
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 122–131
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

122

Towards Understanding the Geometry of Knowledge Graph Embeddings

Chandrahas
Indian Institute of Science
chandrahas@iisc.ac.in

Aditya Sharma
Indian Institute of Science
adityasharma@iisc.ac.in

Partha Talukdar
Indian Institute of Science

ppt@iisc.ac.in

Abstract

Knowledge Graph (KG) embedding has
emerged as a very active area of research
over the last few years, resulting in the
development of several embedding meth-
ods. These KG embedding methods rep-
resent KG entities and relations as vectors
in a high-dimensional space. Despite this
popularity and effectiveness of KG em-
beddings in various tasks (e.g., link pre-
diction), geometric understanding of such
embeddings (i.e., arrangement of entity
and relation vectors in vector space) is un-
explored – we fill this gap in the paper.
We initiate a study to analyze the geome-
try of KG embeddings and correlate it with
task performance and other hyperparame-
ters. To the best of our knowledge, this is
the first study of its kind. Through exten-
sive experiments on real-world datasets,
we discover several insights. For example,
we find that there are sharp differences be-
tween the geometry of embeddings learnt
by different classes of KG embeddings
methods. We hope that this initial study
will inspire other follow-up research on
this important but unexplored problem.

1 Introduction

Knowledge Graphs (KGs) are multi-relational
graphs where nodes represent entities and typed-
edges represent relationships among entities. Re-
cent research in this area has resulted in the de-
velopment of several large KGs, such as NELL
(Mitchell et al., 2015), YAGO (Suchanek et al.,
2007), and Freebase (Bollacker et al., 2008),
among others. These KGs contain thousands of
predicates (e.g., person, city, mayorOf(person,
city), etc.), and millions of triples involving such

predicates, e.g., (Bill de Blasio, mayorOf, New
York City).

The problem of learning embeddings for
Knowledge Graphs has received significant atten-
tion in recent years, with several methods being
proposed (Bordes et al., 2013; Lin et al., 2015;
Nguyen et al., 2016; Nickel et al., 2016; Trouil-
lon et al., 2016). These methods represent enti-
ties and relations in a KG as vectors in high di-
mensional space. These vectors can then be used
for various tasks, such as, link prediction, entity
classification etc. Starting with TransE (Bordes
et al., 2013), there have been many KG embed-
ding methods such as TransH (Wang et al., 2014),
TransR (Lin et al., 2015) and STransE (Nguyen
et al., 2016) which represent relations as trans-
lation vectors from head entities to tail entities.
These are additive models, as the vectors interact
via addition and subtraction. Other KG embed-
ding models, such as, DistMult (Yang et al., 2014),
HolE (Nickel et al., 2016), and ComplEx (Trouil-
lon et al., 2016) are multiplicative where entity-
relation-entity triple likelihood is quantified by a
multiplicative score function. All these methods
employ a score function for distinguishing correct
triples from incorrect ones.

In spite of the existence of many KG embed-
ding methods, our understanding of the geometry
and structure of such embeddings is very shallow.
A recent work (Mimno and Thompson, 2017) an-
alyzed the geometry of word embeddings. How-
ever, the problem of analyzing geometry of KG
embeddings is still unexplored – we fill this impor-
tant gap. In this paper, we analyze the geometry of
such vectors in terms of their lengths and conicity,
which, as defined in Section 4, describes their po-
sitions and orientations in the vector space. We
later study the effects of model type and training
hyperparameters on the geometry of KG embed-
dings and correlate geometry with performance.

123

We make the following contributions:

• We initiate a study to analyze the geometry of
various Knowledge Graph (KG) embeddings.
To the best of our knowledge, this is the first
study of its kind. We also formalize various
metrics which can be used to study geometry
of a set of vectors.

• Through extensive analysis, we discover sev-
eral interesting insights about the geometry
of KG embeddings. For example, we find
systematic differences between the geome-
tries of embeddings learned by additive and
multiplicative KG embedding methods.

• We also study the relationship between geo-
metric attributes and predictive performance
of the embeddings, resulting in several new
insights. For example, in case of multiplica-
tive models, we observe that for entity vec-
tors generated with a fixed number of neg-
ative samples, lower conicity (as defined in
Section 4) or higher average vector length
lead to higher performance.

Source code of all the analysis tools de-
veloped as part of this paper is available
at https://github.com/malllabiisc/
kg-geometry. We are hoping that these re-
sources will enable one to quickly analyze the
geometry of any KG embedding, and potentially
other embeddings as well.

2 Related Work

In spite of the extensive and growing literature on
both KG and non-KG embedding methods, very
little attention has been paid towards understand-
ing the geometry of the learned embeddings. A re-
cent work (Mimno and Thompson, 2017) is an ex-
ception to this which addresses this problem in the
context of word vectors. This work revealed a sur-
prising correlation between word vector geometry
and the number of negative samples used during
training. Instead of word vectors, in this paper we
focus on understanding the geometry of KG em-
beddings. In spite of this difference, the insights
we discover in this paper generalizes some of the
observations in the work of (Mimno and Thomp-
son, 2017). Please see Section 6.2 for more details.

Since KGs contain only positive triples, nega-
tive sampling has been used for training KG em-
beddings. Effect of the number of negative sam-
ples in KG embedding performance was studied

by (Toutanova et al., 2015). In this paper, we study
the effect of the number of negative samples on
KG embedding geometry as well as performance.

In addition to the additive and multiplicative
KG embedding methods already mentioned in
Section 1, there is another set of methods where
the entity and relation vectors interact via a neu-
ral network. Examples of methods in this cate-
gory include NTN (Socher et al., 2013), CONV
(Toutanova et al., 2015), ConvE (Dettmers et al.,
2017), R-GCN (Schlichtkrull et al., 2017), ER-
MLP (Dong et al., 2014) and ER-MLP-2n (Rav-
ishankar et al., 2017). Due to space limitations,
in this paper we restrict our scope to the analysis
of the geometry of additive and multiplicative KG
embedding models only, and leave the analysis of
the geometry of neural network-based methods as
part of future work.

3 Overview of KG Embedding Methods

For our analysis, we consider six representative
KG embedding methods: TransE (Bordes et al.,
2013), TransR (Lin et al., 2015), STransE (Nguyen
et al., 2016), DistMult (Yang et al., 2014), HolE
(Nickel et al., 2016) and ComplEx (Trouillon
et al., 2016). We refer to TransE, TransR and
STransE as additive methods because they learn
embeddings by modeling relations as translation
vectors from one entity to another, which results in
vectors interacting via the addition operation dur-
ing training. On the other hand, we refer to Dist-
Mult, HolE and ComplEx as multiplicative meth-
ods as they quantify the likelihood of a triple be-
longing to the KG through a multiplicative score
function. The score functions optimized by these
methods are summarized in Table 1.
Notation: Let G = (E ,R, T) be a Knowledge
Graph (KG) where E is the set of entities, R is
the set of relations and T ⊂ E × R × E is the set
of triples stored in the graph. Most of the KG em-
bedding methods learn vectors e ∈ Rde for e ∈ E ,
and r ∈ Rdr for r ∈ R. Some methods also
learn projection matrices Mr ∈ Rdr×de for rela-
tions. The correctness of a triple is evaluated using
a model specific score function σ : E × R× E →
R. For learning the embeddings, a loss function
L(T , T ′; θ), defined over a set of positive triples
T , set of (sampled) negative triples T ′, and the
parameters θ is optimized.

We use small italics characters (e.g., h, r) to
represent entities and relations, and correspond-

https://github.com/malllabiisc/kg-geometry
https://github.com/malllabiisc/kg-geometry

124

Type Model Score Function σ(h, r, t)

Additive
TransE (Bordes et al., 2013) −‖h + r− t‖1

TransR (Lin et al., 2015) −‖Mrh + r−Mrt‖1
STransE (Nguyen et al., 2016) −

∥∥M1
rh + r−M2

r t
∥∥
1

Multiplicative
DistMult (Yang et al., 2014) r>(h� t)

HolE (Nickel et al., 2016) r>(h ? t)

ComplEx (Trouillon et al., 2016) Re(r>(h� t̄))

Table 1: Summary of various Knowledge Graph (KG) embedding methods used in the paper. Please see
Section 3 for more details.

ing bold characters to represent their vector em-
beddings (e.g., h, r). We use bold capitalization
(e.g., V) to represent a set of vectors. Matrices are
represented by capital italics characters (e.g., M).

3.1 Additive KG Embedding Methods
This is the set of methods where entity and rela-
tion vectors interact via additive operations. The
score function for these models can be expressed
as below

σ(h, r, t) = −
∥∥M1

r h + r−M2
r t
∥∥
1

(1)

where h, t ∈ Rde and r ∈ Rdr are vectors for
head entity, tail entity and relation respectively.
M1

r ,M
2
r ∈ Rdr×de are projection matrices from

entity space Rde to relation space Rdr .
TransE (Bordes et al., 2013) is the simplest addi-
tive model where the entity and relation vectors lie
in same d−dimensional space, i.e., de = dr = d.
The projection matricesM1

r = M2
r = Id are iden-

tity matrices. The relation vectors are modeled as
translation vectors from head entity vectors to tail
entity vectors. Pairwise ranking loss is then used
to learn these vectors. Since the model is simple,
it has limited capability in capturing many-to-one,
one-to-many and many-to-many relations.
TransR (Lin et al., 2015) is another translation-
based model which uses separate spaces for en-
tity and relation vectors allowing it to address the
shortcomings of TransE. Entity vectors are pro-
jected into a relation specific space using the cor-
responding projection matrix M1

r = M2
r = Mr.

The training is similar to TransE.
STransE (Nguyen et al., 2016) is a generalization
of TransR and uses different projection matrices
for head and tail entity vectors. The training is
similar to TransE. STransE achieves better perfor-
mance than the previous methods but at the cost of
more number of parameters.

Equation 1 is the score function used in
STransE. TransE and TransR are special cases of

STransE with M1
r = M2

r = Id and M1
r = M2

r =
Mr, respectively.

3.2 Multiplicative KG Embedding Methods

This is the set of methods where the vectors inter-
act via multiplicative operations (usually dot prod-
uct). The score function for these models can be
expressed as

σ(h, r, t) = r>f(h, t) (2)

where h, t, r ∈ Fd are vectors for head entity, tail
entity and relation respectively. f(h, t) ∈ Fd mea-
sures compatibility of head and tail entities and
is specific to the model. F is either real space R
or complex space C. Detailed descriptions of the
models we consider are as follows.
DistMult (Yang et al., 2014) models entities and
relations as vectors in Rd. It uses an entry-wise
product (�) to measure compatibility between
head and tail entities, while using logistic loss for
training the model.

σDistMult(h, r, t) = r>(h� t) (3)

Since the entry-wise product in (3) is symmetric,
DistMult is not suitable for asymmetric and anti-
symmetric relations.
HolE (Nickel et al., 2016) also models entities and
relations as vectors in Rd. It uses circular correla-
tion operator (?) as compatibility function defined
as

[h ? t]k =

d−1∑
i=0

hit(k+i) mod d

The score function is given as

σHolE(h, r, t) = r>(h ? t) (4)

The circular correlation operator being asymmet-
ric, can capture asymmetric and anti-symmetric
relations, but at the cost of higher time complexity

125

Figure 1: Comparison of high vs low Conicity. Randomly generated vectors are shown in blue with
their sample mean vector M in black. Figure on the left shows the case when vectors lie in narrow cone
resulting in high Conicity value. Figure on the right shows the case when vectors are spread out having
relatively lower Conicity value. We skipped very low values of Conicity as it was difficult to visualize.
The points are sampled from 3d Spherical Gaussian with mean (1,1,1) and standard deviation 0.1 (left)
and 1.3 (right). Please refer to Section 4 for more details.

(O(d log d)). For training, we use pairwise rank-
ing loss.
ComplEx (Trouillon et al., 2016) represents enti-
ties and relations as vectors in Cd. The compati-
bility of entity pairs is measured using entry-wise
product between head and complex conjugate of
tail entity vectors.

σComplEx(h, r, t) = Re(r>(h� t̄)) (5)

In contrast to (3), using complex vectors in (5) al-
lows ComplEx to handle symmetric, asymmetric
and anti-symmetric relations using the same score
function. Similar to DistMult, logistic loss is used
for training the model.

4 Metrics

For our geometrical analysis, we first define a term
‘alignment to mean’ (ATM) of a vector v belong-
ing to a set of vectors V, as the cosine similarity1

between v and the mean of all vectors in V.

ATM(v,V) = cosine

(
v,

1

|V|
∑
x∈V

x

)
We also define ‘conicity’ of a set V as the mean
ATM of all vectors in V.

Conicity(V) =
1

|V|
∑
v∈V

ATM(v,V)

1cosine(u, v) = u>v
‖u‖‖v‖

Dataset FB15k WN18
#Relations 1,345 18
#Entities 14,541 40,943

#Triples
Train 483,142 141,440

Validation 50,000 5,000
Test 59,071 5,000

Table 2: Summary of datasets used in the paper.

By this definition, a high value of Conicity(V)
would imply that the vectors in V lie in a nar-
row cone centered at origin. In other words, the
vectors in the set V are highly aligned with each
other. In addition to that, we define the variance
of ATM across all vectors in V, as the ‘vector
spread’(VS) of set V,

VS(V) =
1

|V|
∑
v∈V

(
ATM(v,V)−Conicity(V)

)2

Figure 1 visually demonstrates these metrics for
randomly generated 3-dimensional points. The
left figure shows high Conicity and low vector
spread while the right figure shows low Conicity
and high vector spread.

We define the length of a vector v as L2-norm
of the vector ‖v‖2 and ‘average vector length’
(AVL) for the set of vectors V as

AVL(V) =
1

|V|
∑
v∈V
‖v‖2

126

(a) Additive Models

(b) Multiplicative Models

Figure 2: Alignment to Mean (ATM) vs Density plots for entity embeddings learned by various additive
(top row) and multiplicative (bottom row) KG embedding methods. For each method, a plot averaged
across entity frequency bins is shown. From these plots, we conclude that entity embeddings from
additive models tend to have low (positive as well as negative) ATM and thereby low Conicity and high
vector spread. Interestingly, this is reversed in case of multiplicative methods. Please see Section 6.1 for
more details.

5 Experimental Setup

Datasets: We run our experiments on subsets of
two widely used datasets, viz., Freebase (Bol-
lacker et al., 2008) and WordNet (Miller, 1995),
called FB15k and WN18 (Bordes et al., 2013), re-
spectively. We detail the characteristics of these
datasets in Table 2.

Please note that while the results presented in
Section 6 are on the FB15K dataset, we reach the
same conclusions on WN18. The plots for our ex-
periments on WN18 can be found in the Supple-
mentary Section.
Hyperparameters: We experiment with multiple
values of hyperparameters to understand their ef-
fect on the geometry of KG embeddings. Specif-
ically, we vary the dimension of the generated
vectors between {50, 100, 200} and the number
of negative samples used during training between
{1, 50, 100}. For more details on algorithm spe-
cific hyperparameters, we refer the reader to the
Supplementary Section.2

2For training, we used codes from https://github.

Frequency Bins: We follow (Mimno and Thomp-
son, 2017) for entity and relation samples used in
the analysis. Multiple bins of entities and relations
are created based on their frequencies and 100 ran-
domly sampled vectors are taken from each bin.
These set of sampled vectors are then used for our
analysis. For more information about sampling
vectors, please refer to (Mimno and Thompson,
2017).

6 Results and Analysis

In this section, we evaluate the following ques-
tions.

• Does model type (e.g., additive vs multiplica-
tive) have any effect on the geometry of em-
beddings? (Section 6.1)

com/Mrlyk423/Relation_Extraction (TransE,
TransR), https://github.com/datquocnguyen/
STransE (STransE), https://github.com/
mnick/holographic-embeddings (HolE) and
https://github.com/ttrouill/complex (Com-
plEx and DistMult).

https://github.com/Mrlyk423/Relation_Extraction
https://github.com/Mrlyk423/Relation_Extraction
https://github.com/Mrlyk423/Relation_Extraction
https://github.com/Mrlyk423/Relation_Extraction
https://github.com/Mrlyk423/Relation_Extraction
https://github.com/Mrlyk423/Relation_Extraction
https://github.com/Mrlyk423/Relation_Extraction
https://github.com/Mrlyk423/Relation_Extraction
https://github.com/Mrlyk423/Relation_Extraction
https://github.com/Mrlyk423/Relation_Extraction
https://github.com/Mrlyk423/Relation_Extraction
https://github.com/Mrlyk423/Relation_Extraction
https://github.com/Mrlyk423/Relation_Extraction
https://github.com/Mrlyk423/Relation_Extraction
https://github.com/Mrlyk423/Relation_Extraction
https://github.com/Mrlyk423/Relation_Extraction
https://github.com/Mrlyk423/Relation_Extraction
https://github.com/datquocnguyen/STransE
https://github.com/datquocnguyen/STransE
https://github.com/mnick/holographic-embeddings
https://github.com/mnick/holographic-embeddings
https://github.com/ttrouill/complex

127

(a) Additive Models

(b) Multiplicative Models

Figure 3: Alignment to Mean (ATM) vs Density plots for relation embeddings learned by various additive
(top row) and multiplicative (bottom row) KG embedding methods. For each method, a plot averaged
across entity frequency bins is shown. Trends in these plots are similar to those in Figure 2. Main
findings from these plots are summarized in Section 6.1.

• Does negative sampling have any effect on
the embedding geometry? (Section 6.2)

• Does the dimension of embedding have any
effect on its geometry? (Section 6.3)

• How is task performance related to embed-
ding geometry? (Section 6.4)

In each subsection, we summarize the main
findings at the beginning, followed by evidence
supporting those findings.

6.1 Effect of Model Type on Geometry

Summary of Findings:
Additive: Low conicity and high vector spread.
Multiplicative: High conicity and low vector
spread.

In this section, we explore whether the type of
the score function optimized during the training
has any effect on the geometry of the resulting em-
bedding. For this experiment, we set the number
of negative samples to 1 and the vector dimension
to 100 (we got similar results for 50-dimensional
vectors). Figure 2 and Figure 3 show the distribu-
tion of ATMs of these sampled entity and relation

vectors, respectively.3

Entity Embeddings: As seen in Figure 2, there
is a stark difference between the geometries of en-
tity vectors produced by additive and multiplica-
tive models. The ATMs of all entity vectors pro-
duced by multiplicative models are positive with
very low vector spread. Their high conicity sug-
gests that they are not uniformly dispersed in the
vector space, but lie in a narrow cone along the
mean vector. This is in contrast to the entity vec-
tors obtained from additive models which are both
positive and negative with higher vector spread.
From the lower values of conicity, we conclude
that entity vectors from additive models are evenly
dispersed in the vector space. This observation
is also reinforced by looking at the high vector
spread of additive models in comparison to that of
multiplicative models. We also observed that addi-
tive models are sensitive to the frequency of enti-
ties, with high frequency bins having higher conic-
ity than low frequency bins. However, no such pat-
tern was observed for multiplicative models and

3We also tried using the global mean instead of mean of
the sampled set for calculating cosine similarity in ATM, and
got very similar results.

128

Figure 4: Conicity (left) and Average Vector Length (right) vs Number of negative samples for entity
vectors learned using various KG embedding methods. In each bar group, first three models are additive,
while the last three are multiplicative. Main findings from these plots are summarized in Section 6.2

conicity was consistently similar across frequency
bins. For clarity, we have not shown different plots
for individual frequency bins.
Relation Embeddings: As in entity embeddings,
we observe a similar trend when we look at the
distribution of ATMs for relation vectors in Fig-
ure 3. The conicity of relation vectors generated
using additive models is almost zero across fre-
quency bands. This coupled with the high vec-
tor spread observed, suggests that these vectors
are scattered throughout the vector space. Re-
lation vectors from multiplicative models exhibit
high conicity and low vector spread, suggesting
that they lie in a narrow cone centered at origin,
like their entity counterparts.

6.2 Effect of Number of Negative Samples on
Geometry

Summary of Findings:
Additive: Conicity and average length are in-
variant to changes in #NegativeSamples for
both entities and relations.
Multiplicative: Conicity increases while av-
erage vector length decrease with increasing
#NegativeSamples for entities. Conicity de-
creases, while average vector length remains
constant (except HolE) for relations.

For experiments in this section, we keep the
vector dimension constant at 100.
Entity Embeddings: As seen in Figure 4 (left),
the conicity of entity vectors increases as the num-
ber of negative samples is increased for multi-
plicative models. In contrast, conicity of the en-
tity vectors generated by additive models is unaf-
fected by change in number of negative samples
and they continue to be dispersed throughout the

vector space. From Figure 4 (right), we observe
that the average length of entity vectors produced
by additive models is also invariant of any changes
in number of negative samples. On the other hand,
increase in negative sampling decreases the aver-
age entity vector length for all multiplicative mod-
els except HolE. The average entity vector length
for HolE is nearly 1 for any number of negative
samples, which is understandable considering it
constrains the entity vectors to lie inside a unit
ball (Nickel et al., 2016). This constraint is also
enforced by the additive models: TransE, TransR,
and STransE.
Relation Embeddings: Similar to entity embed-
dings, in case of relation vectors trained using ad-
ditive models, the average length and conicity do
not change while varying the number of negative
samples. However, the conicity of relation vec-
tors from multiplicative models decreases with in-
crease in negative sampling. The average rela-
tion vector length is invariant for all multiplica-
tive methods, except for HolE. We see a surpris-
ingly big jump in average relation vector length
for HolE going from 1 to 50 negative samples, but
it does not change after that. Due to space con-
straints in the paper, we refer the reader to the Sup-
plementary Section for plots discussing the effect
of number of negative samples on geometry of re-
lation vectors.

We note that the multiplicative score between
two vectors may be increased by either increas-
ing the alignment between the two vectors (i.e., in-
creasing Conicity and reducing vector spread be-
tween them), or by increasing their lengths. It is
interesting to note that we see exactly these ef-
fects in the geometry of multiplicative methods

129

Figure 5: Conicity (left) and Average Vector Length (right) vs Number of Dimensions for entity vectors
learned using various KG embedding methods. In each bar group, first three models are additive, while
the last three are multiplicative. Main findings from these plots are summarized in Section 6.3.

analyzed above.

6.2.1 Correlation with Geometry of Word
Embeddings

Our conclusions from the geometrical analysis of
entity vectors produced by multiplicative mod-
els are similar to the results in (Mimno and
Thompson, 2017), where increase in negative
sampling leads to increased conicity of word vec-
tors trained using the skip-gram with negative
sampling (SGNS) method. On the other hand, ad-
ditive models remain unaffected by these changes.

SGNS tries to maximize a score function of the
form wT ·c for positive word context pairs, where
w is the word vector and c is the context vector
(Mikolov et al., 2013). This is very similar to the
score function of multiplicative models as seen in
Table 1. Hence, SGNS can be considered as a mul-
tiplicative model in the word domain.

Hence, we argue that our result on the increase
in negative samples increasing the conicity of vec-
tors trained using a multiplicative score function
can be considered as a generalization of the one in
(Mimno and Thompson, 2017).

6.3 Effect of Vector Dimension on Geometry

Summary of Findings:
Additive: Conicity and average length are in-
variant to changes in dimension for both entities
and relations.
Multiplicative: Conicity decreases for both en-
tities and relations with increasing dimension.
Average vector length increases for both entities
and relations, except for HolE entities.

Entity Embeddings: To study the effect of vec-

tor dimension on conicity and length, we set the
number of negative samples to 1, while varying
the vector dimension. From Figure 5 (left), we
observe that the conicity for entity vectors gen-
erated by any additive model is almost invariant
of increase in dimension, though STransE exhibits
a slight decrease. In contrast, entity vector from
multiplicative models show a clear decreasing pat-
tern with increasing dimension.

As seen in Figure 5 (right), the average lengths
of entity vectors from multiplicative models in-
crease sharply with increasing vector dimension,
except for HolE. In case of HolE, the average vec-
tor length remains constant at one. Deviation in-
volving HolE is expected as it enforces entity vec-
tors to fall within a unit ball. Similar constraints
are enforced on entity vectors for additive models
as well. Thus, the average entity vector lengths are
not affected by increasing vector dimension for all
additive models.

Relation Embeddings: We reach similar conclu-
sion when analyzing against increasing dimension
the change in geometry of relation vectors pro-
duced using these KG embedding methods. In
this setting, the average length of relation vectors
learned by HolE also increases as dimension is in-
creased. This is consistent with the other meth-
ods in the multiplicative family. This is because,
unlike entity vectors, the lengths of relation vec-
tors of HolE are not constrained to be less than
unit length. Due to lack of space, we are unable to
show plots for relation vectors here, but the same
can be found in the Supplementary Section.

130

Figure 6: Relationship between Performance (HITS@10) on a link prediction task vs Conicity (left) and
Avg. Vector Length (right). For each point, N represents the number of negative samples used. Main
findings are summarized in Section 6.4.

6.4 Relating Geometry to Performance

Summary of Findings:
Additive: Neither entites nor relations exhibit
correlation between geometry and performance.
Multiplicative: Keeping negative samples fixed,
lower conicity or higher average vector length
for entities leads to improved performance. No
relationship for relations.

In this section, we analyze the relationship be-
tween geometry and performance on the Link pre-
diction task, using the same setting as in (Bordes
et al., 2013). Figure 6 (left) presents the effects of
conicity of entity vectors on performance, while
Figure 6 (right) shows the effects of average entity
vector length.4

As we see from Figure 6 (left), for fixed num-
ber of negative samples, the multiplicative model
with lower conicity of entity vectors achieves bet-
ter performance. This performance gain is larger
for higher numbers of negative samples (N). Addi-
tive models don’t exhibit any relationship between
performance and conicity, as they are all clustered
around zero conicity, which is in-line with our ob-
servations in previous sections. In Figure 6 (right),
for all multiplicative models except HolE, a higher
average entity vector length translates to better
performance, while the number of negative sam-
ples is kept fixed. Additive models and HolE don’t
exhibit any such patterns, as they are all clustered
just below unit average entity vector length.

The above two observations for multiplicative
models make intuitive sense, as lower conicity and
higher average vector length would both translate

4A more focused analysis for multiplicative models is pre-
sented in Section 3 of Supplementary material.

to vectors being more dispersed in the space.
We see another interesting observation regard-

ing the high sensitivity of HolE to the number of
negative samples used during training. Using a
large number of negative examples (e.g., N = 50
or 100) leads to very high conicity in case of HolE.
Figure 6 (right) shows that average entity vector
length of HolE is always one. These two obser-
vations point towards HolE’s entity vectors lying
in a tiny part of the space. This translates to HolE
performing poorer than all other models in case of
high numbers of negative sampling.

We also did a similar study for relation vectors,
but did not see any discernible patterns.

7 Conclusion

In this paper, we have initiated a systematic study
into the important but unexplored problem of an-
alyzing geometry of various Knowledge Graph
(KG) embedding methods. To the best of our
knowledge, this is the first study of its kind.
Through extensive experiments on multiple real-
world datasets, we are able to identify several in-
sights into the geometry of KG embeddings. We
have also explored the relationship between KG
embedding geometry and its task performance.
We have shared all our source code to foster fur-
ther research in this area.

Acknowledgements

We thank the anonymous reviewers for their con-
structive comments. This work is supported in
part by the Ministry of Human Resources Devel-
opment (Government of India), Intel, Intuit, and
by gifts from Google and Accenture.

131

References
Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim

Sturge, and Jamie Taylor. 2008. Freebase: a collab-
oratively created graph database for structuring hu-
man knowledge. In Proceedings of the 2008 ACM
SIGMOD international conference on Management
of data. AcM, pages 1247–1250.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in neural information
processing systems. pages 2787–2795.

T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel.
2017. Convolutional 2D Knowledge Graph Embed-
dings. ArXiv e-prints .

Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko
Horn, Ni Lao, Kevin Murphy, Thomas Strohmann,
Shaohua Sun, and Wei Zhang. 2014. Knowledge
vault: A web-scale approach to probabilistic knowl-
edge fusion. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge
discovery and data mining. ACM, pages 601–610.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and
Xuan Zhu. 2015. Learning entity and relation em-
beddings for knowledge graph completion. In AAAI.
pages 2181–2187.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM 38(11):39–
41.

David Mimno and Laure Thompson. 2017. The strange
geometry of skip-gram with negative sampling. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing. pages
2863–2868.

T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, J. Bet-
teridge, A. Carlson, B. Dalvi, M. Gardner, B. Kisiel,
J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mohamed,
N. Nakashole, E. Platanios, A. Ritter, M. Samadi,
B. Settles, R. Wang, D. Wijaya, A. Gupta, X. Chen,
A. Saparov, M. Greaves, and J. Welling. 2015.
Never-ending learning. In Proceedings of AAAI.

Dat Quoc Nguyen, Kairit Sirts, Lizhen Qu, and Mark
Johnson. 2016. Stranse: a novel embedding model
of entities and relationships in knowledge bases. In
Proceedings of NAACL-HLT . pages 460–466.

Maximilian Nickel, Lorenzo Rosasco, and Tomaso A.
Poggio. 2016. Holographic embeddings of knowl-
edge graphs. In AAAI.

Srinivas Ravishankar, Chandrahas, and Partha Pratim
Talukdar. 2017. Revisiting simple neural networks
for learning representations of knowledge graphs.
6th Workshop on Automated Knowledge Base Con-
struction (AKBC) at NIPS 2017 .

M. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg,
I. Titov, and M. Welling. 2017. Modeling Relational
Data with Graph Convolutional Networks. ArXiv e-
prints .

Richard Socher, Danqi Chen, Christopher D Manning,
and Andrew Ng. 2013. Reasoning with neural ten-
sor networks for knowledge base completion. In Ad-
vances in Neural Information Processing Systems.
pages 926–934.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: a core of semantic knowl-
edge. In WWW.

Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoi-
fung Poon, Pallavi Choudhury, and Michael Gamon.
2015. Representing Text for Joint Embedding of
Text and Knowledge Bases. In Empirical Methods
in Natural Language Processing (EMNLP). ACL
Association for Computational Linguistics.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In ICML.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph embedding by trans-
lating on hyperplanes. In AAAI. Citeseer, pages
1112–1119.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng
Gao, and Li Deng. 2014. Embedding entities and
relations for learning and inference in knowledge
bases. arXiv preprint arXiv:1412.6575 .

