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Abstract

Semantic relations are often signaled with
prepositional or possessive marking—but
extreme polysemy bedevils their analysis
and automatic interpretation. We introduce
a new annotation scheme, corpus, and task
for the disambiguation of prepositions and
possessives in English. Unlike previous
approaches, our annotations are compre-
hensive with respect to types and tokens
of these markers; use broadly applicable
supersense classes rather than fine-grained
dictionary definitions; unite prepositions
and possessives under the same class inven-
tory; and distinguish between a marker’s
lexical contribution and the role it marks in
the context of a predicate or scene. Strong
interannotator agreement rates, as well as
encouraging disambiguation results with
established supervised methods, speak to
the viability of the scheme and task.

1 Introduction
Grammar, as per a common metaphor, gives speak-
ers of a language a shared toolbox to construct and
deconstruct meaningful and fluent utterances. Be-
ing highly analytic, English relies heavily on word
order and closed-class function words like prepo-
sitions, determiners, and conjunctions. Though
function words bear little semantic content, they
are nevertheless crucial to the meaning. Consider
prepositions: they serve, for example, to convey
place and time (We met at/in/outside the restaurant
for/after an hour), to express configurational rela-
tionships like quantity, possession, part/whole, and
membership (the coats of dozens of children in the
class), and to indicate semantic roles in argument
structure (Grandma cooked dinner for the children
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(1) I was booked for/DURATION 2 nights at/LOCUS this
hotel in/TIME Oct 2007 .

(2) I went to/GOAL ohm after/EXPLANATION;TIME
reading some of/QUANTITY;WHOLE the reviews .

(3) It was very upsetting to see this kind of/SPECIES
behavior especially in_front_of/LOCUS
my/SOCIALREL;GESTALT four year_old .

Figure 1: Annotated sentences from our corpus.

vs. Grandma cooked the children for dinner). Fre-
quent prepositions like for are maddeningly poly-
semous, their interpretation depending especially
on the object of the preposition—I rode the bus
for 5 dollars/minutes—and the governor of the
prepositional phrase (PP): I Ubered/asked for $5.
Possessives are similarly ambiguous: Whistler’s

mother/painting/hat/death. Semantic interpretation
requires some form of sense disambiguation, but
arriving at a linguistic representation that is flexible
enough to generalize across usages and types, yet
simple enough to support reliable annotation, has
been a daunting challenge (§2).

This work represents a new attempt to strike that
balance. Building on prior work, we argue for an
approach to describing English preposition and pos-
sessive semantics with broad coverage. Given the
semantic overlap between prepositions and posses-
sives (the hood of the car vs. the car’s hood or its

hood), we analyze them using the same inventory
of semantic labels.1 Our contributions include:

• a new hierarchical inventory (“SNACS”)
of 50 supersense classes, extensively docu-
mented in guidelines for English (§3);

• a gold-standard corpus with comprehensive
annotations: all types and tokens of preposi-
tions and possessives are disambiguated (§4;
example sentences appear in figure 1);

• an interannotator agreement study that

1Some uses of certain other closed-class markers—
intransitive particles, subordinators, infinitive to—are also
included (§3.1).
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shows the scheme is reliable and generalizes
across genres—and for the first time demon-
strating empirically that the lexical semantics
of a preposition can sometimes be detached
from the PP’s semantic role (§5);

• disambiguation experiments with two super-
vised classification architectures to establish
the difficulty of the task (§6).

2 Background: Disambiguation of
Prepositions and Possessives

Studies of preposition semantics in linguistics
and cognitive science have generally focused on
the domains of space and time (e.g., Herskovits,
1986; Bowerman and Choi, 2001; Regier, 1996;
Khetarpal et al., 2009; Xu and Kemp, 2010; Zwarts
and Winter, 2000) or on motivated polysemy struc-
tures that cover additional meanings beyond core
spatial senses (Brugman, 1981; Lakoff, 1987; Tyler
and Evans, 2003; Lindstromberg, 2010). Posses-
sive constructions can likewise denote a number of
semantic relations, and various factors—including
semantics—influence whether attributive posses-
sion in English will be expressed with of, or with ’s

and possessive pronouns (the ‘genitive alternation’;
Taylor, 1996; Nikiforidou, 1991; Rosenbach, 2002;
Heine, 2006; Wolk et al., 2013; Shih et al., 2015).

Corpus-based computational work on semantic
disambiguation specifically of prepositions and
possessives2 falls into two categories: the lexi-
cographic/word sense disambiguation approach
(Litkowski and Hargraves, 2005, 2007; Litkowski,
2014; Ye and Baldwin, 2007; Saint-Dizier, 2006;
Dahlmeier et al., 2009; Tratz and Hovy, 2009;
Hovy et al., 2010, 2011; Tratz and Hovy, 2013),
and the semantic class approach (Moldovan et al.,
2004; Badulescu and Moldovan, 2009; O’Hara
and Wiebe, 2009; Srikumar and Roth, 2011, 2013;
Schneider et al., 2015, 2016; Hwang et al., 2017,
see also Müller et al., 2012 for German). The
lexicographic approach can capture finer-grained
meaning distinctions, at a risk of relying upon id-
iosyncratic and potentially incomplete dictionary
definitions. The semantic class approach, which we
follow here, focuses on commonalities in meaning
across multiple lexical items, and aims to general-

2Of course, meanings marked by prepositions/possessives
are to some extent captured in predicate-argument or graph-
based meaning representations (e.g., Palmer et al., 2005; Fill-
more and Baker, 2009; Oepen et al., 2016; Banarescu et al.,
2013) and domain-centric representations like TimeML and
ISO-Space (Pustejovsky et al., 2003, 2012).

ize more easily to new types and usages.
The most recent class-based approach to preposi-

tions was our initial framework of 75 preposition
supersenses arranged in a multiple inheritance tax-
onomy (Schneider et al., 2015, 2016). It was based
largely on relation/role inventories of Srikumar
and Roth (2013) and VerbNet (Bonial et al., 2011;
Palmer et al., 2017). The framework was realized in
version 3.0 of our comprehensively annotated cor-
pus, STREUSLE3 (Schneider et al., 2016). How-
ever, several limitations of our approach became
clear to us over time.

First, as pointed out by Hwang et al. (2017), the
one-label-per-token assumption in STREUSLE is
flawed because it in some cases puts into conflict
the semantic role of the PP with respect to a pred-
icate, and the lexical semantics of the preposition
itself. Hwang et al. (2017) suggested a solution,
discussed in §3.3, but did not conduct an annotation
study or release a corpus to establish its feasibility
empirically. We address that gap here.

Second, 75 categories is an unwieldy number
for both annotators and disambiguation systems.
Some are quite specialized and extremely rare in
STREUSLE 3.0, which causes data sparseness is-
sues for supervised learning. In fact, the only pub-
lished disambiguation system for preposition super-
senses collapsed the distinctions to just 12 labels
(Gonen and Goldberg, 2016). Hwang et al. (2017)
remarked that solving the aforementioned problem
could remove the need for many of the specialized
categories and make the taxonomy more tractable
for annotators and systems. We substantiate this
here, defining a new hierarchy with just 50 cate-
gories (SNACS, §3) and providing disambiguation
results for the full set of distinctions.

Finally, given the semantic overlap of posses-
sive case and the preposition of, we saw an op-
portunity to broaden the application of the scheme
to include possessives. Our reannotated corpus,
STREUSLE 4.0, thus has supersense annotations
for over 1000 possessive tokens that were not se-
mantically annotated in version 3.0. We include
these in our annotation and disambiguation experi-
ments alongside reannotated preposition tokens.

3 Annotation Scheme

3.1 Lexical Categories of Interest
Apart from canonical prepositions and possessives,
there are many lexically and semantically overlap-

3https://github.com/nert-gu/streusle/
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ping closed-class items which are sometimes clas-
sified as other parts of speech, such as adverbs, par-
ticles, and subordinating conjunctions. The Cam-
bridge Grammar of the English Language (Huddle-
ston and Pullum, 2002) argues for an expansive
definition of ‘preposition’ that would encompass
these other categories. As a practical measure, we
decided to encourage annotators to focus on the se-
mantics of these functional items rather than their
syntax, so we take an inclusive stance.

Another consideration is developing annotation
guidelines that can be adapted for other languages.
This includes languages which have postpositions,
circumpositions, or inpositions rather than prepo-
sitions; the general term for such items is
adpositions.4 English possessive marking (via ’s or
possessive pronouns like my) is more generally an
example of case marking. Note that prepositions
(4a–4c) differ in word order from possessives (4d),
though semantically the object of the preposition
and the possessive nominal pattern together:

(4) a. eat in a restaurant
b. the man in a blue shirt
c. the wife of the ambassador
d. the ambassador’s wife

Cross-linguistically, adpositions and case mark-
ing are closely related, and in general both gram-
matical strategies can express similar kinds of se-
mantic relations. This motivates a common seman-
tic inventory for adpositions and case.

We also cover multiword prepositions (e.g.,
out_of, in_front_of), intransitive particles (He flew
away), purpose infinitive clauses (Open the door
to let in some air5), prepositions with clausal com-
plements (It rained before the party started), and
idiomatic prepositional phrases (at_large). Our an-
notation guidelines give further details.

3.2 The SNACS Hierarchy
The hierarchy of preposition and possessive super-
senses, which we call Semantic Network of Adpo-
sition and Case Supersenses (SNACS), is shown
in figure 2. It is simpler than its predecessor—
Schneider et al.’s (2016) preposition supersense
hierarchy—in both size and structural complexity.

4In English, ago is arguably a postposition because it fol-
lows rather than precedes its complement: five minutes ago,
not *ago five minutes.

5
To can be rephrased as in_order_to and have prepositional

counterparts like in Open the door for some air.

Circumstance 77

Temporal 0

Time 371

StartTime 28

EndTime 31

Frequency 9

Duration 91

Interval 35

Locus 846

Source 189

Goal 419

Path 49

Direction 161

Extent 42

Means 17

Manner 140

Explanation 123

Purpose 401

Participant 0

Causer 15

Agent 170

Co-Agent 65

Theme 238

Co-Theme 14

Topic 296

Stimulus 123

Experiencer 107

Originator 134

Recipient 122

Cost 48

Beneficiary 110

Instrument 30

Configuration 0

Identity 85

Species 39

Gestalt 709

Possessor 492

Whole 250

Characteristic 140

Possession 21

PartPortion 57

Stuff 25

Accompanier 49

InsteadOf 10

ComparisonRef 215

RateUnit 5

Quantity 191

Approximator 76

SocialRel 240

OrgRole 103

Figure 2: SNACS hierarchy of 50 supersenses and their token
counts in the annotated corpus described in §4. Counts are of
direct uses of labels, excluding uses of subcategories. Role
and function positions are not distinguished (so if a token has
different role and function labels, it will count toward two
supersense frequencies).

SNACS has 50 supersenses at 4 levels of depth; the
previous hierarchy had 75 supersenses at 7 levels.
The top-level categories are the same:

• CIRCUMSTANCE: Circumstantial informa-
tion, usually non-core properties of events
(e.g., location, time, means, purpose)

• PARTICIPANT: Entity playing a role in an
event

• CONFIGURATION: Thing, usually an entity or
property, involved in a static relationship to
some other entity

The 3 subtrees loosely parallel adverbial adjuncts,
event arguments, and adnominal complements,
respectively. The PARTICIPANT and CIRCUM-
STANCE subtrees primarily reflect semantic rela-
tionships prototypical to verbal arguments/adjuncts
and were inspired by VerbNet’s thematic role hi-
erarchy (Palmer et al., 2017; Bonial et al., 2011).
Many CIRCUMSTANCE subtypes, like LOCUS (the
concrete or abstract location of something), can be
governed by eventive and non-eventive nominals
as well as verbs: eat in the restaurant, a party in

the restaurant, a table in the restaurant. CONFIGU-
RATION mainly encompasses non-spatiotemporal
relations holding between entities, such as quantity,
possession, and part/whole. Unlike the previous hi-
erarchy, SNACS does not use multiple inheritance,
so there is no overlap between the 3 regions.

The supersenses can be understood as roles
in fundamental types of scenes (or schemas)
such as: LOCATION—THEME is located at LO-
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CUS; MOTION—THEME moves from SOURCE
along PATH to GOAL; TRANSITIVE ACTION—
AGENT acts on THEME, perhaps using an IN-
STRUMENT; POSSESSION—POSSESSION belongs
to POSSESSOR; TRANSFER—THEME changes pos-
session from ORIGINATOR to RECIPIENT, per-
haps with COST; PERCEPTION—EXPERIENCER
is mentally affected by STIMULUS; COGNITION—
EXPERIENCER contemplates TOPIC; COMMUNI-
CATION—information (TOPIC) flows from ORIG-
INATOR to RECIPIENT, perhaps via an INSTRU-
MENT. For AGENT, CO-AGENT, EXPERIENCER,
ORIGINATOR, RECIPIENT, BENEFICIARY, POS-
SESSOR, and SOCIALREL, the object of the prepo-
sition is prototypically animate.

Because prepositions and possessives cover a
vast swath of semantic space, limiting ourselves
to 50 categories means we need to address a
great many nonprototypical, borderline, and special
cases. We have done so in a 75-page annotation
manual with over 400 example sentences (Schnei-
der et al., 2018).

Finally, we note that the Universal Semantic
Tagset (Abzianidze and Bos, 2017) defines a cross-
linguistic inventory of semantic classes for content
and function words. SNACS takes a similar ap-
proach to prepositions and possessives, which in
Abzianidze and Bos’s (2017) specification are sim-
ply tagged REL, which does not disambiguate the
nature of the relational meaning. Our categories
can thus be understood as refinements to REL.

3.3 Adopting the Construal Analysis
Hwang et al. (2017) have pointed out the perils of
teasing apart and generalizing preposition seman-
tics so that each use has a clear supersense label.
One key challenge they identified is that the prepo-
sition itself and the situation as established by the
verb may suggest different labels. For instance:

(5) a. Vernon works at Grunnings.
b. Vernon works for Grunnings.

The semantics of the scene in (5a, 5b) is the same: it
is an employment relationship, and the PP contains
the employer. SNACS has the label ORGROLE for
this purpose.6 At the same time, at in (5a) strongly
suggests a locational relationship, which would cor-
respond to the label LOCUS; consistent with this

6ORGROLE is defined as “Either a party in a relation be-
tween an organization/institution and an individual who has a
stable affiliation with that organization, such as membership
or a business relationship.”

hypothesis, Where does Vernon work? is a perfectly
good way to ask a question that could be answered
by the PP. In this example, then, there is overlap
between locational meaning and organizational-
belonging meaning. (5b) is similar except the for

suggests a notion of BENEFICIARY: the employee
is working on behalf of the employer. Annotators
would face a conundrum if forced to pick a sin-
gle label when multiple ones appear to be relevant.
Schneider et al. (2016) handled overlap via mul-
tiple inheritance, but entertaining a new label for
every possible case of overlap is impractical, as this
would result in a proliferation of supersenses.

Instead, Hwang et al. (2017) suggest a construal
analysis in which the lexical semantic contribution,
or henceforth the function, of the preposition itself
may be distinct from the semantic role or relation
mediated by the preposition in a given sentence,
called the scene role. The notion of scene role is
a widely accepted idea that underpins the use of
semantic or thematic roles: semantics licensed by
the governor7 of the prepositional phrase dictates
its relationship to the prepositional phrase. The
innovative claim is that, in addition to a preposi-
tion’s relationship with its head, the prepositional
choice introduces another layer of meaning or con-
strual that brings additional nuance, creating the
difficulty we see in the annotation of (5a, 5b). Con-
strual is notated by ROLE;FUNCTION. Thus, (5a)
would be annotated ORGROLE;LOCUS and (5b)
as ORGROLE;BENEFICIARY to expose their com-
mon truth-semantic meaning but slightly different
portrayals owing to the different prepositions.

Another useful application of the construal an-
alysis is with the verb put, which can combine with
any locative PP to express a destination:

(6) Put it on/by/behind/on_top_of/. . . the door.
GOAL;LOCUS

I.e., the preposition signals a LOCUS, but the door
serves as the GOAL with respect to the scene. This
approach also allows for resolution of various se-

7By “governor” of the preposition or prepositional phrase,
we mean the head of the phrase to which the PP attaches in a
constituency representation. In a dependency representation,
this would be the head of the preposition itself or of the object
of the preposition depending on which convention is used for
PP headedness: e.g., the preposition heads the PP in CoNLL
and Stanford Dependencies whereas the object is the head in
Universal Dependencies. The governor is most often a verb or
noun. Where the PP is a predicate complement (e.g. Vernon
is with Grunnings), there is no governor to specify the nature
of the scene, so annotators must rely on world knowledge and
context to determine the scene.
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Train Dev Test Total
Documents 347 192 184 723
Sentences 2,723 554 535 3,812
Tokens 44,804 5,394 5,381 55,579

Annotated targets 4,522 453 480 5,455
Role = function 3,101 291 310 3,702
P or PP 3,397 341 366 4,104

Multiword unit 256 25 24 305
Infinitive to 201 26 20 247
Genitive clitic (’s) 52 6 1 59
Possessive pronoun 872 80 93 1,045

Attested SNACS labels 47 46 44 47
Unique scene roles 46 43 41 47
Unique functions 41 38 37 41
Unique pairs 167 79 87 177

Role = function 41 33 34 41

Table 1: Counts for the data splits used in our experiments.

mantic phenomena including perceptual scenes
(e.g., I care about education, where about is both
the topic of cogitation and perceptual stimulus of
caring: STIMULUS;TOPIC), and fictive motion
(Talmy, 1996), where static location is described
using motion verbiage (as in The road runs through

the forest: LOCUS;PATH).
Both role and function slots are filled by super-

senses from the SNACS hierarchy. Annotators have
the option of using distinct supersenses for the role
and function; in general it is not a requirement
(though we stipulate that certain SNACS super-
senses can only be used as the role). When the
same label captures both role and function, we do
not repeat it: Vernon lives in/LOCUS England. Fig-
ure 1 shows some real examples from our corpus.

We apply the construal analysis in SNACS an-
notation of our corpus to test its feasibility. It
has proved useful not only for prepositions, but
also possessives, where the general sense of pos-
session may overlap with other scene relations,
like creator/initial-possessor (ORIGINATOR): Da
Vinci’s/ORIGINATOR;POSSESSOR sculptures.

4 Annotated Reviews Corpus

We applied the SNACS annotation scheme (§3) to
prepositions and possessives in the STREUSLE
corpus (§2), a collection of online consumer re-
views taken from the English Web Treebank (Bies
et al., 2012). The sentences from the English Web
Treebank also comprise the primary reference tree-
bank for English Universal Dependencies (UD;
Nivre et al., 2016), and we bundle the UD ver-
sion 2 syntax alongside our annotations. Table 1
shows the total number of tokens present and those
that we annotated. Altogether, 5,455 tokens were
annotated for scene role and function.

Rank Role Function
1 LOCUS 636 LOCUS 780
2 POSSESSOR 381 GESTALT 699⋮ ⋮ ⋮

last DIRECTION 1 POSSESSION 2

Table 2: Most and least frequent role and function labels.

The new hierarchy and annotation guidelines
were developed by consensus. The original preposi-
tion supersense annotations were placed in a spread-
sheet and discussed. While most tokens were un-
ambiguously annotated, some cases required a new
analysis throughout the corpus. For example, the
functions of for were so broad that they needed to
be (manually) clustered before mapping clusters
onto hierarchy labels. Unusual or rare contexts
also presented difficulties. Where the correct super-
sense remained unclear, specific instructions and
examples were included in the guidelines. Pos-
sessives were not covered by the original preposi-
tion supersense annotations, and thus were anno-
tated from scratch.8 Special labels were applied
to tokens deemed not to be prepositions or posses-
sives evoking semantic relations, including uses
of the infinitive marker that do not fall within the
scope of SNACS (487 tokens: a majority of in-
finitives) and preposition-initial discourse expres-
sions (e.g. after_all) and coordinating conjunctions
(as_well_as).9 Other tokens requiring special la-
bels are the opaque possessive slot in a multiword
idiom (12 tokens), and tokens where unintelligble,
incomplete, marginal, or nonnative usage made it
impossible to assign a supersense (48 tokens).

Table 2 shows the most and least common labels
occurring as scene role and function. Three labels
never appear in the annotated corpus: TEMPORAL
from the CIRCUMSTANCE hierarchy, and PARTI-
CIPANT and CONFIGURATION which are both the
highest supersense in their respective hierarchies.
While all remaining supersenses are attested as
scene roles, there are some that never occur as func-
tions, such as ORIGINATOR, which is most often
realized as POSSESSOR or SOURCE, and EXPERI-
ENCER. It is interesting to note that every subtype
of CIRCUMSTANCE (except TEMPORAL) appears
as both scene role and function, whereas many of
the subtypes of the other two hierarchies are lim-

8Blodgett and Schneider (2018) detail the extension of the
scheme to possessives.

9In the corpus, lexical expression tokens appear alongside
a lexical category indicating which inventory of supersenses,
if any, applies. SNACS-annotated units are those with ADP (ad-
position), PP, PRON.POSS (possessive pronoun), etc., whereas
DISC (discourse) and CCONJ expressions do not receive any
supersense. Refer to the STREUSLE README for details.
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ited to either role or function. This reflects our
view that prepositions primarily capture circum-
stantial notions such as space and time, but have
been extended to cover other semantic relations.10

5 Interannotator Agreement Study

Because the online reviews corpus was so central
to the development of our guidelines, we sought
to estimate the reliability of the annotation scheme
on a new corpus in a new genre. We chose Saint-
Exupéry’s novella The Little Prince, which is read-
ily available in many languages and has been anno-
tated with semantic representations such as AMR
(Banarescu et al., 2013). The genre is markedly
different from online reviews—it is quite literary,
and employs archaic or poetic figures of speech. It
is also a translation from French, contributing to
the markedness of the language. This text is there-
fore a challenge for an annotation scheme based
on colloquial contemporary English. We addressed
this issue by running 3 practice rounds of anno-
tation on small passages from The Little Prince,
both to assess whether the scheme was applicable
without major guidelines changes and to prepare
the annotators for this genre. For the final anno-
tation study, we chose chapters 4 and 5, in which
242 markables of 52 types were identified heuristi-
cally (§6.2). The types of, to, in, as, from, and for,
as well as possessives, occurred at least 10 times.
Annotators had the option to mark units as false
positives using special labels (see §4) in addition
to expressing uncertainty about the unit.

For the annotation process, we adapted the
open source web-based annotation tool UCCAApp
(Abend et al., 2017) to our workflow, by extending
it with a type-sensitive ranking module for the list
of categories presented to the annotators.
Annotators. Five annotators (A, B, C, D, E), all
authors of this paper, took part in this study. All
are computational linguistics researchers with ad-
vanced training in linguistics. Their involvement in
the development of the scheme falls on a spectrum,
with annotator A being the most active figure in
guidelines development, and annotator E not being

10All told, 41 supersenses are attested as both role and
function for the same token, and there are 136 unique construal
combinations where the role differs from the function. Only
four supersenses are never found in such a divergent construal:
EXPLANATION, SPECIES, STARTTIME, RATEUNIT. Except
for RATEUNIT which occurs only 5 times, their narrow use
does not arise because they are rare. EXPLANATION, for
example, occurs over 100 times, more than many labels which
often appear in construal.

Labels Role Function
Exact 47 74.4% 81.3%
Depth-3 43 75.0% 81.8%
Depth-2 26 79.9% 87.4%
Depth-1 3 92.6% 93.9%

Table 3: Interannotator agreement rates (pairwise averages)
on Little Prince sample (216 tokens) with different levels of
hierarchy coarsening according to figure 2 (“Exact” means no
coarsening). “Labels” refers to the number of distinct labels
that annotators could have provided at that level of coarsening.
Excludes tokens where at least one annotator assigned a non-
semantic label.

involved in developing the guidelines and learning
the scheme solely from reading the manual. Anno-
tators A, B, and C are native speakers of English,
while Annotators D and E are nonnative but highly
fluent speakers.

Results. In the Little Prince sample, 40 out of 47
possible supersenses were applied at least once by
some annotator; 36 were applied at least once by
a majority of annotators; and 33 were applied at
least once by all annotators. APPROXIMATOR, CO-
THEME, COST, INSTEADOF, INTERVAL, RATEU-
NIT, and SPECIES were not used by any annotator.

To evaluate interannotator agreement, we ex-
cluded 26 tokens for which at least one annota-
tor has assigned a non-semantic label, considering
only the 216 tokens that were identified correctly
as SNACS targets and were clear to all annotators.
Despite varying exposure to the scheme, there is
no obvious relationship between annotators’ back-
grounds and their agreement rates.11

Table 3 shows the interannotator agreement rates,
averaged across all pairs of annotators. Average
agreement is 74.4% on the scene role and 81.3%
on the function (row 1).12 All annotators agree on
the role for 119, and on the function for 139 tokens.
Agreement is higher on the function slot than on
the scene role slot, which implies that the former
is an easier task than the latter. This is expected
considering the definition of construal: the function
of an adposition is more lexical and less context-
dependent, whereas the role depends on the context
(the scene) and can be highly idiomatic (§3.3).

The supersense hierarchy allows us to analyze
agreement at different levels of granularity (rows

11See table 7 in appendix A for a more detailed description
of the annotators’ backgrounds and pairwise IAA results.

12Average of pairwise Cohen’s k is 0.733 and 0.799 on,
respectively, role and function, suggesting strong agreement.
However, it is worth noting that annotators selected labels
from a ranked list, with the ranking determined by preposition
type. The model of chance agreement underlying k does not
take the identity of the preposition into account, and thus likely
underestimates the probability of chance agreement.
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2–4 in table 3; see also confusion matrix in sup-
plement). Coarser-grained analyses naturally give
better agreement, with depth-1 coarsening into only
3 categories. Results show that most confusions
are local with respect to the hierarchy.

6 Disambiguation Systems

We now describe systems that identify and disam-
biguate SNACS-annotated prepositions and posses-
sives in two steps. Target identification heuristics
(§6.2) first determine which tokens (single-word
or multiword) should receive a SNACS supersense.
A supervised classifier then predicts a supersense
analysis for each identified target. The research
objectives are (a) to study the ability of statistical
models to learn roles and functions of prepositions
and possessives, and (b) to compare two different
modeling strategies (feature-rich and neural), and
the impact of syntactic parsing.

6.1 Experimental Setup
Our experiments use the reviews corpus described
in §4. We adopt the official training/development/
test splits of the Universal Dependencies (UD)
project; their sizes are presented in table 1. All
systems are trained on the training set only and eval-
uated on the test set; the development set was used
for tuning hyperparameters. Gold tokenization was
used throughout. Only targets with a semantic su-
persense analysis involving labels from figure 2
were included in training and evaluation—i.e., to-
kens with special labels (see §4) were excluded.

To test the impact of automatic syntactic parsing,
models in the auto syntax condition were trained
and evaluated on automatic lemmas, POS tags, and
Basic Universal Dependencies (according to the
v1 standard) produced by Stanford CoreNLP ver-
sion 3.8.0 (Manning et al., 2014).13 Named en-
tity tags from the default 12-class CoreNLP model
were used in all conditions.

6.2 Target Identification
§3.1 explains that the categories in our scheme ap-
ply not only to (transitive) adpositions in a very
narrow definition of the term, but also to lexical
items that traditionally belong to variety of syn-
tactic classes (such as adverbs and particles), as

13The CoreNLP parser was trained on all 5 genres of the
English Web Treebank—i.e., a superset of our training set.
Gold syntax follows the UDv2 standard, whereas the classi-
fiers in the auto syntax conditions are trained and tested with
UDv1 parses produced by CoreNLP.

well as possessive case markers and multiword ex-
pressions. 61.2% of the units annotated in our
corpus are adpositions according to gold POS an-
notation, 20.2% are possessives, and 18.6% belong
to other POS classes. Furthermore, 14.1% of to-
kens labeled as adpositions or possessives are not
annotated because they are part of a multiword ex-
pression (MWE). It is therefore neither obvious
nor trivial to decide which tokens and groups of
tokens should be selected as targets for SNACS
annotation.

To facilitate both manual annotation and auto-
matic classification, we developed heuristics for
identifying annotation targets. The algorithm first
scans the sentence for known multiword expres-
sions, using a blacklist of non-prepositional MWEs
that contain preposition tokens (e.g., take_care_of )
and a whitelist of prepositional MWEs (multi-
word prepositions like out_of and PP idioms like
in_town). Both lists were constructed from the
training data. From segments unaffected by the
MWE heuristics, single-word candidates are identi-
fied by matching a high-recall set of parts of speech,
then filtered through 5 different heuristics for ad-
positions, possessives, subordinating conjunctions,
adverbs, and infinitivals. Most of these filters are
based on lexical lists learned from the training
portion of the STREUSLE corpus, but there are
some specific rules for infinitivals that handle for-
subjects (I opened the door for Steve to take out the
trash—to, but not for, should receive a supersense)
and comparative constructions with too and enough
(too short to ride).

6.3 Classification
The next step of disambiguation is predicting the
role and function labels. We explore two different
modeling strategies.
Feature-rich Model. Our first model is based on
the features for preposition relation classification
developed by Srikumar and Roth (2013), which
were themselves extended from the preposition
sense disambiguation features of Hovy et al. (2010).
We briefly describe the feature set here, and refer
the reader to the original work for further details.
At a high level, it consists of features extracted
from selected neighboring words in the dependency
tree (i.e., heuristically identified governor and ob-
ject) and in the sentence (previous verb, noun and
adjective, and next noun). In addition, all these
features are also conjoined with the lemma of the
rightmost word in the preposition token to capture
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target-specific interactions with the labels. The
features extracted from each neighboring word are
listed in the supplementary material.

Using these features extracted from targets, we
trained two multi-class SVM classifiers to predict
the role and function labels using the LIBLINEAR
library (Fan et al., 2008).

Neural Model. Our second classifier is a multi-
layer perceptron (MLP) stacked on top of a BiL-
STM. For every sentence, tokens are first em-
bedded using a concatenation of fixed pre-trained
word2vec (Mikolov et al., 2013) embeddings of the
word and the lemma, and an internal embedding
vector, which is updated during training.14 Token
embeddings are then fed into a 2-layer BiLSTM
encoder, yielding a list of token representations.

For each identified target unit u, we extract its
first token, and its governor and object headword.
For each of these tokens, we construct a feature vec-
tor by concatenating its token representation with
embeddings of its (1) language-specific POS tag,
(2) UD dependency label, and (3) NER label. We
additionally concatenate embeddings of u’s lexical
category, a syntactic label indicating whether u is
predicative/stranded/subordinating/none of these,
and an indicator of whether either of the two tokens
following the unit is capitalized. All these embed-
dings, as well as internal token embedding vectors,
are considered part of the model parameters and are
initialized randomly using the Xavier initialization
(Glorot and Bengio, 2010). A NONE label is used
when the corresponding feature is not given, both
in training and at test time. The concatenated fea-
ture vector for u is fed into two separate 2-layered
MLPs, followed by a separate softmax layer that
yields the predicted probabilities for the role and
function labels.

We tuned hyperparameters on the development
set to maximize F-score (see supplementary mate-
rial). We used the cross-entropy loss function, opti-
mizing with simple gradient ascent for 80 epochs
with minibatches of size 20. Inverted dropout was
used during training. The model is implemented
with the DyNet library (Neubig et al., 2017).

The model architecture is largely compara-
ble to that of Gonen and Goldberg (2016),
who experimented with a coarsened version of
STREUSLE 3.0. The main difference is their use
of unlabeled multilingual datasets to improve pre-

14Word2vec is pre-trained on the Google News corpus. Zero
vectors are used where vectors are not available.

Syntax P R F
gold 88.8 89.6 89.2
auto 86.0 85.8 85.9

Table 4: Target identification results for disambiguation.

diction by exploiting the differences in preposition
ambiguities across languages.

6.4 Results & Analysis
Following the two-stage disambiguation pipeline
(i.e. target identification and classification), we sep-
arate the evaluation across the phases. Table 4
reports the precision, recall, and F-score (P/R/F) of
the target identification heuristics. Table 5 reports
the disambiguation performance of both classifiers
with gold (left) and automatic target identification
(right). We evaluate each classifier along three
dimensions—role and function independently, and
full (i.e. both role and function together). When
we have the gold targets, we only report accuracy
because precision and recall are equal. With au-
tomatically identified targets, we report P/R/F for
each dimension. Both tables show the impact of
syntactic parsing on quality. The rest of this section
presents analyses of the results along various axes.
Target identification. The identification heuris-
tics described in §6.2 achieve an F1 score of 89.2%
on the test set using gold syntax.15 Most false
positives (47/54=87%) can be ascribed to tokens
that are part of a (non-adpositional or larger adpo-
sitional) multiword expression. 9 of the 50 false
negatives (18%) are rare multiword expressions not
occurring in the training data and there are 7 par-
tially identified ones, which are counted as both
false positives and false negatives.

Automatically generated parse trees slightly de-
crease quality (table 4). Target identification, be-
ing the first step in the pipeline, imposes an upper
bound on disambiguation scores. We observe this
degradation when we compare the Gold ID and
the Auto ID blocks of table 5, where automati-
cally identified targets decrease F-score by about
10 points in all settings.16

Classification. Along with the statistical classi-
fier results in table 5, we also report performance

15Our evaluation script counts tokens that received special
labels in the gold standard (see §4) as negative examples of
SNACS targets, with the exception of the tokens labeled as
unintelligible/nonnative/etc., which are not counted toward or
against target ID performance.

16A variant of the target ID module, optimized for recall, is
used as preprocessing for the agreement study discussed in §5.
With this setting, the heuristic achieves an F1 score of 90.2%
(P=85.3%, R=95.6%) on the test set.
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Gold ID Auto ID
Role Func. Full Role Func. Full

Syntax Acc. Acc. Acc. P R F P R F P R F

Most frequent N/A 40.6 53.3 37.9 37.0 37.3 37.1 49.8 50.2 50.0 34.3 34.6 34.4
Neural gold 71.7 82.5 67.5 62.0 62.5 62.2 73.1 73.8 73.4 58.7 59.2 58.9
Feature-rich gold 73.5 81.0 70.0 62.0 62.5 62.2 70.7 71.2 71.0 59.3 59.8 59.5

Neural auto 67.7 78.5 64.4 56.4 56.2 56.3 66.8 66.7 66.7 53.7 53.5 53.6
Feature-rich auto 67.9 79.4 65.2 58.2 58.1 58.2 66.8 66.7 66.7 55.7 55.6 55.7

Table 5: Overall performance of SNACS disambiguation systems on the test set. Results are reported for the role supersense
(Role), the function supersense (Func.), and their conjunction (Full). All figures are percentages. Left: Accuracies with gold
standard target identification (480 targets). Right: Precision, recall, and F1 with automatic target identification (§6.2 and table 4).

for the most frequent baseline, which selects the
most frequent role–function label pair given the
(gold) lemma according to the training data. Note
that all learned classifiers, across all settings, out-
perform the most frequent baseline for both role
and function prediction. The feature-rich and the
neural models perform roughly equivalently despite
the significantly different modeling strategies.

Function and scene role performance. Func-
tion prediction is consistently more accurate than
role prediction, with roughly a 10-point gap across
all systems. This mirrors a similar effect in the
interannotator agreement scores (see §5), and may
be due to the reduced ambiguity of functions com-
pared to roles (as attested by the baseline’s higher
accuracy for functions than roles), and by the more
literal nature of function labels, as opposed to role
labels that often require more context to determine.

Impact of automatic syntax. Automatic syntac-
tic analysis decreases scores by 4 to 7 points, most
likely due to parsing errors which affect the iden-
tification of the preposition’s object and governor.
In the auto ID/auto syntax condition, the worse tar-
get ID performance with automatic parses (noted
above) contributes to lower classification scores.

6.5 Errors & Confusions

We can use the structure of the SNACS hierarchy to
probe classifier performance. As with the interan-
notator study, we evaluate the accuracy of predicted
labels when they are coarsened post hoc by mov-
ing up the hierarchy to a specific depth. Table 6
shows this for the feature-rich classifier for differ-
ent depths, with depth-1 representing the coarsen-
ing of the labels into the 3 root labels. Depth-4
(Exact) represents the full results in table 5. These
results show that the classifiers often mistake a
label for another that is nearby in the hierarchy.
Examining the most frequent confusions of both
models, we observe that LOCUS is overpredicted

Labels Role Function
Exact 47 67.9% 79.4%
Depth-3 43 67.9% 79.6%
Depth-2 26 76.2% 86.2%
Depth-1 3 86.0% 93.8%

Table 6: Accuracy of the feature-rich model (gold identifi-
cation and syntax) on the test set (480 tokens) with different
levels of hierarchy coarsening of its output. “Labels” refers to
the number of labels in the training set after coarsening.

(which makes sense as it is most frequent over-
all), and SOCIALROLE–ORGROLE and GESTALT–
POSSESSOR are often confused (they are close in
the hierarchy: one inherits from the other).

7 Conclusion

This paper introduced a new approach to com-
prehensive analysis of the semantics of preposi-
tions and possessives in English, backed by a thor-
oughly documented hierarchy and annotated cor-
pus. We found good interannotator agreement and
provided initial supervised disambiguation results.
We expect that future work will develop methods
to scale the annotation process beyond requiring
highly trained experts; bring this scheme to bear
on other languages; and investigate the relationship
of our scheme to more structured semantic repre-
sentations, which could lead to more robust mod-
els. Our guidelines, corpus, and software are avail-
able at https://github.com/nert-gu/streusle/
blob/master/ACL2018.md.
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