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Abstract

Recurrent and convolutional neural net-
works comprise two distinct families of
models that have proven to be useful
for encoding natural language utterances.
In this paper we present SoPa, a new
model that aims to bridge these two ap-
proaches. SoPa combines neural represen-
tation learning with weighted finite-state
automata (WFSAs) to learn a soft version
of traditional surface patterns. We show
that SoPa is an extension of a one-layer
CNN, and that such CNNs are equivalent
to a restricted version of SoPa, and accord-
ingly, to a restricted form of WFSA. Em-
pirically, on three text classification tasks,
SoPa is comparable or better than both
a BiLSTM (RNN) baseline and a CNN
baseline, and is particularly useful in small
data settings.

1 Introduction

Recurrent neural networks (RNNs; Elman, 1990)
and convolutional neural networks (CNNs; Le-
Cun, 1998) are two of the most useful text repre-
sentation learners in NLP (Goldberg, 2016). These
methods are generally considered to be quite dif-
ferent: the former encodes an arbitrarily long se-
quence of text, and is highly expressive (Siegel-
mann and Sontag, 1995). The latter is more local,
encoding fixed length windows, and accordingly
less expressive. In this paper, we seek to bridge the
gap between RNNs and CNNs, presenting SoPa
(for Soft Patterns), a model that lies in between
them.

SoPa is a neural version of a weighted finite-
state automaton (WFSA), with a restricted set of
transitions. Linguistically, SoPa is appealing as it
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Figure 1: A representation of a surface pattern as
a six-state automaton. Self-loops allow for repeat-
edly inserting words (e.g., “funny”). e-transitions
allow for dropping words (e.g., “a”).

is able to capture a soft notion of surface patterns
(e.g., “what a great X !”; Hearst, 1992), where
some words may be dropped, inserted, or replaced
with similar words (see Figure 1). From a model-
ing perspective, SoPa is interesting because WF-
SAs are well-studied and come with efficient and
flexible inference algorithms (Mohri, 1997; Eis-
ner, 2002) that SoPa can take advantage of.

SoPa defines a set of soft patterns of different
lengths, with each pattern represented as a WFSA
(Section 3). While the number and lengths of the
patterns are hyperparameters, the patterns them-
selves are learned end-to-end. SoPa then repre-
sents a document with a vector that is the aggre-
gate of the scores computed by matching each of
the patterns with each span in the document. Be-
cause SoPa defines a hidden state that depends on
the input token and the previous state, it can be
thought of as a simple type of RNN.

We show that SoPa is an extension of a one-
layer CNN (Section 4). Accordingly, one-layer
CNNs can be viewed as a collection of linear-
chain WFSAs, each of which can only match
fixed-length spans, while our extension allows
matches of flexible-length. As a simple type of
RNN that is more expressive than a CNN, SoPa
helps to link CNNs and RNNs.
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To test the utility of SoPa, we experiment with
three text classification tasks (Section 5). We
compare against four baselines, including both
a bidirectional LSTM and a CNN. Our model
performs on par with or better than all base-
lines on all tasks (Section 6). Moreover, when
training with smaller datasets, SoPa is particu-
larly useful, outperforming all models by sub-
stantial margins. Finally, building on the con-
nections discovered in this paper, we offer a
new, simple method to interpret SoPa (Section 7).
This method applies equally well to CNNs. We
release our code at https://github.com/
Noahs—-ARK/soft_patterns.

2 Background

Surface patterns. Patterns (Hearst, 1992) are
particularly useful tool in NLP (Lin et al., 2003;
Etzioni et al., 2005; Schwartz et al., 2015). The
most basic definition of a pattern is a sequence
of words and wildcards (e.g., “X is a Y”), which
can either be manually defined or extracted from a
corpus using cooccurrence statistics. Patterns can
then be matched against a specific text span by re-
placing wildcards with concrete words.

Davidov et al. (2010) introduced a flexible no-
tion of patterns, which supports partial matching
of the pattern with a given text by skipping some
of the words in the pattern, or introducing new
words. In their framework, when a sequence of
text partially matches a pattern, hard-coded partial
scores are assigned to the pattern match. Here, we
represent patterns as WFSAs with neural weights,
and support these partial matches in a soft manner.

WFSAs. We review weighted finite-state au-
tomata with e-transitions before we move on to our
special case in Section 3. A WFSA-¢ with d states
over a vocabulary V is formally defined as a tu-
ple F = (m,T,n), where 7 € R? is an initial
weight vector, T : (V U {e}) — R is a transi-
tion weight function, and € R? is a final weight
vector. Given a sequence of words in the vocab-
ulary = (x1,...,2,), the Forward algorithm
(Baum and Petrie, 1966) scores x with respect to
F. Without e-transitions, Forward can be written
as a series of matrix multiplications:

p/span(x) = 7TT <H T(*%)) n (1)
=1

e-transitions are followed without consuming a
word, so Equation 1 must be updated to reflect the

possibility of following any number (zero or more)
of e-transitions in between consuming each word:

Pspan(T) = WTT(e)* (H T(in)T(f)*) n (2
i=1

where * is matrix asteration: A* = Z;io AJ. In
our experiments we use a first-order approxima-
tion, A* ~ I + A, which corresponds to allow-
ing zero or one e-transition at a time. When the
FSA F is probabilistic, the result of the Forward
algorithm can be interpreted as the marginal prob-
ability of all paths through F' while consuming x
(hence the symbol “p”).

The Forward algorithm can be generalized to
any semiring (Eisner, 2002), a fact that we make
use of in our experiments and analysis.! The
vanilla version of Forward uses the sum-product
semiring: @ is addition, ® is multiplication. A
special case of Forward is the Viterbi algorithm
(Viterbi, 1967), which sets & to the max opera-
tor. Viterbi finds the highest scoring path through
F while consuming x. Both Forward and Viterbi
have runtime O(d® + d?n), requiring just a sin-
gle linear pass through the phrase. Using first-
order approximate asteration, this runtime drops
to O(d?n).?

Finally, we note that Forward scores are for ex-
act matches—the entire phrase must be consumed.
We show in Section 3.2 how phrase-level scores
can be summarized into a document-level score.

3 SoPa: A Weighted Finite-State
Automaton RNN

We introduce SoPa, a WFSA-based RNN, which
is designed to represent text as collection of sur-
face pattern occurrences. We start by showing how
a single pattern can be represented as a WESA-¢
(Section 3.1). Then we describe how to score a
complete document using a pattern (Section 3.2),
and how multiple patterns can be used to encode
a document (Section 3.3). Finally, we show that
SoPa can be seen as a simple variant of an RNN
(Section 3.4).

'The semiring parsing view (Goodman, 1999) has pro-
duced unexpected connections in the past (Eisner, 2016). We
experiment with max-product and max-sum semirings, but
note that our model could be easily updated to use any semir-
ing.

’In our case, we also use a sparse transition matrix (Sec-
tion 3.1), which further reduces our runtime to O(dn).
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3.1 Patterns as WFSAs

We describe how a pattern can be represented as a
WESA-€. We first assume a single pattern. A pat-
tern is a WFSA-¢, but we impose hard constraints
on its shape, and its transition weights are given
by differentiable functions that have the power to
capture concrete words, wildcards, and everything
in between. Our model is designed to behave sim-
ilarly to flexible hard patterns (see Section 2), but
to be learnable directly and “end-to-end” through
backpropagation. Importantly, it will still be inter-
pretable as simple, almost linear-chain, WFSA-e¢.

Each pattern has a sequence of d states (in our
experiments we use patterns of varying lengths be-
tween 2 and 7). Each state ¢ has exactly three pos-
sible outgoing transitions: a self-loop, which al-
lows the pattern to consume a word without mov-
ing states, a main path transition to state ¢ + 1
which allows the pattern to consume one token
and move forward one state, and an e-transition
to state ¢ + 1, which allows the pattern to move
forward one state without consuming a token. All
other transitions are given score 0. When process-
ing a sequence of text with a pattern p, we start
with a special START state, and only move for-
ward (or stay put), until we reach the special END
state.> A pattern with d states will tend to match
token spans of length d — 1 (but possibly shorter
spans due to e-transitions, or longer spans due to
self-loops). See Figure 1 for an illustration.

Our transition function, T, is a parameterized
function that returns a d x d matrix. For a word x:

E(u; - v; + a;),
E(Wz “ Ve + b,),
0

ifj=i+1

otherwise,

[T(x)]” =
)

(3)
where u; and w; are vectors of parameters, a; and
b; are scalar parameters, v, is a fixed pre-trained
word vector for z,* and F is an encoding function,
typically the identity function or sigmoid. e-tran-
sitions are also parameterized, but don’t consume
a token and depend only on the current state:

E(Ci)7
0,

ifj=i+1

otherwise,

[T(E)]m‘ = (4)

where ¢; is a scalar parameter.’ As we have only

3To ensure that we start in the START state and end in the
END state, we fix 7 = [1,0,...,0]and n = [0,...,0,1].

“We use GloVe 300d 840B (Pennington et al., 2014).

5Adding e-transitions to WESAs does not increase their

if 7 =1 (self-loop)

297

three non-zero diagonals in total, the matrix multi-
plications in Equation 2 can be implemented using
vector operations, and the overall runtimes of For-
ward and Viterbi are reduced to O(dn).°

Words vs. wildcards. Traditional hard patterns
distinguish between words and wildcards. Our
model does not explicitly capture the notion of ei-
ther, but the transition weight function can be in-
terpreted in those terms. Each transition is a logis-
tic regression over the next word vector v,. For
example, for a main path out of state ¢, T has two
parameters, w; and b;. If w; has large magnitude
and is close to the word vector for some word y
(e.g., w; = 100v,), and b; is a large negative bias
(e.g., b; =~ —100), then the transition is essentially
matching the specific word y. Whereas if w; has
small magnitude (w; =~ 0) and b; is a large pos-
itive bias (e.g., b; =~ 100), then the transition is
ignoring the current token and matching a wild-
card.” The transition could also be something in
between, for instance by focusing on specific di-
mensions of a word’s meaning encoded in the vec-
tor, such as POS or semantic features like animacy
or concreteness (Rubinstein et al., 2015; Tsvetkov
et al., 2015).

3.2 Scoring Documents

So far we described how to calculate how well a
pattern matches a token span exactly (consuming
the whole span). To score a complete document,
we prefer a score that aggregates over all matches
on subspans of the document (similar to “search”
instead of “match” in regular expression parlance).
We still assume a single pattern.

Either the Forward algorithm can be used to cal-
culate the expected count of the pattern in the doc-
ument, » <i<j<n Pspan (24:5), or Viterbi to calcu-
late Sgoc (:L’) = IMax]<i<<n Sspan(l'i:j)’ the score
of the highest-scoring match. In short documents,
we expect patterns to typically occur at most once,
o in our experiments we choose the Viterbi algo-
rithm, i.e., the max-product semiring.

Implementation details. We give the specific
recurrences we use to score documents in a single

expressive power, and in fact slightly complicates the For-
ward equations. We use them as they require fewer parame-
ters, and make the modeling connection between (hard) flex-
ible patterns and our (soft) patterns more direct and intuitive.
5Qur implementation is optimized to run on GPUs, so the
observed runtime is even sublinear in d.
7 A large bias increases the eagerness to match any word.



pass with this model. We define:

[maxmul(A, B)]; ; = max A; 1By ;.

&)

We also define the following for taking zero or one
e-transitions:

eps (h) = maxmul (h, max(I, T(¢))) (6)

where max is element-wise max. We maintain a
row vector h; at each token:®

hy =eps(n'), (7a)
h;+1 = max (eps(maxmul (hy, T(z;41))), hy),
(7b)

and then extract and aggregate END state values:
s =maxmul (hy, n), (8a)
(8b)

Sdoc = MAax Si.
¢ T 1<i<n

[h;]; represents the score of the best path through
the pattern that ends in state ¢ after consuming ¢
tokens. By including hgy in Equation 7b, we are
accounting for spans that start at time ¢ + 1. s;
is the maximum of the exact match scores for all
spans ending at token ¢. And 54 iS the maximum
score of any subspan in the document.

3.3 Aggregating Multiple Patterns

We describe how k patterns are aggregated to
score a document. These k patterns give k dif-
ferent sqo. scores for the document, which are
stacked into a vector z € R* and constitute the
final document representation of SoPa. This vec-
tor representation can be viewed as a feature vec-
tor. In this paper, we feed it into a multilayer per-
ceptron (MLP), culminating in a softmax to give a
probability distribution over document labels. We
minimize cross-entropy, allowing the SoPa and
MLP parameters to be learned end-to-end.

SoPa uses a total of (2¢ + 3)dk parameters,
where e is the word embedding dimension, d is the
number of states and k is the number of patterns.
For comparison, an LSTM with a hidden dimen-
sion of h has 4((e + 1)h + h?). In Section 6 we
show that SoPa consistently uses fewer parameters
than a BILSTM baseline to achieve its best result.

8Here a row vector h of size n can also be viewed as a
1 X n matrix.
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3.4 SoPaas an RNN

SoPa can be considered an RNN. As shown in Sec-
tion 3.2, a single pattern with d states has a hidden
state vector of size d. Stacking the k hidden state
vectors of k patterns into one vector of size k X d
can be thought of as the hidden state of our model.
This hidden state is, like in any other RNN, depen-
dent of the input and the previous state. Using self-
loops, the hidden state at time point ¢ can in theory
depend on the entire history of tokens up to x; (see
Figure 2 for illustration). We do want to discour-
age the model from following too many self-loops,
only doing so if it results in a better fit with the
remainder of the pattern. To do this we use the
sigmoid function as our encoding function E (see
Equation 3), which means that all transitions have
scores strictly less than 1. This works to keep pat-
tern matches close to their intended length. Using
other encoders, such as the identity function, can
result in different dynamics, potentially encourag-
ing rather than discouraging self-loops.

Although even single-layer RNNs are Turing
complete (Siegelmann and Sontag, 1995), SoPa’s
expressive power depends on the semiring. When
a WFSA is thought of as a function from finite
sequences of tokens to semiring values, it is re-
stricted to the class of functions known as rational
series (Schiitzenberger, 1961; Droste and Gastin,
1999; Sakarovitch, 2009).” It is unclear how lim-
iting this theoretical restriction is in practice, es-
pecially when SoPa is used as a component in a
larger network. We defer the investigation of the
exact computational properties of SoPa to future
work. In the next section, we show that SoPa is
an extension of a one-layer CNN, and hence more
expressive.

4 SoPa as a CNN Extension

A convolutional neural network (CNN; LeCun,
1998) moves a fixed-size sliding window over the
document, producing a vector representation for
each window. These representations are then of-
ten summed, averaged, or max-pooled to produce
a document-level representation (Kim, 2014; Yin
and Schiitze, 2015). In this section, we show
that SoPa is an extension of one-layer, max-pooled
CNN:ss.

To recover a CNN from a soft pattern with d + 1
states, we first remove self-loops and e-transitions,

Rational series generalize recognizers of regular lan-
guages, which are the special case of the Boolean semiring.



Fielding’s funniest and most

likeable book

max-pooled
END states

pattern] states

pattern2 states

word vectors

in

Figure 2: State activations of two patterns as they score a document. patternl (length three) matches
on “in years”. pattern2 (length five) matches on “funniest and most likeable book”, using a self-loop to
consume the token “most”. Active states in the best match are marked with arrow cursors.

retaining only the main path transitions. We also
use the identity function as our encoder ' (Equa-
tion 3), and use the max-sum semiring. With only
main path transitions, the network will not match
any span that is not exactly d tokens long. Using
max-sum, spans of length d will be assigned the
score:

d—1
Sspan(wi:i—i-d) = g Wj Vg, + bj; (%a)
Jj=0
d—1
=W - Vmi:i+d + E b]a (9b)
=0
T. T T
where wo.q = [Wg;..5Wa 1], Vi,
T. .oT T :
[Vaii+--3Va,, ] - Rearranged this way, we rec-

ognize the span score as an affine transformation
of the concatenated word vectors v, .. If we
use k patterns, then together their span scores cor-
respond to a linear filter with window size d and
output dimension k.'0 A single pattern’s score for
a document is:

(10)

max

Sspan\Li:i+d)-
1<i<n—d+1 span(%ici )

Sdoc (:1:) =
The max in Equation 10 is calculated for each
pattern independently, corresponding exactly to
element-wise max-pooling of the CNN’s output
layer.
Based on the equivalence between this impov-
erished version of SoPa and CNNs, we conclude
that one-layer CNNs are learning an even more

19This variant of SoPa has d bias parameters, which cor-
respond to only a single bias parameter in a CNN. The re-
dundant biases may affect optimization but are an otherwise
unimportant difference.
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restricted class of WFSAs (linear-chain WFSAs)
that capture only fixed-length patterns.

One notable difference between SoPa and arbi-
trary CNNs is that in general CNNs can use any
filter (like an MLP over v, .. ,, for example). In
contrast, in order to efficiently pool over flexible-
length spans, SoPa is restricted to operations that
follow the semiring laws.!!

As a model that is more flexible than a one-layer
CNN, but (arguably) less expressive than many
RNNs, SoPa lies somewhere on the continuum be-
tween these two approaches. Continuing to study
the bridge between CNNs and RNNs is an exciting
direction for future research.

S Experiments

To evaluate SoPa, we apply it to text classification
tasks. Below we describe our datasets and base-
lines. More details can be found in Appendix A.

Datasets. We experiment with three binary clas-
sification datasets.

e SST. The Stanford Sentiment Treebank (Socher
et al., 2013)'? contains roughly 10K movie re-
views from Rotten Tomatoes,!? labeled on a
scale of 1-5. We consider the binary task, which
considers 1 and 2 as negative, and 4 and 5 as
positive (ignoring 3s). It is worth noting that this
dataset also contains syntactic phrase level an-
notations, providing a sentiment label to parts of

""The max-sum semiring corresponds to a linear filter with
max-pooling. Other semirings could potentially model more
interesting interactions, but we leave this to future work.

12https ://nlp.stanford.edu/sentiment/
index.html

Bhttp://www.rottentomatoes.com



sentences. In order to experiment in a realistic
setup, we only consider the complete sentences,
and ignore syntactic annotations at train or test
time. The number of training/development/test
sentences in the dataset is 6,920/872/1,821.

e Amazon. The Amazon Review Corpus
(McAuley and Leskovec, 2013)" contains elec-
tronics product reviews, a subset of a larger re-
view dataset. Each document in the dataset con-
tains a review and a summary. Following Yo-
gatama et al. (2015), we only use the reviews
part, focusing on positive and negative reviews.
The number of training/development/test sam-
ples is 20K/5K/25K.

e ROC. The ROC story cloze task (Mostafazadeh
etal., 2016) is a story understanding task.'> The
task is composed of four-sentence story pre-
fixes, followed by two competing endings: one
that makes the joint five-sentence story coher-
ent, and another that makes it incoherent. Fol-
lowing Schwartz et al. (2017), we treat it as a
style detection task: we treat all “right” endings
as positive samples and all “wrong” ones as neg-
ative, and we ignore the story prefix. We split
the development set into train and development
(of sizes 3,366 and 374 sentences, respectively),
and take the test set as-is (3,742 sentences).

Reduced training data. In order to test our
model’s ability to learn from small datasets, we
also randomly sample 100, 500, 1,000 and 2,500
SST training instances and 100, 500, 1,000, 2,500,
5,000, and 10,000 Amazon training instances. De-
velopment and test sets remain the same.

Baselines. We compare to four baselines: a Bil-
STM, a one-layer CNN, DAN (a simple alterna-
tive to RNN5s) and a feature-based classifier trained
with hard-pattern features.

e BiLSTM. Bidirectional LSTMs have been suc-
cessfully used in the past for text classification
tasks (Zhou et al., 2016). We learn a one-layer
BiLSTM representation of the document, and
feed the average of all hidden states to an MLP.

e CNN. CNNs are particularly useful for text
classification (Kim, 2014). We train a one-layer
CNN with max-pooling, and feed the resulting
representation to an MLP.

14http ://riejohnson.com/cnn_data.html
lshttp ://cs.rochester.edu/nlp/
rocstories/

e DAN. We learn a deep averaging network with
word dropout (Iyyer et al., 2015), a simple but
strong text-classification baseline.

e Hard. We train a logistic regression classifier
with hard-pattern features. Following Tsur et al.
(2010), we replace low frequency words with a
special wildcard symbol. We learn sequences of
1-6 concrete words, where any number of wild-
cards can come between two adjacent words.
We consider words occurring with frequency of
at least 0.01% of our training set as concrete
words, and words occurring in frequency 1% or
less as wildcards.'®

Number of patterns. SoPa requires specifying
the number of patterns to be learned, and their
lengths. Preliminary experiments showed that the
model doesn’t benefit from more than a few dozen
patterns. We experiment with several configu-
rations of patterns of different lengths, generally
considering 0, 10 or 20 patterns of each pattern
length between 2—7. The total number of patterns
learned ranges between 30-70.!

6 Results

Table 1 shows our main experimental results. In
two of the cases (SST and ROC), SoPa outper-
forms all models. On Amazon, SoPa performs
within 0.3 points of CNN and BiLSTM, and out-
performs the other two baselines. The table also
shows the number of parameters used by each
model for each task. Given enough data, mod-
els with more parameters should be expected to
perform better. However, SoPa performs better or
roughly the same as a BiLSTM, which has 3-6
times as many parameters.

Figure 3 shows a comparison of all models on
the SST and Amazon datasets with varying train-
ing set sizes. SoPa is substantially outperform-
ing all baselines, in particular BILSTM, on small
datasets (100 samples). This suggests that SoPa is
better fit to learn from small datasets.

Ablation analysis. Table 1 also shows an abla-
tion of the differences between SoPa and CNN:
max-product semiring with sigmoid vs. max-sum
semiring with identity, self-loops, and e-transi-
tions. The last line is equivalent to a CNN with

'6Some words may serve as both words and wildcards. See
Davidov and Rappoport (2008) for discussion.

'"The number of patterns and their length are hyperparam-
eters tuned on the development data (see Appendix A).
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Model ROC SST Amazon
Hard 62.2 (4K) 75.5 (6K) 88.5 (67K)
DAN 64.3 (91K) 83.1 (91K) 85.4 (91K)
BiLSTM 65.2 (844K) 84.8 (1.5M) 90.8 (844K)
CNN 64.3 (155K) 82.2 (62K) 90.2 (305K)
SoPa 66.5 (255K) 85.6 (255K) 90.5 (256K)
SoPa,,, 64.4 84.8 90.0
SoPa,,, \{sl} 632 84.6 89.8
SoPa,,,, \{¢} 643 83.6 89.7
SoPa,,s, \{sl, e} 64.0 85.0 89.5

Table 1:  Test classification accuracy (and the
number of parameters used). The bottom part
shows our ablation results: SoPa: our full model.
SoPay, s, : running with max-sum semiring (rather
than max-product), with the identity function as
our encoder E (see Equation 3). sl: self-loops,
e: € transitions. The final row is equivalent to a
one-layer CNN.

2 90 |-

<

-

=R 4

3 85

<

g 80 E|
E 70 b —e—SoPa (ours)
& 75 -=-DAN

Z —e— Hard

2 ol T ——BiLSTM
o —CNN

L L L L L T
100 1,000 10,000 100 1,000 10,000

Num. Training Samples (SST) Num. Training Samples (Amaz

Figure 3: Test accuracy on SST and Amazon with
varying number of training instances.

multiple window sizes. Interestingly, the most no-
table difference between SoPa and CNN is the
semiring and encoder function, while e transitions
and self-loops have little effect on performance.'®

7 Interpretability

We turn to another key aspect of SoPa—its inter-
pretability. We start by demonstrating how we in-
terpret a single pattern, and then describe how to
interpret the decisions made by downstream clas-
sifiers that rely on SoPa—in this case, a sentence
classifier. Importantly, these visualization tech-
niques are equally applicable to CNNs.

Interpreting a single pattern. In order to visu-
alize a pattern, we compute the pattern matching
scores with each phrase in our training dataset, and
select the k phrases with the highest scores. Ta-
ble 2 shows examples of six patterns learned us-
ing the best SoPa model on the SST dataset, as

'8 Although SoPa does make use of them—see Section 7.

on)
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‘ Highest Scoring Phrases

thoughtful reverent portrait of
and astonishingly articulate cast of
Patt. 1 |entertaining thought-provoking film with
gentle mesmerizing portrait of
poignant and uplifting story in
’s € uninspired story
this € bad on purpose
Patt. 2 | this € leaden comedy
a € half-assed film
is € clumsy ,s. the writing
mesmerizing portrait of a
engrossing  portrait of a
Patt. 3 |clear-eyed  portrait of an
fascinating  portrait of a
self-assured  portrait of small
honest s and enjoyable
soulful , scathings;  and joyous
Patt. 4 |unpretentious , charmingg; , quirky
forceful and beautifully
energetic and surprisingly
is deadly dull
a numbingly  dull
Patt. 5|is remarkably  dull
is a phlegmatic
an utterly incompetent
five minutes
four minutes
Patt. 6 |final minutes
first half-hour
fifteen minutes

Table 2: Six patterns of different lengths learned
by SoPa on SST. Each group represents a single
pattern p, and shows the five phrases in the training
data that have the highest score for p. Columns
represent pattern states. Words marked with g; are
self-loops. € symbols indicate e-transitions. All
other words are from main path transitions.

represented by their five highest scoring phrases
in the training set. A few interesting trends can
be observed from these examples. First, it seems
our patterns encode semantically coherent expres-
sions. A large portion of them correspond to senti-
ment (the five top examples in the table), but others
capture different semantics, e.g., time expressions.

Second, it seems our patterns are relatively soft,
and allow lexical flexibility. While some patterns
do seem to fix specific words, e.g., “of” in the first
example or “minutes” in the last one, even in those
cases some of the top matching spans replace these
words with other, similar words (“with” and “half-
hour”, respectively). Encouraging SoPa to have
more concrete words, e.g., by jointly learning the
word vectors, might make SoPa useful in other
contexts, particularly as a decoder. We defer this
direction to future work.

Finally, SoPa makes limited but non-negligible
use of self-loops and epsilon steps. Interestingly,
the second example shows that one of the pat-



Analyzed Documents

but more importantly ,

though moonlight mile is replete with acclaimed actors and
actresses and tackles a subject that ’s potentially moving ,
the movie is and

level of high drama

While its careful pace and seemingly may not
satisfy every moviegoer ’s appetite, the film ’s final scene is
soaringly , transparently moving

unlike the speedy wham-bam effect
, character development — and more importantly,
character empathy — is at the heart of italian for beginners .

the band ’s courage in the face of official repression is in-
spiring , especially for aging ( this one included ) .

Table 3: Documents from the SST training data.
Phrases with the largest contribution toward a pos-
itive sentiment classification are in bold green,
and the most negative phrases are in

terns had an e-transition at the same place in every
phrase. This demonstrates a different function of
e-transitions than originally designed—they allow
a pattern to effectively shorten itself, by learning a
high e-transition parameter for a certain state.

Interpreting a document. SoPa provides an in-
terpretable representation of a document—a vec-
tor of the maximal matching score of each pat-
tern with any span in the document. To visual-
ize the decisions of our model for a given docu-
ment, we can observe the patterns and correspond-
ing phrases that score highly within it.

To understand which of the k& patterns con-
tributes most to the classification decision, we ap-
ply a leave-one-out method. We run the forward
method of the MLP layer in SoPa k times, each
time zeroing-out the score of a different pattern
p. The difference between the resulting score and
the original model score is considered p’s contri-
bution. We then consider the highest contributing
patterns, and attach each one with its highest scor-
ing phrase in that document. Table 3 shows exam-
ple texts along with their most positive and nega-
tive contributing phrases.

8 Related Work

Weighted finite-state automata. WFSAs and
hidden Markov models!® were once popular in au-
tomatic speech recognition (Hetherington, 2004;
Moore et al., 2006; Hoffmeister et al., 2012)

YHMMs are a special case of WFSAs (Mohri et al., 2002).

and remain popular in morphology (Dreyer, 2011;
Cotterell et al., 2015). Most closely related to this
work, neural networks have been combined with
weighted finite-state transducers to do morpholog-
ical reinflection (Rastogi et al., 2016). These prior
works learn a single FSA or FST, whereas our
model learns a collection of simple but comple-
mentary FSAs, together encoding a sequence. We
are the first to incorporate neural networks both
before WESAs (in their transition scoring func-
tions), and after (in the function that turns their
vector of scores into a final prediction), to produce
an expressive model that remains interpretable.

Recurrent neural networks. The ability of
RNNSs to represent arbitrarily long sequences of
embedded tokens has made them attractive to
NLP researchers. The most notable variants,
the long short-term memory (LSTM; Hochreiter
and Schmidhuber, 1997) and gated recurrent units
(GRU; Cho et al., 2014), have become ubiqui-
tous in NLP algorithms (Goldberg, 2016). Re-
cently, several works introduced simpler versions
of RNNS, such as recurrent additive networks (Lee
et al.,, 2017) and Quasi-RNNs (Bradbury et al.,
2017). Like SoPa, these models can be seen as
points along the bridge between RNNs and CNNs.

Other works have studied the expressive power
of RNNS, in particular in the context of WFSAs
or HMMs (Cleeremans et al., 1989; Giles et al.,
1992; Visser et al., 2001; Chen et al., 2018). In
this work we relate CNNs to WFSAs, showing that
a one-layer CNN with max-pooling can be simu-
lated by a collection of linear-chain WFSAs.

Convolutional neural networks. CNNs are
prominent feature extractors in NLP, both for gen-
erating character-based embeddings (Kim et al.,
2016), and as sentence encoders for tasks like
text classification (Yin and Schiitze, 2015) and
machine translation (Gehring et al., 2017). Sim-
ilarly to SoPa, several recently introduced vari-
ants of CNNs support varying window sizes by ei-
ther allowing several fixed window sizes (Yin and
Schiitze, 2015) or by supporting non-consecutive
n-gram matching (Lei et al., 2015; Nguyen and
Grishman, 2016).

Neural networks and patterns. Some works
used patterns as part of a neural network.
Schwartz et al. (2016) used pattern contexts for
estimating word embeddings, showing improved
word similarity results compared to bag-of-word
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contexts. Shwartz et al. (2016) designed an
LSTM representation for dependency patterns, us-
ing them to detect hypernymy relations. Here, we
learn patterns as a neural version of WFSAs.

Interpretability. There have been several ef-
forts to interpret neural models. The weights of the
attention mechanism (Bahdanau et al., 2015) are
often used to display the words that are most sig-
nificant for making a prediction. LIME (Ribeiro
et al., 2016) is another approach for visualizing
neural models (not necessarily textual). Yogatama
and Smith (2014) introduced structured sparsity,
which encodes linguistic information into the reg-
ularization of a model, thus allowing to visualize
the contribution of different bag-of-word features.

Other works jointly learned to encode text and
extract the span which best explains the model’s
prediction (Yessenalina et al., 2010; Lei et al.,
2016). Liet al. (2016) and Kéadéar et al. (2017) sug-
gested a method that erases pieces of the text in or-
der to analyze their effect on a neural model’s de-
cisions. Finally, several works presented methods
to visualize deep CNNs (Zeiler and Fergus, 2014;
Simonyan et al., 2014; Yosinski et al., 2015), fo-
cusing on visualizing the different layers of the
network, mainly in the context of image and video
understanding. We believe these two types of
research approaches are complementary: invent-
ing general purpose visualization tools for exist-
ing black-box models on the one hand, and on the
other, designing models like SoPa that are inter-
pretable by construction.

9 Conclusion

We introduced SoPa, a novel model that combines
neural representation learning with WFSAs. We
showed that SoPa is an extension of a one-layer
CNN. It naturally models flexible-length spans
with insertion and deletion, and it can be easily
customized by swapping in different semirings.
SoPa performs on par with or strictly better than
four baselines on three text classification tasks,
while requiring fewer parameters than the stronger
baselines. On smaller training sets, SoPa outper-
forms all four baselines. As a simple version of
an RNN, which is more expressive than one-layer
CNNs, we hope that SoPa will encourage future
research on the bridge between these two mecha-
nisms. To facilitate such research, we release our
implementation at https://github.com/
Noahs—-ARK/soft_patterns.
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