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Abstract

Neural Machine Translation (NMT) per-
forms poor on the low-resource language
pair (X,Z), especially when Z is a rare
language. By introducing another rich
language Y , we propose a novel trian-
gular training architecture (TA-NMT) to
leverage bilingual data (Y,Z) (may be
small) and (X,Y ) (can be rich) to im-
prove the translation performance of low-
resource pairs. In this triangular archi-
tecture, Z is taken as the intermediate la-
tent variable, and translation models of Z
are jointly optimized with a unified bidi-
rectional EM algorithm under the goal of
maximizing the translation likelihood of
(X,Y ). Empirical results demonstrate
that our method significantly improves the
translation quality of rare languages on
MultiUN and IWSLT2012 datasets, and
achieves even better performance combin-
ing back-translation methods.

1 Introduction

In recent years, Neural Machine Translation
(NMT) (Kalchbrenner and Blunsom, 2013;
Sutskever et al., 2014; Bahdanau et al., 2014)
has achieved remarkable performance on many
translation tasks (Jean et al., 2015; Sennrich
et al., 2016; Wu et al., 2016; Sennrich et al.,
2017). Being an end-to-end architecture, an NMT
system first encodes the input sentence into a
sequence of real vectors, based on which the
decoder generates the target sequence word by
word with the attention mechanism (Bahdanau
et al., 2014; Luong et al., 2015). During training,
NMT systems are optimized to maximize the
translation probability of a given language pair

∗Contribution during internship at MSRA.

with the Maximum Likelihood Estimation (MLE)
method, which requires large bilingual data to
fit the large parameter space. Without adequate
data, which is common especially when it comes
to a rare language, NMT usually falls short on
low-resource language pairs (Zoph et al., 2016).

In order to deal with the data sparsity problem
for NMT, exploiting monolingual data (Sennrich
et al., 2015; Zhang and Zong, 2016; Cheng et al.,
2016; Zhang et al., 2018; He et al., 2016) is the
most common method. With monolingual data,
the back-translation method (Sennrich et al., 2015)
generates pseudo bilingual sentences with a target-
to-source translation model to train the source-to-
target one. By extending back-translation, source-
to-target and target-to-source translation models
can be jointly trained and boost each other (Cheng
et al., 2016; Zhang et al., 2018). Similar to joint
training (Cheng et al., 2016; Zhang et al., 2018),
dual learning (He et al., 2016) designs a reinforce-
ment learning framework to better capitalize on
monolingual data and jointly train two models.

Instead of leveraging monolingual data (X
or Z) to enrich the low-resource bilingual pair
(X,Z), in this paper, we are motivated to intro-
duce another rich language Y , by which addi-
tionally acquired bilingual data (Y,Z) and (X,Y )
can be exploited to improve the translation per-
formance of (X,Z). This requirement is easy to
satisfy, especially when Z is a rare language but
X is not. Under this scenario, (X,Y ) can be
a rich-resource pair and provide much bilingual
data, while (Y,Z) would also be a low-resource
pair mostly because Z is rare. For example, in the
dataset IWSLT2012, there are only 112.6K bilin-
gual sentence pairs of English-Hebrew, since He-
brew is a rare language. If French is introduced
as the third language, we can have another low-
resource bilingual data of French-Hebrew (116.3K
sentence pairs), and easily-acquired bilingual data
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of the rich-resource pair English-French.

Figure 1: Triangular architecture for rare language
translation. The solid lines mean rich-resource and
the dash lines mean low-resource. X , Y and Z are
three different languages.

With the introduced rich language Y , in this
paper, we propose a novel triangular architec-
ture (TA-NMT) to exploit the additional bilingual
data of (Y, Z) and (X,Y ), in order to get better
translation performance on the low-resource pair
(X,Z), as shown in Figure 1. In this architec-
ture, (Y,Z) is used for training another translation
model to score the translation model of (X,Z),
while (X,Y ) is used to provide large bilingual
data with favorable alignment information.

Under the motivation to exploit the rich-
resource pair (X,Y ), instead of modeling X ⇒
Z directly, our method starts from modeling the
translation task X ⇒ Y while taking Z as a la-
tent variable. Then, we decompose X ⇒ Y
into two phases for training two translation mod-
els of low-resource pairs ((X,Z) and (Y,Z)) re-
spectively. The first translation model generates a
sequence in the hidden space of Z from X , based
on which the second one generates the translation
in Y . These two models can be optimized jointly
with an Expectation Maximization (EM) frame-
work with the goal of maximizing the translation
probability p(y|x). In this framework, the two
models can boost each other by generating pseudo
bilingual data for model training with the weights
scored from the other. By reversing the transla-
tion direction of X ⇒ Y , our method can be
used to train another two translation models p(z|y)
and p(x|z). Therefore, the four translation mod-
els (p(z|x), p(x|z), p(z|y) and p(y|z)) of the rare
language Z can be optimized jointly with our pro-
posed unified bidirectional EM algorithm.

Experimental results on the MultiUN and
IWSLT2012 datasets demonstrate that our method
can achieve significant improvements for rare
languages translation. By incorporating back-
translation (a method leveraging more monolin-
gual data) into our method, TA-NMT can achieve
even further improvements.

Our contributions are listed as follows:

• We propose a novel triangular training archi-
tecture (TA-NMT) to effectively tackle the
data sparsity problem for rare languages in
NMT with an EM framework.

• Our method can exploit two additional bilin-
gual datasets at both the model and data lev-
els by introducing another rich language.

• Our method is a unified bidirectional EM al-
gorithm, in which four translation models on
two low-resource pairs are trained jointly and
boost each other.

2 Method

As shown in Figure 1, our method tries to lever-
age (X,Y ) (a rich-resource pair) and (Y, Z) to im-
prove the translation performance of low-resource
pair (X,Z), during which translation models of
(X,Z) and (Y, Z) can be improved jointly.

Instead of directly modeling the translation
probabilities of low-resource pairs, we model the
rich-resource pair translation X ⇒ Y , with the
language Z acting as a bridge to connect X and
Y . We decompose X ⇒ Y into two phases for
training two translation models. The first model
p(z|x) generates the latent translation in Z from
the input sentence in X , based on which the sec-
ond one p(y|z) generate the final translation in lan-
guage Y . Following the standard EM procedure
(Borman, 2004) and Jensen’s inequality, we derive
the lower bound of p(y|x) over the whole training
data D as follows:

L(Θ;D)

=
∑

(x,y)∈D

log p(y|x)

=
∑

(x,y)∈D

log
∑
z

p(z|x)p(y|z)

=
∑

(x,y)∈D

log
∑
z

Q(z)
p(z|x)p(y|z)

Q(z)

≥
∑

(x,y)∈D

∑
z

Q(z) log
p(z|x)p(y|z)

Q(z)

.
= L(Q)

(1)

where Θ is the model parameters set of p(z|x) and
p(y|z), and Q(z) is an arbitrary posterior distri-
bution of z. We denote the lower-bound in the last
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but one line as L(Q). Note that we use an approxi-
mation that p(y|x, z) ≈ p(y|z) due to the semantic
equivalence of parallel sentences x and y.

In the following subsections, we will first pro-
pose our EM method in subsection 2.1 based on
the lower-bound derived above. Next, we will
extend our method to two directions and give
our unified bidirectional EM training in subsec-
tion 2.2. Then, in subsection 2.3, we will discuss
more training details of our method and present
our algorithm in the form of pseudo codes.

2.1 EM Training

To maximize L(Θ;D), the EM algorithm can be
leveraged to maximize its lower bound L(Q). In
the E-step, we calculate the expectation of the
variable z using current estimate for the model,
namely find the posterior distribution Q(z). In
the M-step, with the expectation Q(z), we max-
imize the lower bound L(Q). Note that condi-
tioned on the observed data and current model, the
calculation of Q(z) is intractable, so we choose
Q(z) = p(z|x) approximately.

M-step: In the M-step, we maximize the lower
bound L(Q) w.r.t model parameters given Q(z).
By substituting Q(z) = p(z|x) into L(Q), we can
get the M-step as follows:

Θy|z = arg max
Θy|z

L(Q)

= arg max
Θy|z

∑
(x,y)∈D

∑
z

p(z|x) log p(y|z)

= arg max
Θy|z

∑
(x,y)∈D

Ez∼p(z|x) log p(y|z)

(2)
E-step: The approximate choice of Q(z) brings

in a gap between L(Q) and L(Θ;D), which can
be minimized in the E-step with Generalized EM
method (McLachlan and Krishnan, 2007). Ac-
cording to Bishop (2006), we can write this gap
explicitly as follows:

L(Θ;D)− L(Q) =
∑
z

Q(z) log
Q(z)

p(z|y)

= KL(Q(z)||p(z|y))

= KL(p(z|x)||p(z|y))

(3)

where KL(·) is the KullbackLeibler divergence,
and the approximation that p(z|x, y) ≈ p(z|y) is
also used above.

In the E-step, we minimize the gap between
L(Q) and L(Θ;D) as follows:

Θz|x = arg min
Θz|x

KL(p(z|x)||p(z|y)) (4)

To sum it up, the E-step optimizes the model
p(z|x) by minimizing the gap between L(Q) and
L(Θ;D) to get a better lower bound L(Q). This
lower bound is then maximized in the M-step to
optimize the model p(y|z). Given the new model
p(y|z), the E-step tries to optimize p(z|x) again
to find a new lower bound, with which the M-step
is re-performed. This iteration process continues
until the models converge, which is guaranteed by
the convergence of the EM algorithm.

2.2 Unified Bidirectional Training
The model p(z|y) is used as an approximation of
p(z|x, y) in the E-step optimization (Equation 3).
Due to the low resource property of the language
pair (Y, Z), p(z|y) cannot be well trained. To
solve this problem, we can jointly optimize p(x|z)
and p(z|y) similarly by maximizing the reverse
translation probability p(x|y).

We now give our unified bidirectional general-
ized EM procedures as follows:

• Direction of X ⇒ Y

E: Optimize Θz|x.

arg min
Θz|x

KL(p(z|x)||p(z|y)) (5)

M: Optimize Θy|z .

arg max
Θy|z

∑
(x,y)∈D

Ez∼p(z|x) log p(y|z) (6)

• Direction of Y ⇒ X

E: Optimize Θz|y.

arg min
Θz|y

KL(p(z|y)||p(z|x)) (7)

M: Optimize Θx|z .

arg max
Θx|z

∑
(x,y)∈D

Ez∼p(z|y) log p(x|z) (8)

Based on the above derivation, the whole archi-
tecture of our method can be illustrated in Fig-
ure 2, where the dash arrows denote the direction
of p(y|x), in which p(z|x) and p(y|z) are trained
jointly with the help of p(z|y), while the solid ones
denote the direction of p(x|y), in which p(z|y) and
p(x|z) are trained jointly with the help of p(z|x).
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Figure 2: Triangular Learning Architecture for
Low-Resource NMT

2.3 Training Details
A major difficulty in our unified bidirectional
training is the exponential search space of the
translation candidates, which could be addressed
by either sampling (Shen et al., 2015; Cheng et al.,
2016) or mode approximation (Kim and Rush,
2016). In our experiments, we leverage the sam-
pling method and simply generate the top target
sentence for approximation.

In order to perform gradient descend training,
the parameter gradients for Equations 5 and 7 are
formulated as follows:

∇Θz|xKL(p(z|x)||p(z|y))

= Ez∼p(z|x) log
p(z|x)

p(z|y)
∇Θz|x log p(z|x)

∇Θz|yKL(p(z|y)||p(z|x))

= Ez∼p(z|y) log
p(z|y)

p(z|x)
∇Θz|y log p(z|y)

(9)

Similar to reinforcement learning, models
p(z|x) and p(z|y) are trained using samples gen-
erated by the models themselves. According to
our observation, some samples are noisy and detri-
mental to the training process. One way to tackle
this is to filter out the bad ones using some addi-
tional metrics (BLEU, etc.). Nevertheless, in our
settings, BLEU scores cannot be calculated dur-
ing training due to the absence of the golden tar-
gets (z is generated based on x or y from the rich-
resource pair (x, y)). Therefore we choose IBM
model1 scores to weight the generated translation
candidates, with the word translation probabilities
calculated based on the given bilingual data (the
low-resource pair (x, z) or (y, z)). Additionally, to
stabilize the training process, the pseudo samples
generated by model p(z|x) or p(z|y) are mixed
with true bilingual samples in the same mini-batch
with the ratio of 1-1. The whole training procedure
is described in the following Algorithm 1, where
the 5th and 9th steps are generating pseudo data.

Algorithm 1 Training low-resource translation
models with the triangular architecture
Input: Rich-resource bilingual data (x, y); low-

resource bilingual data (x, z) and (y, z)
Output: Parameters Θz|x, Θy|z , Θz|y and Θx|z

1: Pre-train p(z|x), p(z|y), p(x|z), p(y|z)
2: while not convergence do
3: Sample (x, y), (x∗, z∗), (y∗, z∗) ∈ D
4: . X ⇒ Y : Optimize Θz|x and Θy|z
5: Generate z′ from p(z′|x) and build the

training batches B1 = (x, z′)∪(x∗, z∗), B2 =
(y, z′) ∪ (y∗, z∗)

6: E-step: update Θz|x with B1 (Equation 5)
7: M-step: update Θy|z with B2 (Equation 6)
8: . Y ⇒ X: Optimize Θz|y and Θx|z
9: Generate z′ from p(z′|y) and build the

training batches B3 = (y, z′)∪(y∗, z∗), B4 =
(x, z′) ∪ (x∗, z∗)

10: E-step: update Θz|y with B3 (Equation 7)
11: M-step: update Θx|z with B4 (Equation 8)
12: end while
13: return Θz|x, Θy|z , Θz|y and Θx|z

3 Experiments

3.1 Datasets

In order to verify our method, we conduct exper-
iments on two multilingual datasets. The one is
MultiUN (Eisele and Chen, 2010), which is a col-
lection of translated documents from the United
Nations, and the other is IWSLT2012 (Cettolo
et al., 2012), which is a set of multilingual tran-
scriptions of TED talks. As is mentioned in sec-
tion 1, our method is compatible with methods ex-
ploiting monolingual data. So we also find some
extra monolingual data of rare languages in both
datasets and conduct experiments incorporating
back-translation into our method.

MultiUN: English-French (EN-FR) bilingual
data are used as the rich-resource pair (X,Y ).
Arabic (AR) and Spanish (ES) are used as two
simulated rare languages Z. We randomly choose
subsets of bilingual data of (X,Z) and (Y, Z) in
the original dataset to simulate low-resource sit-
uations, and make sure there is no overlap in Z
between chosen data of (X,Z) and (Y,Z).

IWSLT20121: English-French is used as the
rich-resource pair (X,Y ), and two rare languages
Z are Hebrew (HE) and Romanian (RO) in our

1https://wit3.fbk.eu/mt.php?release=2012-02-plain
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Pair
MultiUN IWSLT2012

Lang Size Lang Size
(X,Y ) EN-FR 9.9 M EN-FR 3 7.9 M
(X,Z) EN-AR 116 K EN-HE 112.6 K
(Y, Z) FR-AR 116 K FR-HE 116.3 K

mono Z AR 3 M HE 512.5 K
(X,Z) EN-ES 116 K EN-RO 4 467.3 K
(Y, Z) FR-ES 116 K FR-RO 111.6 K

mono Z ES 3 M RO 885.0 K

Table 1: training data size of each language pair.

choice. Note that in this dataset, low-resource
pairs (X,Z) and (Y,Z) are severely overlapped
in Z. In addition, English-French bilingual data
from WMT2014 dataset are also used to enrich the
rich-resource pair. We also use additional English-
Romanian bilingual data from Europarlv7 dataset
(Koehn, 2005). The monolingual data of Z (HE
and RO) are taken from the web2.

In both datasets, all sentences are filtered within
the length of 5 to 50 after tokenization. Both the
validation and the test sets are 2,000 parallel sen-
tences sampled from the bilingual data, with the
left as training data. The size of training data of
all language pairs are shown in Table 1.

3.2 Baselines
We compare our method with four baseline sys-
tems. The first baseline is the RNNSearch model
(Bahdanau et al., 2014), which is a sequence-to-
sequence model with attention mechanism trained
with given small-scale bilingual data. The trained
translation models are also used as pre-trained
models for our subsequent training processes.

The second baseline is PBSMT (Koehn et al.,
2003), which is a phrase-based statistical machine
translation system. PBSMT is known to perform
well on low-resource language pairs, so we want
to compare it with our proposed method. And we
use the public available implementation of Moses5

for training and test in our experiments.
The third baseline is a teacher-student alike

method (Chen et al., 2017). For the sake of brevity,
we will denote it as T-S. The process is illus-
trated in Figure 3. We treat this method as a sec-
ond baseline because it can also be regarded as a
method exploiting (Y, Z) and (X,Y ) to improve

2https://github.com/ajinkyakulkarni14/TED-
Multilingual-Parallel-Corpus

3together with WMT2014
4together with Europarlv7
5http://www.statmt.org/moses/

Method Resources
PBSMT (X,Z), (Y,Z)

RNNSearch (X,Z), (Y,Z)

T-S (X,Z), (Y,Z), (X,Y )

BackTrans (X,Z), (Y,Z), (X,Y ), mono Z

TA-NMT (X,Z), (Y,Z), (X,Y )

TA-NMT(GI) (X,Z), (Y,Z), (X,Y ), mono Z

Table 2: Resources that different methods use

the translation of (X,Z) if we regard (X,Z) as
the zero-resource pair and p(x|y) as the teacher
model when training p(z|x) and p(x|z).

The fourth baseline is back-translation (Sen-
nrich et al., 2015). We will denote it as Back-
Trans. More concretely, to train the model p(z|x),
we use extra monolingual Z described in Table 1
to do back-translation; to train the model p(x|z),
we use monolingual X taken from (X,Y ). Pro-
cedures for training p(z|y) and p(y|z) are simi-
lar. This method use extra monolingual data of Z
compared with our TA-NMT method. But we can
incorporate it into our method.

Figure 3: A teacher-student alike method for
low-resource translation. For training p(z|x) and
p(x|z), we mix the true pair (y∗, z∗) ∈ D with the
pseudo pair (x′, z∗) generated by teacher model
p (x′|y∗) in the same mini-batch. The training pro-
cedure of p(z|y) and p(y|z) is similar.

3.3 Overall Results

Experimental results on both datasets are shown in
Table 3 and 4 respectively, in which RNNSearch,
PBSMT, T-S and BackTrans are four base-
lines. TA-NMT is our proposed method, and
TA-NMT(GI) is our method incorporating back-
translation as good initialization. For the purpose
of clarity and a fair comparison, we list the re-
sources that different methods exploit in Table 2.

From Table 3 on MultiUN, the performance
of RNNSearch is relatively poor. As is expected,
PBSMT performs better than RNNSearch on low-
resource pairs by the average of 1.78 BLEU. The
T-S method which can doubling the training data
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Method
EN2AR AR2EN FR2AR AR2FR

Ave
EN2ES ES2EN FR2ES ES2FR

Ave
(X⇒Z) (Z⇒X) (Y⇒Z) (Z⇒Y) (X⇒Z) (Z⇒X) (Y⇒Z) (Z⇒Y)

RNNSearch 18.03 31.40 13.42 22.04 21.22 38.77 36.51 32.92 33.05 35.31
PBSMT 19.44 30.81 15.27 23.65 22.29 38.47 36.64 34.99 33.98 36.02
T-S 19.02 32.47 14.59 23.53 22.40 39.75 38.02 33.67 34.04 36.57
BackTrans 22.19 32.02 15.85 23.57 23.73 42.27 38.42 35.81 34.25 37.76
TA-NMT 20.59 33.22 14.64 24.45 23.23 40.85 39.06 34.52 34.39 37.21
TA-NMT(GI) 23.16 33.64 16.50 25.07 24.59 42.63 39.53 35.87 35.21 38.31

Table 3: Test BLEU on MultiUN Dataset.

Method
EN2HE HE2EN FR2HE HE2FR

Ave
EN2RO RO2EN FR2RO RO2FR

Ave
(X⇒Z) (Z⇒X) (Y⇒Z) (Z⇒Y) (X⇒Z) (Z⇒X) (Y⇒Z) (Z⇒Y)

RNNSearch 17.94 28.32 11.86 21.67 19.95 31.44 40.63 17.34 25.20 28.65
PBSMT 17.39 28.05 12.77 21.87 20.02 31.51 39.98 18.13 25.47 28.77
T-S 17.97 28.42 12.04 21.99 20.11 31.80 40.86 17.94 25.69 29.07
BackTrans 18.69 28.55 12.31 21.63 20.20 32.18 41.03 18.19 25.30 29.18
TA-NMT 19.19 29.28 12.76 22.62 20.96 33.65 41.93 18.53 26.35 30.12
TA-NMT(GI) 19.90 29.94 13.54 23.25 21.66 34.41 42.61 19.30 26.53 30.71

Table 4: Test BLEU on IWSLT Dataset.

for both (X,Z) and (Y, Z) by generating pseudo
data from each other, leads up to 1.1 BLEU points
improvement on average over RNNSearch. Com-
pared with T-S, our method gains a further im-
provement of about 0.9 BLEU on average, because
our method can better leverage the rich-resource
pair (X,Y ). With extra large monolingual Z in-
troduced, BackTrans can improve the performance
of p(z|x) and p(z|y) significantly compared with
all the methods without monolingual Z. How-
ever TA-NMT is comparable with or even bet-
ter than BackTrans for p(x|z) and p(y|z) because
both of the methods leverage resources from rich-
resource pair (X,Y ), but BackTrans does not use
the alignment information it provides. Moreover,
with back-translation as good initialization, fur-
ther improvement is achieved by TA-NMT(GI) of
about 0.7 BLEU on average over BackTrans.

In Table 4, we can draw the similar conclu-
sion. However, different from MultiUN, in the
EN-FR-HE group of IWSLT, (X,Z) and (Y,Z)
are severely overlapped in Z. Therefore, T-S
cannot improve the performance obviously (only
about 0.2 BLEU) on RNNSearch because it fails
to essentially double training data via the teacher
model. As for EN-FR-RO, with the additionally
introduced EN-RO data from Europarlv7, which
has no overlap in RO with FR-RO, T-S can im-
prove the average performance more than the EN-
FR-HE group. TA-NMT outperforms T-S by 0.93
BLEU on average. Note that even though Back-

Trans uses extra monolingual Z, the improve-
ments are not so obvious as the former dataset,
the reason for which we will delve into in the next
subsection. Again, with back-translation as good
initialization, TA-NMT(GI) can get the best result.

Note that BLEU scores of TA-NMT are lower
than BackTrans in the directions of X⇒Z and
Y⇒Z. The reason is that the resources used by
these two methods are different, as shown in Table
2. To do back translation in two directions (e.g.,
X⇒Z and Z⇒X), we need monolingual data from
both sides (e.g., X and Z), however, in TA-NMT,
the monolingual data of Z is not necessary. There-
fore, in the translation of X⇒Z or Y⇒Z, Back-
Trans uses additional monolingual data of Z while
TA-NMT does not, that is why BackTrans outper-
forms TA-NMT in these directions. Our method
can leverage back translation as a good initializa-
tion, aka TA-NMT(GI) , and outperforms Back-
Trans on all translation directions.

The average test BLEU scores of different
methods in each data group (EN-FR-AR, EN-FR-
ES, EN-FR-HE, and EN-FR-RO) are listed in the
column Ave of the tables for clear comparison.

3.4 The Effect of Extra Monolingual Data

Comparing the results of BackTrans and TA-
NMT(GI) on both datasets, we notice the improve-
ments of both methods on IWSLT are not as signif-
icant as MultiUN. We speculate the reason is the
relatively less amount of monolingual Z we use in
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the experiments on IWSLT as shown in Table 1.
So we conduct the following experiment to verify
the conjecture by changing the scale of monolin-
gual Arabic data in the MultiUN dataset, of which
the data utilization rates are set to 0%, 10%, 30%,
60% and 100% respectively. Then we compare
the performance of BackTrans and TA-NMT(GI)
in the EN-FR-AR group. As Figure 4 shows, the
amount of monolingual Z actually has a big effect
on the results, which can also verify our conjec-
ture above upon the less significant improvement
of BackTrans and TA-NMT(GI) on IWSLT. In ad-
dition, even with poor ”good-initialization”, TA-
NMT(GI) still get the best results.

Figure 4: Test BLEU of the EN-FR-AR group per-
formed by BackTrans and TA-NMT(GI) with dif-
ferent amount of monolingual Arabic data.

3.5 EM Training Curves

To better illustrate the behavior of our method, we
print the training curves in both the M-steps and E-
steps of TA-NMT and TA-NMT(GI) in Figure 5
above. The chosen models printed in this figure
are EN2AR and AR2FR on MultiUN, and EN2RO
and RO2FR on IWLST.

From Figure 5, we can see that the two low-
resource translation models are improved nearly
simultaneously along with the training process,
which verifies our point that two weak models
could boost each other in our EM framework. No-
tice that at the early stage, the performance of all
models stagnates for several iterations, especially
of TA-NMT. The reason could be that the pseudo
bilingual data and the true training data are hetero-
geneous, and it may take some time for the mod-
els to adapt to a new distribution which both mod-
els agree. Compared with TA-NMT, TA-NMT(GI)
are more stable, because the models may have

Figure 5: BLEU curves on validation sets dur-
ing the training processes of TA-NMT and TA-
NMT(GI). (Top: EN2AR (the E-step) and AR2FR
(the M-step); Bottom: EN2RO (the E-step) and
RO2FR (the M-step))

adapted to a mixed distribution of heterogeneous
data in the preceding back-translation phase.

3.6 Reinforcement Learning Mechanism in
Our Method

As shown in Equation 9, the E-step actually
works as a reinforcement learning (RL) mecha-
nism. Models p(z|x) and p(z|y) generate samples
by themselves and receive rewards to update their
parameters. Note that the reward here is described
by the log terms in Equation 9, which is derived
from our EM algorithm rather than defined arti-
ficially. In Table 5, we do a case study of the
EN2ES translation sampled by p(z|x) as well as
its time-step rewards during the E-step.

In the first case, the best translation of ”politi-
cal” is ”polı́ticos”. When the model p(z|x) gen-
erates an inaccurate one ”polı́ticas”, it receives a
negative reward (-0.01), with which the model pa-
rameters will be updated accordingly. In the sec-
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Source in concluding , poverty eradication requires political will and commitment .

Output
en (0.66) conclusión (0.80) , (0.14) la (0.00) erradicación (1.00) de (0.40) la (0.00) pobreza

(0.90) requiere (0.10) voluntad (1.00) y (0.46) compromiso (0.90) polı́ticas (-0.01) . (1.00)

Reference en conclusión , la erradicación de la pobreza necesita la voluntad y compromiso polı́ticos .

Source visit us and get to know and love berlin !

Output visita (0.00) y (0.05) se (0.00) a (0.17) saber (0.00) y (0.04) a (0.01) berlı́n (0.00) ! (0.00)

Reference visı́tanos y llegar a saber y amar a berlı́n .

Source
legislation also provides an important means of recognizing economic , social and cultural

rights at the domestic level .

Output

la (1.00) legislación (0.34) tambin (1.00) constituye (0.60) un (1.00) medio (0.22) importante

(0.74) de (0.63) reconocer (0.21) los (0.01) derechos (0.01) econmicos (0.03) , (0.01) sociales

(0.02) y (0.01) culturales (1.00) a (0.00) nivel (0.40) nacional (1.00) . (0.03)

Reference
la legislación también constituye un medio importante de reconocer los derechos económicos ,

iales y culturales a nivel nacional .

Table 5: English to Spanish translation sampled in the E-step as well as its time-step rewards.

ond case, the output misses important words and is
not fluent. Rewards received by the model p(z|x)
are zero for nearly all tokens in the output, leading
to an invalid updating. In the last case, the output
sentence is identical to the human reference. The
rewards received are nearly all positive and mean-
ingful, thus the RL rule will update the parameters
to encourage this translation candidate.

4 Related Work

NMT systems, relying heavily on the availabil-
ity of large bilingual data, result in poor transla-
tion quality for low-resource pairs (Zoph et al.,
2016). This low-resource phenomenon has been
observed in much preceding work. A very com-
mon approach is exploiting monolingual data of
both source and target languages (Sennrich et al.,
2015; Zhang and Zong, 2016; Cheng et al., 2016;
Zhang et al., 2018; He et al., 2016).

As a kind of data augmentation technique, ex-
ploiting monolingual data can enrich the training
data for low-resource pairs. Sennrich et al. (2015)
propose back-translation, exploits the monolin-
gual data of the target side, which is then used
to generate pseudo bilingual data via an additional
target-to-source translation model. Different from
back-translation, Zhang and Zong (2016) propose
two approaches to use source-side monolingual
data, of which the first is employing a self-learning
algorithm to generate pseudo data, while the sec-
ond is using two NMT models to predict the trans-
lation and to reorder the source-side monolingual

sentences. As an extension to these two meth-
ods, Cheng et al. (2016) and Zhang et al. (2018)
combine two translation directions and propose a
training framework to jointly optimize the source-
to-target and target-to-source translation models.
Similar to joint training, He et al. (2016) propose
a dual learning framework with a reinforcement
learning mechanism to better leverage monolin-
gual data and make two translation models pro-
mote each other. All of these methods are concen-
trated on exploiting either the monolingual data of
the source and target language or both of them.

Our method takes a different angle but is com-
patible with existing approaches, we propose a
novel triangular architecture to leverage two ad-
ditional language pairs by introducing a third rich
language. By combining our method with existing
approaches such as back-translation, we can make
a further improvement.

Another approach for tackling the low-resource
translation problem is multilingual neural machine
translation (Firat et al., 2016), where different
encoders and decoders for all languages with a
shared attention mechanism are trained. This
method tends to exploit the network architecture
to relate low-resource pairs. Our method is differ-
ent from it, which is more like a training method
rather than network modification.

5 Conclusion

In this paper, we propose a triangular architec-
ture (TA-NMT) to effectively tackle the problem
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of low-resource pairs translation with a unified
bidirectional EM framework. By introducing an-
other rich language, our method can better ex-
ploit the additional language pairs to enrich the
original low-resource pair. Compared with the
RNNSearch (Bahdanau et al., 2014), a teacher-
student alike method (Chen et al., 2017) and the
back-translation (Sennrich et al., 2015) on the
same data level, our method achieves significant
improvement on the MutiUN and IWSLT2012
datasets. Note that our method can be com-
bined with methods exploiting monolingual data
for NMT low-resource problem such as back-
translation and make further improvements.

In the future, we may extend our architecture to
other scenarios, such as totally unsupervised train-
ing with no bilingual data for the rare language.
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