSTM component follows the

same recurrent state transition process as de-
scribed in Eq 1. Starting from an initial statehn+1,
which is a model parameter, it reads the input xn,
xn−1, . . . , x0, changing its value to

←�
h n,
←�
h n−1,

. . . ,
←�
h 0, respectively. A separate set of parame-

ters Ŵx, Ûx and b̂x (x ∈ {i, o, f, u}) are used for
the backward component.

The BiLSTM model uses the concatenated
value of

�→
h t and

←�
h t as the hidden vector for wt:

ht = [
�→
h t;
←�
h t]

A single hidden vector representation g of the
whole input sentence can be obtained using the fi-
nal state values of the two LSTM components:

g = [
�→
h n+1;

←�
h 0]

Stacked BiLSTM Multiple layers of BiLTMs
can be stacked for increased representation power,
where the hidden vectors of a lower layer are used
as inputs for an upper layer. Different model pa-
rameters are used in each stacked BiLSTM layer.

3.2 Sentence-State LSTM
Formally, an S-LSTM state at time step t can be
denoted by:

Ht = 〈ht0,ht1, . . . ,htn+1, g
t〉,

which consists of a sub state hti for each word wi
and a sentence-level sub state gt.

S-LSTM uses a recurrent state transition pro-
cess to model information exchange between sub
states, which enriches state representations incre-
mentally. For the initial state H0, we set h0

i =
g0 = h0, where h0 is a parameter. The state
transition from Ht−1 to Ht consists of sub state
transitions from ht−1i to hti and from gt−1 to gt.
We take an LSTM structure similar to the baseline
BiLSTM for modelling state transition, using a re-
current cell cti for each wi and a cell ctg for g.

As shown in Figure 1, the value of each hti is
computed based on the values of xi, ht−1i−1, ht−1i ,
ht−1i+1 and gt−1, together with their corresponding
cell values:

ξti = [ht−1i−1,h
t−1
i ,ht−1i+1]

îti = σ(Wiξ
t
i +Uixi + Vig

t−1 + bi)

l̂ti = σ(Wlξ
t
i +Ulxi + Vlg

t−1 + bl)

r̂ti = σ(Wrξ
t
i +Urxi + Vrg

t−1 + br)

f̂ ti = σ(Wfξ
t
i +Ufxi + Vfg

t−1 + bf)

ŝti = σ(Wsξ
t
i +Usxi + Vsg

t−1 + bs)

oti = σ(Woξ
t
i +Uoxi + Vog

t−1 + bo)

uti = tanh(Wuξ
t
i +Uuxi + Vug

t−1 + bu)

iti, l
t
i, r

t
i ,f

t
i , s

t
i = softmax (̂iti, l̂

t
i, r̂

t
i , f̂

t
i , ŝ

t
i)

cti = l
t
i � ct−1i−1 + f

t
i � ct−1i + rti � ct−1i+1

+ sti � ct−1g + iti � uti
hti = o

i
t � tanh(cti)

(2)

where ξti is the concatenation of hidden vectors
of a context window, and lti, r

t
i , f

t
i , s

t
i and iti are

320

gates that control information flow from ξti and xi
to cti. In particular, iti controls information from
the input xi; lti, r

t
i , f

t
i and sti control information

from the left context cell ct−1i−1, the right context
cell ct−1i+1, ct−1i and the sentence context cell ct−1g ,
respectively. The values of iti, l

t
i, r

t
i , f

t
i and sti are

normalised such that they sum to 1. oti is an out-
put gate from the cell state cti to the hidden state
hti. Wx, Ux, Vx and bx (x ∈ {i, o, l, r, f, s, u})
are model parameters. σ is the sigmoid function.

The value of gt is computed based on the values
of ht−1i for all i ∈ [0..n+ 1]:

h̄ = avg(ht−10 ,ht−11 , . . . ,ht−1n+1)

f̂ tg = σ(Wgg
t−1 +Ugh̄+ bg)

f̂ ti = σ(Wfg
t−1 +Ufh

t−1
i + bf)

ot = σ(Wog
t−1 +Uoh̄+ bo)

f t0, . . . ,f
t
n+1,f

t
g = softmax (f̂ t0, . . . , f̂

t
n+1, f̂

t
g)

ctg = f
t
g � ct−1g +

∑
i

f ti � ct−1i

gt = ot � tanh(ctg)
(3)

where f t0, . . . ,f
t
n+1 and f tg are gates controlling

information from ct−10 , . . . , ct−1n+1 and ct−1g , re-
spectively, which are normalised. ot is an output
gate from the recurrent cell ctg to gt. Wx, Ux and
bx (x ∈ {g, f, o}) are model parameters.

Contrast with BiLSTM The difference be-
tween S-LSTM and BiLSTM can be understood
with respect to their recurrent states. While BiL-
STM uses only one state in each direction to rep-
resent the subsequence from the beginning to a
certain word, S-LSTM uses a structural state to
represent the full sentence, which consists of a
sentence-level sub state and n + 2 word-level sub
states, simultaneously. Different from BiLSTMs,
for which ht at different time steps are used to rep-
resent w0, . . . , wn+1, respectively, the word-level
states hti and sentence-level state gt of S-LSTMs
directly correspond to the goal outputs hi and g,
as introduced in the beginning of this section. As
t increases from 0, hti and gt are enriched with
increasingly deeper context information.

From the perspective of information flow, BiL-
STM passes information from one end of the sen-
tence to the other. As a result, the number of time
steps scales with the size of the input. In con-
trast, S-LSTM allows bi-directional information
flow at each word simultaneously, and additionally

between the sentence-level state and every word-
level state. At each step, each hi captures an in-
creasing larger ngram context, while additionally
communicating globally to all other hj via g. The
optimal number of recurrent steps is decided by
the end-task performance, and does not necessar-
ily scale with the sentence size. As a result, S-
LSTM can potentially be both more efficient and
more accurate compared with BiLSTMs.

Increasing window size. By default S-LSTM
exchanges information only between neighbour-
ing words, which can be seen as adopting a 1-
word window on each side. The window size
can be extended to 2, 3 or more words in order
to allow more communication in a state transi-
tion, expediting information exchange. To this
end, we modify Eq 2, integrating additional con-
text words to ξti , with extended gates and cells.
For example, with a window size of 2, ξti =
[ht−1i−2,h

t−1
i−1,h

t−1
i ,ht−1i+1,h

t−1
i+2]. We study the ef-

fectiveness of window size in our experiments.
Additional sentence-level nodes. By default

S-LSTM uses one sentence-level node. One way
of enriching the parameter space is to add more
sentence-level nodes, each communicating with
word-level nodes in the same way as described
by Eq 3. In addition, different sentence-level
nodes can communicate with each other during
state transition. When one sentence-level node is
used for classification outputs, the other sentence-
level node can serve as hidden memory units, or
latent features. We study the effectiveness of mul-
tiple sentence-level nodes empirically.

3.3 Task settings
We consider two task settings, namely classifica-
tion and sequence labelling. For classification, g
is fed to a softmax classification layer:

y = softmax (Wcg + bc)

where y is the probability distribution of output
class labels and Wc and bc are model parameters.
For sequence labelling, eachhi can be used as fea-
ture representation for a corresponding word wi.

External attention It has been shown that
summation of hidden states using attention (Bah-
danau et al., 2015; Yang et al., 2016) give bet-
ter accuracies compared to using the end states
of BiLSTMs. We study the influence of atten-
tion on both S-LSTM and BiLSTM for classifi-
cation. In particular, additive attention (Bahdanau

321

Dataset Training Development Test
#sent #words #sent #words #sent #words

Movie review (Pang and Lee, 2008) 8527 201137 1066 25026 1066 25260
Books 1400 297K 200 59K 400 68K

Electronics 1398 924K 200 184K 400 224K
DVD 1400 1,587K 200 317K 400 404K

Kitchen 1400 769K 200 153K 400 195K
Apparel 1400 525K 200 105K 400 128K
Camera 1397 1,084K 200 216K 400 260K

Text Health 1400 742K 200 148K 400 175K
Classification Music 1400 1,176K 200 235K 400 276K

(Liu et al., 2017) Toys 1400 792K 200 158K 400 196K
Video 1400 1,311K 200 262K 400 342K
Baby 1300 855K 200 171K 400 221K

Magazines 1370 1,033K 200 206K 400 264K
Software 1315 1,143K 200 228K 400 271K

Sports 1400 833K 200 183K 400 218K
IMDB 1400 2,205K 200 507K 400 475K

MR 1400 196K 200 41K 400 48K
POS tagging (Marcus et al., 1993) 39831 950011 1699 40068 2415 56671

NER (Sang et al., 2003) 14987 204567 3466 51578 3684 46666

Table 1: Dataset statistics

et al., 2015) is applied to the hidden states of input
words for both BiLSTMs and S-LSTMs calculat-
ing a weighted sum

g =
∑
t

αtht

where

αt =
expuT εt∑
i expu

T εi

εt = tanh(Wαht + bα)

HereWα, u and bα are model parameters.

External CRF For sequential labelling, we
use a CRF layer on top of the hidden vec-
tors h1,h2, . . . ,hn for calculating the conditional
probabilities of label sequences (Huang et al.,
2015; Ma and Hovy, 2016):

P (Y n
1 |h,Ws, bs) =

∏n
i=1 ψi(yi−1, yi,h)∑

Y n′
1

∏n
i=1 ψi(y

′
i−1, y

′
i,h)

ψi(yi−1, yi,h) = exp(W
yi−1,yi
s hi + b

yi−1,yi
s)

where W yi−1,yi
s and byi−1,yi

s are parameters spe-
cific to two consecutive labels yi−1 and yi.

For training, standard log-likelihood loss is used
with L2 regularization given a set of gold-standard
instances.

4 Experiments

We empirically compare S-LSTMs and BiLSTMs
on different classification and sequence labelling
tasks. All experiments are conducted using a
GeForce GTX 1080 GPU with 8GB memory.

Model Time (s) Acc # Param
+0 dummy node 56 81.76 7,216K
+1 dummy node 65 82.64 8,768K
+2 dummy node 76 82.24 10,321K
Hidden size 100 42 81.75 4,891K
Hidden size 200 54 82.04 6,002K
Hidden size 300 65 82.64 8,768K
Hidden size 600 175 81.84 17,648K
Hidden size 900 235 81.66 33,942K
Without 〈s〉, 〈/s〉 63 82.36 8,768K

With 〈s〉, 〈/s〉 65 82.64 8,768K

Table 2: Movie review DEV results of S-LSTM

4.1 Experimental Settings

Datasets. We choose the movie review dataset
of Pang and Lee (2008), and additionally the
16 datasets of Liu et al. (2017) for classification
evaluation. We randomly split the movie review
dataset into training (80%), development (10%)
and test (10%) sections, and the original split of
Liu et al. (2017) for the 16 classification datasets.

For sequence labelling, we choose the Penn
Treebank (Marcus et al., 1993) POS tagging task
and the CoNLL (Sang et al., 2003) NER task as
our benchmarks. For POS tagging, we follow the
standard split (Manning, 2011), using sections 0 –
18 for training, 19 – 21 for development and 22
– 24 for test. For NER, we follow the standard
split, and use the BIOES tagging scheme (Ratinov
and Roth, 2009). Statistics of the four datasets are
shown in Table 1.

Hyperparameters. We initialise word embed-
dings using GloVe (Pennington et al., 2014) 300
dimensional embeddings.1 Embeddings are fine-
tuned during model training for all tasks. Dropout
(Srivastava et al., 2014) is applied to embedding
hidden states, with a rate of 0.5. All models are
optimised using the Adam optimizer (Kingma and
Ba, 2014), with an initial learning rate of 0.001
and a decay rate of 0.97. Gradients are clipped
at 3 and a batch size of 10 is adopted. Sentences
with similar lengths are batched together. The L2
regularization parameter is set to 0.001.

4.2 Development Experiments

We use the movie review development data to in-
vestigate different configurations of S-LSTMs and
BiLSTMs. For S-LSTMs, the default configura-
tion uses 〈s〉 and 〈/s〉words for augmenting words

1https://nlp.stanford.edu/projects/glove/

322

1 3 5 7 9 11
Time Step t

0.795

0.800

0.805

0.810

0.815

0.820

0.825

0.830

A
cc

u
ra

cy

window = 1

window = 2

window = 3

window = 4

Figure 2: Accuracies with various window sizes
and time steps on movie review development set

of a sentence. A hidden layer size of 300 and one
sentence-level node are used.

Hyperparameters: Table 2 shows the develop-
ment results of various S-LSTM settings, where
Time refers to training time per epoch. Without
the sentence-level node, the accuracy of S-LSTM
drops to 81.76%, demonstrating the necessity of
global information exchange. Adding one addi-
tional sentence-level node as described in Sec-
tion 3.2 does not lead to accuracy improvements,
although the number of parameters and decoding
time increase accordingly. As a result, we use only
1 sentence-level node for the remaining experi-
ments. The accuracies of S-LSTM increases as the
hidden layer size for each node increases from 100
to 300, but does not further increase when the size
increases beyond 300. We fix the hidden size to
300 accordingly. Without using 〈s〉 and 〈/s〉, the
performance of S-LSTM drops from 82.64% to
82.36%, showing the effectiveness of having these
additional nodes. Hyperparameters for BiLSTM
models are also set according to the development
data, which we omit here.

State transition. In Table 2, the number of re-
current state transition steps of S-LSTM is decided
according to the best development performance.
Figure 2 draws the development accuracies of S-
LSTMs with various window sizes against the
number of recurrent steps. As can be seen from the
figure, when the number of time steps increases
from 1 to 11, the accuracies generally increase,
before reaching a maximum value. This shows the
effectiveness of recurrent information exchange in
S-LSTM state transition.

On the other hand, no significant differences are
observed on the peak accuracies given by different
window sizes, although a larger window size (e.g.

Model Time (s) Acc # Param
LSTM 67 80.72 5,977K

BiLSTM 106 81.73 7,059K
2 stacked BiLSTM 207 81.97 9,221K
3 stacked BiLSTM 310 81.53 11,383K
4 stacked BiLSTM 411 81.37 13,546K

S-LSTM 65 82.64* 8,768K
CNN 34 80.35 5,637K

2 stacked CNN 40 80.97 5,717K
3 stacked CNN 47 81.46 5,808K
4 stacked CNN 51 81.39 5,855K

Transformer (N=6) 138 81.03 7,234K
Transformer (N=8) 174 81.86 7,615K

Transformer (N=10) 214 81.63 8,004K
BiLSTM+Attention 126 82.37 7,419K
S-LSTM+Attention 87 83.07* 8,858K

Table 3: Movie review development results

4) generally results in faster plateauing. This can
be be explained by the intuition that information
exchange between distant nodes can be achieved
using more recurrent steps under a smaller win-
dow size, as can be achieved using fewer steps un-
der a larger window size. Considering efficiency,
we choose a window size of 1 for the remaining
experiments, setting the number of recurrent steps
to 9 according to Figure 2.

S-LSTM vs BiLSTM: As shown in Table
3, BiLSTM gives significantly better accuracies
compared to uni-directional LSTM2, with the
training time per epoch growing from 67 seconds
to 106 seconds. Stacking 2 layers of BiLSTM
gives further improvements to development re-
sults, with a larger time of 207 seconds. 3 lay-
ers of stacked BiLSTM does not further improve
the results. In contrast, S-LSTM gives a develop-
ment result of 82.64%, which is significantly bet-
ter compared to 2-layer stacked BiLSTM, with a
smaller number of model parameters and a shorter
time of 65 seconds.

We additionally make comparisons with
stacked CNNs and hierarchical attention (Vaswani
et al., 2017), shown in Table 3 (the CNN and
Transformer rows), whereN indicates the number
of attention layers. CNN is the most efficient
among all models compared, with the smallest
model size. On the other hand, a 3-layer stacked
CNN gives an accuracy of 81.46%, which is also

2p < 0.01 using t-test. For the remaining of this paper,
we use the same measure for statistical significance.

323

Model Accuracy Train (s) Test (s)
Socher et al. (2011) 77.70 – –
Socher et al. (2012) 79.00 – –
Kim (2014) 81.50 – –
Qian et al. (2016) 81.50 – –
BiLSTM 81.61 51 1.62
2 stacked BiLSTM 81.94 98 3.18
3 stacked BiLSTM 81.71 137 4.67
3 stacked CNN 81.59 31 1.04
Transformer (N=8) 81.97 89 2.75
S-LSTM 82.45* 41 1.53

Table 4: Test set results on movie review dataset
(* denotes significance in all tables).

the lowest compared with BiLSTM, hierarchical
attention and S-LSTM. The best performance of
hierarchical attention is between single-layer and
two-layer BiLSTMs in terms of both accuracy
and efficiency. S-LSTM gives significantly
better accuracies compared with both CNN and
hierarchical attention.

Influence of external attention mechanism.
Table 3 additionally shows the results of BiLSTM
and S-LSTM when external attention is used as
described in Section 3.3. Attention leads to im-
proved accuracies for both BiLSTM and S-LSTM
in classification, with S-LSTM still outperform-
ing BiLSTM significantly. The result suggests that
external techniques such as attention can play or-
thogonal roles compared with internal recurrent
structures, therefore benefiting both BiLSTMs and
S-LSTMs. Similar observations are found using
external CRF layers for sequence labelling.

4.3 Final Results for Classification

The final results on the movie review and rich text
classification datasets are shown in Tables 4 and
5, respectively. In addition to training time per
epoch, test times are additionally reported. We use
the best settings on the movie review development
dataset for both S-LSTMs and BiLSTMs. The step
number for S-LSTMs is set to 9.

As shown in Table 4, the final results on the
movie review dataset are consistent with the devel-
opment results, where S-LSTM outperforms BiL-
STM significantly, with a faster speed. Observa-
tions on CNN and hierarchical attention are con-
sistent with the development results. S-LSTM also
gives highly competitive results when compared
with existing methods in the literature.

1 3 5 7 9 11
S-LSTM Time Step

91.5

92.0

92.5

93.0

93.5

94.0

94.5

95.0

F1

(a) CoNLL03

1 3 5 7 9 11
S-LSTM Time Step

96.8

96.9

97.0

97.1

97.2

97.3

97.4

97.5

97.6

A
cc

u
ra

cy

(b) WSJ

Figure 3: Sequence labelling development results.

As shown in Table 5, among the 16 datasets of
Liu et al. (2017), S-LSTM gives the best results
on 12, compared with BiLSTM and 2 layered BiL-
STM models. The average accuracy of S-LSTM is
85.6%, significantly higher compared with 84.9%
by 2-layer stacked BiLSTM. 3-layer stacked BiL-
STM gives an average accuracy of 84.57%, which
is lower compared to a 2-layer stacked BiLSTM,
with a training time per epoch of 423.6 seconds.
The relative speed advantage of S-LSTM over
BiLSTM is larger on the 16 datasets as compared
to the movie review test test. This is because the
average length of inputs is larger on the 16 datasets
(see Section 4.5).

4.4 Final Results for Sequence Labelling

Bi-directional RNN-CRF structures, and in partic-
ular BiLSTM-CRFs, have achieved the state of the
art in the literature for sequence labelling tasks,
including POS-tagging and NER. We compare S-
LSTM-CRF with BiLSTM-CRF for sequence la-
belling, using the same settings as decided on the
movie review development experiments for both
BiLSTMs and S-LSTMs. For the latter, we decide

324

Dataset SLSTM Time (s) BiLSTM Time (s) 2 BiLSTM Time (s)
Camera 90.02* 50 (2.85) 87.05 115 (8.37) 88.07 221 (16.1)
Video 86.75* 55 (3.95) 84.73 140 (12.59) 85.23 268 (25.86)
Health 86.5 37 (2.17) 85.52 118 (6.38) 85.89 227 (11.16)
Music 82.04* 52 (3.44) 78.74 185 (12.27) 80.45 268 (23.46)

Kitchen 84.54* 40 (2.50) 82.22 118 (10.18) 83.77 225 (19.77)
DVD 85.52* 63 (5.29) 83.71 166 (15.42) 84.77 217 (28.31)
Toys 85.25 39 (2.42) 85.72 119 (7.58) 85.82 231 (14.83)
Baby 86.25* 40 (2.63) 84.51 125 (8.50) 85.45 238 (17.73)
Books 83.44* 64 (3.64) 82.12 240 (13.59) 82.77 458 (28.82)
IMDB 87.15* 67 (3.69) 86.02 248 (13.33) 86.55 486 (26.22)

MR 76.2 27 (1.25) 75.73 39 (2.27) 75.98 72 (4.63)
Appeal 85.75 35 (2.83) 86.05 119 (11.98) 86.35* 229 (22.76)

Magazines 93.75* 51 (2.93) 92.52 214 (11.06) 92.89 417 (22.77)
Electronics 83.25* 47 (2.55) 82.51 195 (10.14) 82.33 356 (19.77)

Sports 85.75* 44 (2.64) 84.04 172 (8.64) 84.78 328 (16.34)
Software 87.75* 54 (2.98) 86.73 245 (12.38) 86.97 459 (24.68)
Average 85.38* 47.30 (2.98) 84.01 153.48 (10.29) 84.64 282.24 (20.2)

Table 5: Results on the 16 datasets of Liu et al. (2017). Time format: train (test)

Model Accuracy Train (s) Test (s)
Manning (2011) 97.28 – –
Collobert et al. (2011) 97.29 – –
Sun (2014) 97.36 – –
Søgaard (2011) 97.50 – –
Huang et al. (2015) 97.55 – –
Ma and Hovy (2016) 97.55 – –
Yang et al. (2017) 97.55 – –
BiLSTM 97.35 254 22.50
2 stacked BiLSTM 97.41 501 43.99
3 stacked BiLSTM 97.40 746 64.96
S-LSTM 97.55 237 22.16

Table 6: Results on PTB (POS tagging)

the number of recurrent steps on the respective de-
velopment sets for sequence labelling. The POS
accuracies and NER F1-scores against the number
of recurrent steps are shown in Figure 3 (a) and
(b), respectively. For POS tagging, the best step
number is set to 7, with a development accuracy
of 97.58%. For NER, the step number is set to 9,
with a development F1-score of 94.98%.

As can be seen in Table 6, S-LSTM gives signif-
icantly better results compared with BiLSTM on
the WSJ dataset. It also gives competitive accu-
racies as compared with existing methods in the
literature. Stacking two layers of BiLSTMs leads
to improved results compared to one-layer BiL-
STM, but the accuracy does not further improve

Model F1 Train (s) Test (s)
Collobert et al. (2011) 89.59 – –
Passos et al. (2014) 90.90 – –
Luo et al. (2015) 91.20 – –
Huang et al. (2015) 90.10 – –
Lample et al. (2016) 90.94 – –
Ma and Hovy (2016) 91.21 – –
Yang et al. (2017) 91.26 – –
Rei (2017) 86.26 – –
Peters et al. (2017) 91.93 – –
BiLSTM 90.96 82 9.89
2 stacked BiLSTM 91.02 159 18.88
3 stacked BiLSTM 91.06 235 30.97
S-LSTM 91.57* 79 9.78

Table 7: Results on CoNLL03 (NER)

with three layers of stacked LSTMs.
For NER (Table 7), S-LSTM gives an F1-score

of 91.57% on the CoNLL test set, which is sig-
nificantly better compared with BiLSTMs. Stack-
ing more layers of BiLSTMs leads to slightly bet-
ter F1-scores compared with a single-layer BiL-
STM. Our BiLSTM results are comparable to the
results reported by Ma and Hovy (2016) and Lam-
ple et al. (2016), who also use bidirectional RNN-
CRF structures. In contrast, S-LSTM gives the
best reported results under the same settings.

In the second section of Table 7, Yang et al.
(2017) use cross-domain data, obtaining an F-
score of 91.26%; Rei (2017) perform multi-task

325

10 20 30 40 50 60
Length

0.70

0.75

0.80

0.85

0.90

A
cc

u
ra

cy

BiLSTM

S-LSTM

(a) Movie review

20 40 60 80 100 120
Length

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

F1

BiLSTM

S-LSTM

(b) CoNLL03

Figure 4: Accuracies against sentence length.

learning using additional language model objec-
tives, obtaining an F-score of 86.26%; Peters et al.
(2017) leverage character-level language models,
obtaining an F-score of 91.93%, which is the cur-
rent best result on the dataset. All the three mod-
els are based on BiLSTM-CRF. On the other hand,
these semi-supervised learning techniques are or-
thogonal to our work, and can potentially be used
for S-LSTM also.

4.5 Analysis

Figure 4 (a) and (b) show the accuracies against
the sentence length on the movie review and
CoNLL datasets, respectively, where test samples
are binned in batches of 80. We find that the per-
formances of both S-LSTM and BiLSTM decrease
as the sentence length increases. On the other
hand, S-LSTM demonstrates relatively better ro-
bustness compared to BiLSTMs. This confirms
our intuition that a sentence-level node can facili-
tate better non-local communication.

Figure 5 shows the training time per epoch of
S-LSTM and BiLSTM on sentences with different
lengths on the 16 classification datasets. To make

16.7 29.9 43.8 59.4 76.7 97.6 124.4161.6226.8484.3
Avg Length

0

100

200

300

400

500

600

T
im

e
 (

s)

BiLSTM

S-LSTM

Figure 5: Time against sentence length.

these comparisons, we mix all training instances,
order them by the size, and put them into 10 equal
groups, the medium sentence lengths of which are
shown. As can be seen from the figure, the speed
advantage of S-LSTM is larger when the size of
the input text increases, thanks to a fixed number
of recurrent steps.

Similar to hierarchical attention (Vaswani et al.,
2017), there is a relative disadvantage of S-LSTM
in comparison with BiLSTM, which is that the
memory consumption is relatively larger. For ex-
ample, over the movie review development set, the
actual GPU memory consumption by S-LSTM,
BiLSTM, 2-layer stacked BiLSTM and 4-layer
stacked BiLSTM are 252M, 89M, 146M and
253M, respectively. This is due to the fact that
computation is performed in parallel by S-LSTM
and hierarchical attention.

5 Conclusion

We have investigated S-LSTM, a recurrent neu-
ral network for encoding sentences, which offers
richer contextual information exchange with more
parallelism compared to BiLSTMs. Results on
a range of classification and sequence labelling
tasks show that S-LSTM outperforms BiLSTMs
using the same number of parameters, demonstrat-
ing that S-LSTM can be a useful addition to the
neural toolbox for encoding sentences.

The structural nature in S-LSTM states allows
straightforward extension to tree structures, result-
ing in highly parallelisable tree LSTMs. We leave
such investigation to future work. Next directions
also include the investigation of S-LSTM to more
NLP tasks, such as machine translation.

Acknowledge

We thank the anonymous reviewers for their con-
structive and thoughtful comments.

326

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR 2015.

Joost Bastings, Ivan Titov, Wilker Aziz, Diego
Marcheggiani, and Khalil Simaan. 2017. Graph
convolutional encoders for syntax-aware neural ma-
chine translation. In Proceedings of EMNLP 2017.
Copenhagen, Denmark, pages 1957–1967.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. JMLR 12(Aug):2493–2537.

Yann N Dauphin, Angela Fan, Michael Auli, and David
Grangier. 2017. Language modeling with gated con-
volutional networks. In ICML. pages 933–941.

Timothy Dozat and Christopher D Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In ICLR 2017.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of ACL 2015. Beijing,
China, pages 334–343.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Net-
works pages 602–610.

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In NIPS. pages
1693–1701.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991 .

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for
modelling sentences. In Proceedings of ACL 2014.
Baltimore, Maryland, pages 655–665.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of EMNLP
2014. Doha, Qatar, pages 1746–1751.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In Pro-
ceedings of the First Workshop on Neural Machine
Translation. Vancouver, pages 28–39.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep con-
volutional neural networks. In NIPS. pages 1097–
1105.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 NAACL. San Diego, Cal-
ifornia, pages 260–270.

Yann LeCun, Yoshua Bengio, et al. 1995. Convolu-
tional networks for images, speech, and time series.
The handbook of brain theory and neural networks
3361(10):1995.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and
Richard Zemel. 2016. Gated graph sequence neu-
ral networks. In ICLR 2016.

Xiaodan Liang, Xiaohui Shen, Jiashi Feng, Liang Lin,
and Shuicheng Yan. 2016. Semantic object parsing
with graph lstm. In ECCV . Springer, pages 125–
143.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2017.
Adversarial multi-task learning for text classifica-
tion. In Proceedings of ACL 2017. Vancouver,
Canada, pages 1–10.

Gang Luo, Xiaojiang Huang, Chin-Yew Lin, and Za-
iqing Nie. 2015. Joint entity recognition and disam-
biguation. In Proceedings of EMNLP 2015. pages
879–888.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional LSTM-CNNs-
CRF. In Proceedings of ACL 2016. Berlin, Ger-
many, pages 1064–1074.

Christopher D Manning. 2011. Part-of-speech tagging
from 97% to 100%: is it time for some linguistics?
In CICLing. Springer, pages 171–189.

Diego Marcheggiani and Ivan Titov. 2017. Encoding
sentences with graph convolutional networks for se-
mantic role labeling. In Proceedings of EMNLP
2017. Copenhagen, Denmark, pages 1506–1515.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of english: The penn treebank. Computa-
tional linguistics 19(2):313–330.

Kevin P Murphy, Yair Weiss, and Michael I Jordan.
1999. Loopy belief propagation for approximate in-
ference: An empirical study. In UAI. Morgan Kauf-
mann Publishers Inc., pages 467–475.

Bo Pang and Lillian Lee. 2008. Opinion mining and
sentiment analysis. Foundations and Trends R© in In-
formation Retrieval 2(1–2):1–135.

George Papandreou, Liang-Chieh Chen, Kevin Mur-
phy, and Alan L Yuille. 2015. Weakly-and semi-
supervised learning of a dcnn for semantic image
segmentation. arXiv preprint arXiv:1502.02734 .

327

Alexandre Passos, Vineet Kumar, and Andrew McCal-
lum. 2014. Lexicon infused phrase embeddings for
named entity resolution. In CoNLL. Ann Arbor,
Michigan, pages 78–86.

Nanyun Peng, Hoifung Poon, Chris Quirk, Kristina
Toutanova, and Wen-tau Yih. 2017. Cross-sentence
n-ary relation extraction with graph lstms. Transac-
tions of the Association for Computational Linguis-
tics 5:101–115.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of EMNLP 2014.
pages 1532–1543.

Matthew Peters, Waleed Ammar, Chandra Bhagavat-
ula, and Russell Power. 2017. Semi-supervised se-
quence tagging with bidirectional language models.
In Proceedings of ACL 2017. Vancouver, Canada,
pages 1756–1765.

Qiao Qian, Minlie Huang, Jinhao Lei, and Xi-
aoyan Zhu. 2016. Linguistically regularized
lstms for sentiment classification. arXiv preprint
arXiv:1611.03949 .

Lev Ratinov and Dan Roth. 2009. Design challenges
and misconceptions in named entity recognition. In
CoNLL. pages 147–155.

Marek Rei. 2017. Semi-supervised multitask learning
for sequence labeling. In Proceedings of ACL 2017.
Vancouver, Canada, pages 2121–2130.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton.
2017. Dynamic routing between capsules. In NIPS.
pages 3859–3869.

Tjong Kim Sang, Erik F, and De Meulder Fien.
2003. Introduction to the conll-2003 shared task:
Language-independent named entity recognition. In
Proceedings of HLT-NAACL 2003-Volume 4. pages
142–147.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus
Hagenbuchner, and Gabriele Monfardini. 2009. The
graph neural network model. IEEE Transactions on
Neural Networks 20(1):61–80.

Richard Socher, Brody Huval, Christopher D Manning,
and Andrew Y Ng. 2012. Semantic compositional-
ity through recursive matrix-vector spaces. In Pro-
ceedings of EMNLP 2012. pages 1201–1211.

Richard Socher, Jeffrey Pennington, Eric H Huang,
Andrew Y Ng, and Christopher D Manning. 2011.
Semi-supervised recursive autoencoders for predict-
ing sentiment distributions. In Proceedings of
EMNLP 2011. pages 151–161.

Anders Søgaard. 2011. Semisupervised condensed
nearest neighbor for part-of-speech tagging. In Pro-
ceedings of ACL 2011. pages 48–52.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. JMLR 15(1):1929–1958.

Xu Sun. 2014. Structure regularization for structured
prediction. In NIPS. pages 2402–2410.

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney.
2012. Lstm neural networks for language modeling.
In InterSpeech.

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. In Proceedings of ACL 2015. Beijing, China,
pages 1556–1566.

Ming Tan, Cicero dos Santos, Bing Xiang, and Bowen
Zhou. 2015. Lstm-based deep learning models
for non-factoid answer selection. arXiv preprint
arXiv:1511.04108 .

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS. pages 6000–6010.

Xingyou Wang, Weijie Jiang, and Zhiyong Luo. 2016.
Combination of convolutional and recurrent neural
network for sentiment analysis of short texts. In
Proceedings of COLING 2016. pages 2428–2437.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrkšić, Pei-
Hao Su, David Vandyke, and Steve Young. 2015.
Semantically conditioned lstm-based natural lan-
guage generation for spoken dialogue systems. In
Proceedings of EMNLP 2015. Lisbon, Portugal,
pages 1711–1721.

Zhilin Yang, Ruslan Salakhutdinov, and William W
Cohen. 2017. Transfer learning for sequence tag-
ging with hierarchical recurrent networks. In ICLR
2017.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchical
attention networks for document classification. In
Proceedings of NAACL 2016. pages 1480–1489.

