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Abstract

Subword units are an effective way to
alleviate the open vocabulary problems
in neural machine translation (NMT).
While sentences are usually converted into
unique subword sequences, subword seg-
mentation is potentially ambiguous and
multiple segmentations are possible even
with the same vocabulary. The question
addressed in this paper is whether it is
possible to harness the segmentation am-
biguity as a noise to improve the robust-
ness of NMT. We present a simple regu-
larization method, subword regularization,
which trains the model with multiple sub-
word segmentations probabilistically sam-
pled during training. In addition, for better
subword sampling, we propose a new sub-
word segmentation algorithm based on a
unigram language model. We experiment
with multiple corpora and report consis-
tent improvements especially on low re-
source and out-of-domain settings.

1 Introduction

Neural Machine Translation (NMT) models
(Bahdanau et al., 2014; Luong et al., 2015;
Wu et al., 2016; Vaswani et al., 2017) often oper-
ate with fixed word vocabularies, as their training
and inference depend heavily on the vocabulary
size. However, limiting vocabulary size increases
the amount of unknown words, which makes
the translation inaccurate especially in an open
vocabulary setting.

A common approach for dealing with the
open vocabulary issue is to break up rare
words into subword units (Schuster and Nakajima,
2012; Chitnis and DeNero, 2015; Sennrich et al.,
2016; Wu et al., 2016). Byte-Pair-Encoding

Subwords ( means spaces) Vocabulary id sequence
Hell/o/ world 13586 137 255
H/ello/ world 320 7363 255
He/llo/ world 579 10115 255
/He/l/l/o/ world 7 18085 356 356 137 255
H/el/l/o/ /world 320 585 356 137 7 12295

Table 1: Multiple subword sequences encoding
the same sentence “Hello World”

(BPE) (Sennrich et al., 2016) is a de facto
standard subword segmentation algorithm ap-
plied to many NMT systems and achieving
top translation quality in several shared tasks
(Denkowski and Neubig, 2017; Nakazawa et al.,
2017). BPE segmentation gives a good balance
between the vocabulary size and the decoding ef-
ficiency, and also sidesteps the need for a special
treatment of unknown words.

BPE encodes a sentence into a unique subword
sequence. However, a sentence can be repre-
sented in multiple subword sequences even with
the same vocabulary. Table 1 illustrates an exam-
ple. While these sequences encode the same input
“Hello World”, NMT handles them as completely
different inputs. This observation becomes more
apparent when converting subword sequences into
id sequences (right column in Table 1). These vari-
ants can be viewed as a spurious ambiguity, which
might not always be resolved in decoding process.
At training time of NMT, multiple segmentation
candidates will make the model robust to noise and
segmentation errors, as they can indirectly help the
model to learn the compositionality of words, e.g.,
“books” can be decomposed into “book” + “s”.

In this study, we propose a new regulariza-
tion method for open-vocabulary NMT, called
subword regularization, which employs multiple
subword segmentations to make the NMT model
accurate and robust. Subword regularization con-
sists of the following two sub-contributions:
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• We propose a simple NMT training algo-
rithm to integrate multiple segmentation can-
didates. Our approach is implemented as an
on-the-fly data sampling, which is not spe-
cific to NMT architecture. Subword regular-
ization can be applied to any NMT system
without changing the model structure.

• We also propose a new subword segmenta-
tion algorithm based on a language model,
which provides multiple segmentations with
probabilities. The language model allows to
emulate the noise generated during the seg-
mentation of actual data.

Empirical experiments using multiple corpora
with different sizes and languages show that
subword regularization achieves significant im-
provements over the method using a single sub-
word sequence. In addition, through experiments
with out-of-domain corpora, we show that sub-
word regularization improves the robustness of the
NMT model.

2 Neural Machine Translation with
multiple subword segmentations

2.1 NMT training with on-the-fly subword
sampling

Given a source sentence X and a target sentence
Y , let x = (x1, . . . , xM ) and y = (y1, . . . , yN )
be the corresponding subword sequences seg-
mented with an underlying subword segmenter,
e.g., BPE. NMT models the translation probability
P (Y |X) = P (y|x) as a target language sequence
model that generates target subword yn condition-
ing on the target history y<n and source input se-
quence x:

P (y|x; θ) =
N∏

n=1

P (yn|x, y<n; θ), (1)

where θ is a set of model parameters. A com-
mon choice to predict the subword yn is to use
a recurrent neural network (RNN) architecture.
However, note that subword regularization is not
specific to this architecture and can be applica-
ble to other NMT architectures without RNN, e.g.,
(Vaswani et al., 2017; Gehring et al., 2017).

NMT is trained using the standard maximum
likelihood estimation, i.e., maximizing the log-
likelihood L(θ) of a given parallel corpus D =

{⟨X(s), Y (s)⟩}|D|
s=1 = {⟨x(s),y(s)⟩}|D|

s=1,

θMLE = argmax
θ

L(θ)

where, L(θ) =

|D|∑
s=1

logP (y(s)|x(s); θ). (2)

We here assume that the source and target sen-
tences X and Y can be segmented into multiple
subword sequences with the segmentation proba-
bilities P (x|X) and P (y|Y ) respectively. In sub-
word regularization, we optimize the parameter set
θ with the marginalized likelihood as (3).

Lmarginal(θ) =

|D|∑
s=1

Ex∼P (x|X(s))

y∼P (y|Y (s))

[logP (y|x; θ)] (3)

Exact optimization of (3) is not feasible as the
number of possible segmentations increases expo-
nentially with respect to the sentence length. We
approximate (3) with finite k sequences sampled
from P (x|X) and P (y|Y ) respectively.

Lmarginal(θ) ∼=
1

k2

|D|∑
s=1

k∑
i=1

k∑
j=1

logP (yj |xi; θ)

xi ∼ P (x|X(s)), yj ∼ P (y|Y (s)).

(4)

For the sake of simplicity, we use k = 1. Train-
ing of NMT usually uses an online training for
efficiency, in which the parameter θ is iteratively
optimized with respect to the smaller subset of D
(mini-batch). When we have a sufficient number
of iterations, subword sampling is executed via the
data sampling of online training, which yields a
good approximation of (3) even if k = 1. It should
be noted, however, that the subword sequence is
sampled on-the-fly for each parameter update.

2.2 Decoding
In the decoding of NMT, we only have a raw
source sentence X . A straightforward approach
for decoding is to translate from the best segmen-
tation x∗ that maximizes the probability P (x|X),
i.e., x∗ = argmaxxP (x|X). Additionally,
we can use the n-best segmentations of P (x|X)
to incorporate multiple segmentation candidates.
More specifically, given n-best segmentations
(x1, . . . ,xn), we choose the best translation y∗

that maximizes the following score.

score(x,y) = logP (y|x)/|y|λ, (5)
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where |y| is the number of subwords in y and λ ∈
R+ is the parameter to penalize shorter sentences.
λ is optimized with the development data.

In this paper, we call these two algorithms one-
best decoding and n-best decoding respectively.

3 Subword segmentations with language
model

3.1 Byte-Pair-Encoding (BPE)

Byte-Pair-Encoding (BPE) (Sennrich et al., 2016;
Schuster and Nakajima, 2012) is a subword seg-
mentation algorithm widely used in many NMT
systems1. BPE first splits the whole sentence into
individual characters. The most frequent2 adjacent
pairs of characters are then consecutively merged
until reaching a desired vocabulary size. Subword
segmentation is performed by applying the same
merge operations to the test sentence.

An advantage of BPE segmentation is that it
can effectively balance the vocabulary size and the
step size (the number of tokens required to encode
the sentence). BPE trains the merged operations
only with a frequency of characters. Frequent sub-
strings will be joined early, resulting in common
words remaining as one unique symbol. Words
consisting of rare character combinations will be
split into smaller units, e.g., substrings or charac-
ters. Therefore, only with a small fixed size of
vocabulary (usually 16k to 32k), the number of re-
quired symbols to encode a sentence will not sig-
nificantly increase, which is an important feature
for an efficient decoding.

One downside is, however, that BPE is based
on a greedy and deterministic symbol replace-
ment, which can not provide multiple segmenta-
tions with probabilities. It is not trivial to apply
BPE to the subword regularization that depends on
segmentation probabilities P (x|X).

3.2 Unigram language model

In this paper, we propose a new subword seg-
mentation algorithm based on a unigram language
model, which is capable of outputing multiple sub-
word segmentations with probabilities. The uni-
gram language model makes an assumption that

1Strictly speaking, wordpiece model
(Schuster and Nakajima, 2012) is different from BPE.
We consider wordpiece as a variant of BPE, as it also uses
an incremental vocabulary generation with a different loss
function.

2Wordpiece model uses a likelihood instead of frequency.

each subword occurs independently, and conse-
quently, the probability of a subword sequence
x = (x1, . . . , xM ) is formulated as the product
of the subword occurrence probabilities p(xi)3:

P (x) =
M∏
i=1

p(xi), (6)

∀i xi ∈ V,
∑
x∈V

p(x) = 1,

where V is a pre-determined vocabulary. The most
probable segmentation x∗ for the input sentence X
is then given by

x∗ = argmax
x∈S(X)

P (x), (7)

where S(X) is a set of segmentation candidates
built from the input sentence X . x∗ is obtained
with the Viterbi algorithm (Viterbi, 1967).

If the vocabulary V is given, subword occur-
rence probabilities p(xi) are estimated via the EM
algorithm that maximizes the following marginal
likelihood L assuming that p(xi) are hidden vari-
ables.

L =

|D|∑
s=1

log(P (X(s))) =

|D|∑
s=1

log
( ∑
x∈S(X(s))

P (x)
)

In the real setting, however, the vocabulary set
V is also unknown. Because the joint optimization
of vocabulary set and their occurrence probabili-
ties is intractable, we here seek to find them with
the following iterative algorithm.

1. Heuristically make a reasonably big seed vo-
cabulary from the training corpus.

2. Repeat the following steps until |V| reaches a
desired vocabulary size.

(a) Fixing the set of vocabulary, optimize
p(x) with the EM algorithm.

(b) Compute the lossi for each subword xi,
where lossi represents how likely the
likelihood L is reduced when the sub-
word xi is removed from the current vo-
cabulary.

(c) Sort the symbols by lossi and keep top
η % of subwords (η is 80, for example).
Note that we always keep the subwords
consisting of a single character to avoid
out-of-vocabulary.

3Target sequence y = (y1, . . . , yN ) can also be modeled
similarly.
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There are several ways to prepare the seed vo-
cabulary. The natural choice is to use the union
of all characters and the most frequent substrings
in the corpus4. Frequent substrings can be enu-
merated in O(T ) time and O(20T ) space with
the Enhanced Suffix Array algorithm (Nong et al.,
2009), where T is the size of the corpus. Simi-
lar to (Sennrich et al., 2016), we do not consider
subwords that cross word boundaries.

As the final vocabulary V contains all individual
characters in the corpus, character-based segmen-
tation is also included in the set of segmentation
candidates S(X). In other words, subword seg-
mentation with the unigram language model can
be seen as a probabilsitic mixture of characters,
subwords and word segmentations.

3.3 Subword sampling

Subword regularization samples one subword seg-
mentation from the distribution P (x|X) for each
parameter update. A straightforward approach
for an approximate sampling is to use the l-best
segmentations. More specifically, we first obtain
l-best segmentations according to the probabil-
ity P (x|X). l-best search is performed in lin-
ear time with the Forward-DP Backward-A* al-
gorithm (Nagata, 1994). One segmentation xi is
then sampled from the multinomial distribution
P (xi|X) ∼= P (xi)

α/
∑l

i=1 P (xi)
α, where α ∈

R+ is the hyperparameter to control the smooth-
ness of the distribution. A smaller α leads to sam-
ple xi from a more uniform distribution. A larger
α tends to select the Viterbi segmentation.

Setting l → ∞, in theory, allows to take all pos-
sible segmentations into account. However, it is
not feasible to increase l explicitly as the num-
ber of candidates increases exponentially with re-
spect to the sentence length. In order to exactly
sample from all possible segmentations, we use
the Forward-Filtering and Backward-Sampling al-
gorithm (FFBS) (Scott, 2002), a variant of the
dynamic programming originally introduced by
Bayesian hidden Markov model training. In
FFBS, all segmentation candidates are represented
in a compact lattice structure, where each node de-
notes a subword. In the first pass, FFBS computes
a set of forward probabilities for all subwords in
the lattice, which provide the probability of end-
ing up in any particular subword w. In the second

4It is also possible to run BPE with a sufficient number of
merge operations.

pass, traversing the nodes in the lattice from the
end of the sentence to the beginning of the sen-
tence, subwords are recursively sampled for each
branch according to the forward probabilities.

3.4 BPE vs. Unigram language model

BPE was originally introduced in the data com-
pression literature (Gage, 1994). BPE is a vari-
ant of dictionary (substitution) encoder that incre-
mentally finds a set of symbols such that the total
number of symbols for encoding the text is mini-
mized. On the other hand, the unigram language
model is reformulated as an entropy encoder that
minimizes the total code length for the text. Ac-
cording to Shannon’s coding theorem, the optimal
code length for a symbol s is − log ps, where ps
is the occurrence probability of s. This is essen-
tially the same as the segmentation strategy of the
unigram language model described as (7).

BPE and the unigram language model share the
same idea that they encode a text using fewer bits
with a certain data compression principle (dictio-
nary vs. entropy). Therefore, we expect to see the
same benefit as BPE with the unigram language
model. However, the unigram language model is
more flexible as it is based on a probabilistic lan-
guage model and can output multiple segmenta-
tions with their probabilities, which is an essential
requirement for subword regularization.

4 Related Work

Regularization by noise is a well studied tech-
nique in deep neural networks. A well-known ex-
ample is dropout (Srivastava et al., 2014), which
randomly turns off a subset of hidden units dur-
ing training. Dropout is analyzed as an ensemble
training, where many different models are trained
on different subsets of the data. Subword regu-
larization trains the model on different data inputs
randomly sampled from the original input sen-
tences, and thus is regarded as a variant of ensem-
ble training.

The idea of noise injection has previously been
used in the context of Denoising Auto-Encoders
(DAEs) (Vincent et al., 2008), where noise is
added to the inputs and the model is trained to re-
construct the original inputs. There are a couple
of studies that employ DAEs in natural language
processing.

(Lample et al., 2017; Artetxe et al., 2017) in-
dependently propose DAEs in the context of
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sequence-to-sequence learning, where they ran-
domly alter the word order of the input sentence
and the model is trained to reconstruct the original
sentence. Their technique is applied to an unsu-
pervised machine translation to make the encoder
truly learn the compositionality of input sentences.

Word dropout (Iyyer et al., 2015) is a simple ap-
proach for a bag-of-words representation, in which
the embedding of a certain word sequence is sim-
ply calculated by averaging the word embeddings.
Word dropout randomly drops words from the bag
before averaging word embeddings, and conse-
quently can see 2|X| different token sequences for
each input X .

(Belinkov and Bisk, 2017) explore the training
of character-based NMT with a synthetic noise
that randomly changes the order of characters in
a word. (Xie et al., 2017) also proposes a robust
RNN language model that interpolates random un-
igram language model.

The basic idea and motivation behind subword
regularization are similar to those of previous
work. In order to increase the robustness, they in-
ject noise to input sentences by randomly chang-
ing the internal representation of sentences. How-
ever, these previous approaches often depend on
heuristics to generate synthetic noises, which do
not always reflect the real noises on training and
inference. In addition, these approaches can only
be applied to source sentences (encoder), as they
irreversibly rewrite the surface of sentences. Sub-
word regularization, on the other hand, generates
synthetic subword sequences with an underlying
language model to better emulate the noises and
segmentation errors. As subword regularization is
based on an invertible conversion, we can safely
apply it both to source and target sentences.

Subword regularization can also be viewed as a
data augmentation. In subword regularization, an
input sentence is converted into multiple invariant
sequences, which is similar to the data augmen-
tation for image classification tasks, for example,
random flipping, distorting, or cropping.

There are several studies focusing on segmen-
tation ambiguities in language modeling. Latent
Sequence Decompositions (LSDs) (Chan et al.,
2016) learns the mapping from the input and the
output by marginalizing over all possible segmen-
tations. LSDs and subword regularization do not
assume a predetermined segmentation for a sen-
tence, and take multiple segmentations by a sim-

ilar marginalization technique. The difference
is that subword regularization injects the multi-
ple segmentations with a separate language model
through an on-the-fly subword sampling. This ap-
proach makes the model simple and independent
from NMT architectures.

Lattice-to-sequence models (Su et al., 2017;
Sperber et al., 2017) are natural extension of
sequence-to-sequence models, which represent in-
puts uncertainty through lattices. Lattice is en-
coded with a variant of TreeLSTM (Tai et al.,
2015), which requires changing the model archi-
tecture. In addition, while subword regulariza-
tion is applied both to source and target sentences,
lattice-to-sequence models do not handle target
side ambiguities.

A mixed word/character model (Wu et al.,
2016) addresses the out-of-vocabulary problem
with a fixed vocabulary. In this model, out-of-
vocabulary words are not collapsed into a single
UNK symbol, but converted into the sequence of
characters with special prefixes representing the
positions in the word. Similar to BPE, this model
also encodes a sentence into a unique fixed se-
quence, thus multiple segmentations are not taken
into account.

5 Experiments

5.1 Setting
We conducted experiments using multiple corpora
with different sizes and languages. Table 2 sum-
marizes the evaluation data we used 5 6 7 8 9 10.
IWSLT15/17 and KFTT are relatively small cor-
pora, which include a wider spectrum of languages
with different linguistic properties. They can eval-
uate the language-agnostic property of subword
regularization. ASPEC and WMT14 (en↔de) are
medium-sized corpora. WMT14 (en↔cs) is a
rather big corpus consisting of more than 10M par-
allel sentences.

We used GNMT (Wu et al., 2016) as the im-
plementation of the NMT system for all exper-
iments. We generally followed the settings and
training procedure described in (Wu et al., 2016),
however, we changed the settings according to the

5IWSLT15: http://workshop2015.iwslt.org/
6IWSLT17: http://workshop2017.iwslt.org/
7KFTT: http://www.phontron.com/kftt/
8ASPEC: http://lotus.kuee.kyoto-u.ac.jp/ASPEC/
9WMT14: http://statmt.org/wmt14/

10WMT14(en↔de) uses the same setting as (Wu et al.,
2016).
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corpus size. Table 2 shows the hyperparameters
we used in each experiment. As common set-
tings, we set the dropout probability to be 0.2. For
parameter estimation, we used a combination of
Adam (Kingma and Adam, 2014) and SGD algo-
rithms. Both length normalization and converge
penalty parameters are set to 0.2 (see section 7 in
(Wu et al., 2016)). We set the decoding beam size
to 4.

The data was preprocessed with Moses tok-
enizer before training subword models. It should
be noted, however, that Chinese and Japanese have
no explicit word boundaries and Moses tokenizer
does not segment sentences into words, and hence
subword segmentations are trained almost from
unsegmented raw sentences in these languages.

We used the case sensitive BLEU score
(Papineni et al., 2002) as an evaluation metric. As
the output sentences are not segmented in Chi-
nese and Japanese, we segment them with char-
acters and KyTea11 for Chinese and Japanese re-
spectively before calculating BLEU scores.

BPE segmentation is used as a baseline sys-
tem. We evaluate three test systems with dif-
ferent sampling strategies: (1) Unigram language
model-based subword segmentation without sub-
word regularization (l=1), (2) with subword reg-
ularization (l=64, α=0.1) and (3) (l=∞, α=
0.2/0.5) 0.2: IWSLT, 0.5: others. These sam-
pling parameters were determined with prelimi-
nary experiments. l = 1 is aimed at a pure com-
parison between BPE and the unigram language
model. In addition, we compare one-best decod-
ing and n-best decoding (See section 2.2). Be-
cause BPE is not able to provide multiple segmen-
tations, we only evaluate one-best decoding for
BPE. Consequently, we compare 7 systems (1 +
3 × 2) for each language pair.

5.2 Main Results

Table 3 shows the translation experiment results.
First, as can be seen in the table, BPE and un-

igram language model without subword regular-
ization (l = 1) show almost comparable BLEU
scores. This is not surprising, given that both BPE
and the unigram language model are based on data
compression algorithms.

We can see that subword regularization (l > 1)
boosted BLEU scores quite impressively (+1 to 2
points) in all language pairs except for WMT14

11http://www.phontron.com/kytea

(en→cs) dataset. The gains are larger especially
in lower resource settings (IWSLT and KFTT). It
can be considered that the positive effects of data
augmentation with subword regularization worked
better in lower resource settings, which is a com-
mon property of other regularization techniques.

As for the sampling algorithm, (l = ∞ α =
0.2/0.5) slightly outperforms (l = 64, α = 0.1)
on IWSLT corpus, but they show almost compara-
ble results on larger data set. Detailed analysis is
described in Section 5.5.

On top of the gains with subword regulariza-
tion, n-best decoding yields further improvements
in many language pairs. However, we should note
that the subword regularization is mandatory for
n-best decoding and the BLEU score is degraded
in some language pairs without subword regular-
ization (l = 1). This result indicates that the de-
coder is more confused for multiple segmentations
when they are not explored at training time.

5.3 Results with out-of-domain corpus
To see the effect of subword regularization on a
more open-domain setting, we evaluate the sys-
tems with out-of-domain in-house data consisting
of multiple genres: Web, patents and query logs.
Note that we did not conduct the comparison with
KFTT and ASPEC corpora, as we found that the
domains of these corpora are too specific12, and
preliminary evaluations showed extremely poor
BLEU scores (less than 5) on out-of-domain cor-
pora.

Table 4 shows the results. Compared to the
gains obtained with the standard in-domain evalu-
ations in Table 3, subword regularization achieves
significantly larger improvements (+2 points) in
every domain of corpus. An interesting observa-
tion is that we have the same level of improve-
ments even on large training data sets (WMT14),
which showed marginal or small gains with the
in-domain data. This result strongly supports our
claim that subword regularization is more useful
for open-domain settings.

5.4 Comparison with other segmentation
algorithms

Table 5 shows the comparison on different
segmentation algorithms: word, character,
mixed word/character (Wu et al., 2016), BPE

12KFTT focuses on Wikipedia articles related to Kyoto,
and ASPEC is a corpus of scientific paper domain. There-
fore, it is hard to translate out-of-domain texts.
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Size of sentences Parameters

Corpus
Language

pair train dev test
#vocab

(Enc/Dec shared)
#dim of LSTM，

embedding
#layers of LSTM

(Enc+Dec)

IWSLT15 en ↔ vi 133k 1553 1268 16k 512 2+2
en ↔ zh 209k 887 1261 16k 512 2+2

IWSLT17 en ↔ fr 232k 890 1210 16k 512 2+2
en ↔ ar 231k 888 1205 16k 512 2+2

KFTT en ↔ ja 440k 1166 1160 8k 512 6+6
ASPEC en ↔ ja 2M 1790 1812 16k 512 6+6
WMT14 en ↔ de 4.5M 3000 3003 32k 1024 8+8

en ↔ cs 15M 3000 3003 32k 1024 8+8
Table 2: Details of evaluation data set

Proposed (one-best decoding) Proposed (n-best decoding, n=64)

Corpus
Language

pair
baseline
(BPE) l = 1

l = 64
α = 0.1

l = ∞
α=0.2/0.5 l = 1

l = 64
α = 0.1

l = ∞
α=0.2/0.5

IWSLT15 en → vi 25.61 25.49 27.68* 27.71* 25.33 28.18* 28.48*
vi → en 22.48 22.32 24.73* 26.15* 22.04 24.66* 26.31*
en → zh 16.70 16.90 19.36* 20.33* 16.73 20.14* 21.30*
zh → en 15.76 15.88 17.79* 16.95* 16.23 17.75* 17.29*

IWSLT17 en → fr 35.53 35.39 36.70* 36.36* 35.16 37.60* 37.01*
fr → en 33.81 33.74 35.57* 35.54* 33.69 36.07* 36.06*
en → ar 13.01 13.04 14.92* 15.55* 12.29 14.90* 15.36*
ar → en 25.98 27.09* 28.47* 29.22* 27.08* 29.05* 29.29*

KFTT en → ja 27.85 28.92* 30.37* 30.01* 28.55* 31.46* 31.43*
ja → en 21.37 21.46 22.33* 22.04* 21.37 22.47* 22.64*

ASPEC en → ja 40.62 40.66 41.24* 41.23* 40.86 41.55* 41.87*
ja → en 26.51 26.76 27.08* 27.14* 27.49* 27.75* 27.89*

WMT14 en → de 24.53 24.50 25.04* 24.74 22.73 25.00* 24.57
de → en 28.01 28.65* 28.83* 29.39* 28.24 29.13* 29.97*
en → cs 25.25 25.54 25.41 25.26 24.88 25.49 25.38
cs → en 28.78 28.84 29.64* 29.41* 25.77 29.23* 29.15*

Table 3: Main Results (BLEU(%)) (l: sampling size in SR, α: smoothing parameter). * indicates statistically significant
difference (p < 0.05) from baselines with bootstrap resampling (Koehn, 2004). The same mark is used in Table 4 and 6.

(Sennrich et al., 2016) and our unigram model
with or without subword regularization. The
BLEU scores of word, character and mixed
word/character models are cited from (Wu et al.,
2016). As German is a morphologically rich
language and needs a huge vocabulary for word
models, subword-based algorithms perform a
gain of more than 1 BLEU point than word
model. Among subword-based algorithms, the
unigram language model with subword regular-
ization achieved the best BLEU score (25.04),
which demonstrates the effectiveness of multiple
subword segmentations.

5.5 Impact of sampling hyperparameters
Subword regularization has two hyperparameters:
l: size of sampling candidates, α: smoothing con-
stant. Figure 1 shows the BLEU scores of various
hyperparameters on IWSLT15 (en → vi) dataset.

First, we can find that the peaks of BLEU scores
against smoothing parameter α are different de-

pending on the sampling size l. This is expected,
because l = ∞ has larger search space than l =
64, and needs to set α larger to sample sequences
close to the Viterbi sequence x∗.

Another interesting observation is that α = 0.0
leads to performance drops especially on l = ∞.
When α = 0.0, the segmentation probability
P (x|X) is virtually ignored and one segmentation
is uniformly sampled. This result suggests that bi-
ased sampling with a language model is helpful to
emulate the real noise in the actual translation.

In general, larger l allows a more aggressive
regularization and is more effective for low re-
source settings such as IWSLT. However, the es-
timation of α is more sensitive and performance
becomes even worse than baseline when α is ex-
tremely small. To weaken the effect of regular-
ization and avoid selecting invalid parameters, it
might be more reasonable to use l = 64 for high
resource languages.
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Domain
(size) Corpus

Language
pair

Baseline
(BPE)

Proposed
(SR)

Web IWSLT15 en → vi 13.86 17.36*
(5k) vi → en 7.83 11.69*

en → zh 9.71 13.85*
zh → en 5.93 8.13*

IWSLT17 en → fr 16.09 20.04*
fr → en 14.77 19.99*

WMT14 en → de 22.71 26.02*
de → en 26.42 29.63*
en → cs 19.53 21.41*
cs → en 25.94 27.86*

Patent WMT14 en → de 15.63 25.76*
(2k) de → en 22.74 32.66*

en → cs 16.70 19.38*
cs → en 23.20 25.30*

Query IWSLT15 en → zh 9.30 12.47*
(2k) zh → en 14.94 19.99*

IWSLT17 en → fr 10.79 10.99
fr → en 19.01 23.96*

WMT14 en → de 25.93 29.82*
de → en 26.24 30.90*

Table 4: Results with out-of-domain corpus
(l = ∞, α = 0.2: IWSLT15/17, l = 64, α = 0.1: others,
one-best decding)

Model BLEU
Word 23.12
Character (512 nodes) 22.62
Mixed Word/Character 24.17
BPE 24.53
Unigram w/o SR (l = 1) 24.50
Unigram w/ SR (l = 64, α = 0.1) 25.04

Table 5: Comparison of different segmentation al-
gorithms (WMT14 en→de)

Although we can see in general that the opti-
mal hyperparameters are roughly predicted with
the held-out estimation, it is still an open question
how to choose the optimal size l in subword sam-
pling.

5.6 Results with single side regularization

Table 6 summarizes the BLEU scores with sub-
word regularization either on source or target sen-
tence to figure out which components (encoder or
decoder) are more affected. As expected, we can
see that the BLEU scores with single side regular-
ization are worse than full regularization. How-
ever, it should be noted that single side regular-
ization still has positive effects. This result im-
plies that subword regularization is not only help-
ful for encoder-decoder architectures, but appli-
cable to other NLP tasks that only use an either
encoder or decoder, including text classification
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Figure 1: Effect of sampling hyperparameters

Regularization type en→vi vi→en en→ar ar→en
No reg. (baseline) 25.49 22.32 13.04 27.09
Source only 26.00 23.09* 13.46 28.16*
Target only 26.10 23.62* 14.34* 27.89*
Source and target 27.68* 24.73* 14.92* 28.47*

Table 6: Comparison on different regularization
strategies (IWSLT15/17, l = 64, α = 0.1)

(Iyyer et al., 2015) and image caption generation
(Vinyals et al., 2015).

6 Conclusions

In this paper, we presented a simple regularization
method, subword regularization13, for NMT,
with no change to the network architecture. The
central idea is to virtually augment training data
with on-the-fly subword sampling, which helps
to improve the accuracy as well as robustness of
NMT models. In addition, for better subword sam-
pling, we propose a new subword segmentation
algorithm based on the unigram language model.
Experiments on multiple corpora with different
sizes and languages show that subword regulariza-
tion leads to significant improvements especially
on low resource and open-domain settings.

Promising avenues for future work are to ap-
ply subword regularization to other NLP tasks
based on encoder-decoder architectures, e.g., di-
alog generation (Vinyals and Le, 2015) and auto-
matic summarization (Rush et al., 2015). Com-
pared to machine translation, these tasks do not
have enough training data, and thus there could
be a large room for improvement with subword
regularization. Additionally, we would like to ex-
plore the application of subword regularization for
machine learning, including Denoising Auto En-
coder (Vincent et al., 2008) and Adversarial Train-
ing (Goodfellow et al., 2015).

13Implementation is available at
https://github.com/google/sentencepiece
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