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Abstract

Semantic specialization of distributional
word vectors, referred to as retrofitting, is
a process of fine-tuning word vectors us-
ing external lexical knowledge in order to
better embed some semantic relation. Ex-
isting retrofitting models integrate linguis-
tic constraints directly into learning objec-
tives and, consequently, specialize only the
vectors of words from the constraints. In
this work, in contrast, we transform ex-
ternal lexico-semantic relations into train-
ing examples which we use to learn an
explicit retrofitting model (ER). The ER
model allows us to learn a global special-
ization function and specialize the vectors
of words unobserved in the training data as
well. We report large gains over original
distributional vector spaces in (1) intrin-
sic word similarity evaluation and on (2)
two downstream tasks — lexical simplifica-
tion and dialog state tracking. Finally, we
also successfully specialize vector spaces
of new languages (i.e., unseen in the train-
ing data) by coupling ER with shared mul-
tilingual distributional vector spaces.

1 Introduction

Algebraic modeling of word vector spaces is one
of the core research areas in modern Natural Lan-
guage Processing (NLP) and its usefulness has been
shown across a wide variety of NLP tasks (Col-
lobert et al., 2011; Chen and Manning, 2014; Mela-
mud et al., 2016). Commonly employed distribu-
tional models for word vector induction are based
on the distributional hypothesis (Harris, 1954), i.e.,
they rely on word co-occurrences obtained from
large text corpora (Mikolov et al., 2013b; Penning-
ton et al., 2014; Levy and Goldberg, 2014a; Levy
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et al., 2015; Bojanowski et al., 2017).

The dependence on purely distributional knowl-
edge results in a well-known tendency of fusing
semantic similarity with other types of semantic
relatedness (Hill et al., 2015; Schwartz et al., 2015)
in the induced vector spaces. Consequently, the
similarity between distributional vectors indicates
just an abstract semantic association and not a pre-
cise semantic relation (Yih et al., 2012; Mohammad
et al., 2013). For example, it is difficult to discern
synonyms from antonyms in distributional spaces.
This property has a particularly negative effect on
NLP applications like text simplification and statis-
tical dialog modeling, in which discerning semantic
similarity from other types of semantic relatedness
is pivotal to the system performance (Glavas and
gtajner, 2015; Faruqui et al., 2015; Mrksi€ et al.,
2016; Kim et al., 2016b).

A standard solution is to move beyond purely
unsupervised learning of word representations, in
a process referred to as word vector space spe-
cialization or retrofitting. Specialization models
leverage external lexical knowledge from lexical
resources, such as WordNet (Fellbaum, 1998), the
Paraphrase Database (Ganitkevitch et al., 2013), or
BabelNet (Navigli and Ponzetto, 2012), to special-
ize distributional spaces for a particular lexical rela-
tion, e.g., synonymy (Faruqui et al., 2015; Mrksi¢
et al., 2017) or hypernymy (Glavas and Ponzetto,
2017). External constraints are commonly pairs of
words between which a particular relation holds.

Existing specialization methods exploit the ex-
ternal linguistic constraints in two prominent ways:
(1) joint specialization models modify the learning
objective of the original distributional model by
integrating the constraints into it (Yu and Dredze,
2014; Kiela et al., 2015; Nguyen et al., 2016, inter
alia); (2) post-processing models fine-tune distri-
butional vectors retroactively after training to sat-
isfy the external constraints (Faruqui et al., 2015;
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Mrksié et al., 2017, inter alia). The latter, in gen-
eral, outperform the former (Mrksi¢ et al., 2016).
Retrofitting models can be applied to arbitrary dis-
tributional spaces but they suffer from a major lim-
itation — they locally update only vectors of words
present in the external constraints, whereas vec-
tors of all other (unseen) words remain intact. In
contrast, joint specialization models propagate the
external signal to all words via the joint objective.

In this paper, we propose a new approach for
specializing word vectors that unifies the strengths
of both prior strategies, while mitigating their lim-
itations. Same as retrofitting models, our novel
framework, termed explicit retrofitting (ER), is ap-
plicable to arbitrary distributional spaces. At the
same time, the method learns an explicit global
specialization function that can specialize vectors
for all vocabulary words, similar as in joint models.
Yet, unlike the joint models, ER does not require
expensive re-training on large text corpora, but is
directly applied on top of any pre-trained vector
space. The key idea of ER is to directly learn a spe-
cialization function in a supervised setting, using
lexical constraints as training instances. In other
words, our model, implemented as a deep feed-
forward neural architecture, learns a (non-linear)
function which “translates” word vectors from the
distributional space into the specialized space.

We show that the proposed ER approach yields
considerable gains over distributional spaces in
word similarity evaluation on standard benchmarks
(Hill et al., 2015; Gerz et al., 2016), as well as in
two downstream tasks — lexical simplification and
dialog state tracking. Furthermore, we show that,
by coupling the ER model with shared multilingual
embedding spaces (Mikolov et al., 2013a; Smith
et al., 2017), we can also specialize distributional
spaces for languages unseen in the training data in
a zero-shot language transfer setup. In other words,
we show that an explicit retrofitting model trained
with external constraints from one language can
be successfully used to specialize the distributional
space of another language.

2 Related Work

The importance of vector space specialization for
downstream tasks has been observed, inter alia,
for dialog state tracking (MrkSi¢ et al., 2017; Vuli¢
etal.,2017b), spoken language understanding (Kim
etal., 2016b,a), judging lexical entailment (Nguyen
et al., 2017; Glavas and Ponzetto, 2017; Vuli¢ and
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Mrksic, 2017), lexical contrast modeling (Nguyen
et al., 2016), and cross-lingual transfer of lexical
resources (Vuli¢ et al., 2017a). A common goal
pertaining to all retrofitting models is to pull the
vectors of similar words (e.g., synonyms) closer
together, while some models also push the vec-
tors of dissimilar words (e.g., antonyms) further
apart. The specialization methods fall into two cat-
egories: (1) joint specialization methods, and (2)
post-processing (i.e., retrofitting) methods. Meth-
ods from both categories make use of similar lex-
ical resources — they typically leverage WordNet
(Fellbaum, 1998), FrameNet (Baker et al., 1998),
the Paraphrase Database (PPDB) (Ganitkevitch
et al., 2013; Pavlick et al., 2015), morphological
lexicons (Cotterell et al., 2016), or simple hand-
crafted linguistic rules (Vuli¢ et al., 2017b). In
what follows, we discuss the two model categories.

Joint Specialization Models. These models in-
tegrate external constraints into the distributional
training procedure of general word embedding al-
gorithms such as CBOW, Skip-Gram (Mikolov
et al., 2013b), or Canonical Correlation Analysis
(Dhillon et al., 2015). They modify the prior or
the regularization of the original objective (Yu and
Dredze, 2014; Xu et al., 2014; Bian et al., 2014;
Kiela et al., 2015) or integrate the constraints di-
rectly into the, e.g., an SGNS- or CBOW-style ob-
jective (Liu et al., 2015; Ono et al., 2015; Bolle-
gala et al., 2016; Osborne et al., 2016; Nguyen
et al., 2016, 2017). Besides generally displaying
lower performance compared to retrofitting meth-
ods (Mrksi¢ et al., 2016), these models are also
tied to the distributional objective and any change
of the underlying distributional model induces a
change of the entire joint model. This makes them
less versatile than the retrofitting methods.

Post-Processing Models. Models from the popu-
larly termed retrofitting family inject lexical knowl-
edge from external resources into arbitrary pre-
trained word vectors (Faruqui et al., 2015; Jauhar
et al., 2015; Rothe and Schiitze, 2015; Wieting
et al., 2015; Nguyen et al., 2016; MrkSsic¢ et al.,
2016). These models fine-tune the vectors of words
present in the linguistic constraints to reflect the
ground-truth lexical knowledge. While the large
majority of specialization models from both classes
operate only with similarity constraints, a line of re-
cent work (Mrksic et al., 2016; Mrksi¢ et al., 2017,
Vuli€ et al., 2017b) demonstrates that knowledge
about both similar and dissimilar words leads to



improved performance in downstream tasks. The
main shortcoming of the existing retrofitting mod-
els is their inability to specialize vectors of words
unseen in external lexical resources.

Our explicit retrofitting framework brings to-
gether desirable properties of both model classes:
(1) unlike joint models, it does not require adap-
tation to the underlying distributional model and
expensive re-training, i.e., it is applicable to any
pre-trained distributional space; (2) it allows for
easy integration of both similarity and dissimilarity
constraints into the specialization process; and (3)
unlike post-processors, it specializes the full vocab-
ulary of the original distributional space and not
only vectors of words from external constraints.

3 Explicit Retrofitting

Our explicit retrofitting (ER) approach, illustrated
by Figure 1a, consists of two major components:
(1) an algorithm for preparing training instances
from external lexical constraints, and (2) a super-
vised specialization model, based on a deep feed-
forward neural network. This network, shown in
Figure 1b learns a non-linear global specialization
function from the training instances.

3.1 From Constraints to Training Instances

Let X = {x;}Y,, x; € R? be the d-dimensional
distributional vector space that we want to spe-
cialize (with V' = {w;}}¥, referring to the as-
sociated vocabulary) and let X' = {x;}}¥, be
the corresponding specialized vector space that we
seek to obtain through explicit retrofitting. Let
C = {(wi,wj, ) }E | be the set of L linguistic
constraints from an external lexical resource, each
consisting of a pair of vocabulary words w; and
w; and a semantic relation 7 that holds between
them. The most recent state-of-the-art retrofitting
work (Mrksic et al., 2017; Vulié et al., 2017b) sug-
gests that using both similarity and dissimilarity
constraints leads to better performance compared
to using only similarity constraints. Therefore, we
use synonymy and antonymy relations from exter-
nal resources, i.e., r; € {ant, syn}. Let g be the
function measuring the distance between words w;
and w; based on their vector representations. The
algorithm for preparing training instances from con-
straints is guided by the following assumptions:

1. All synonymy pairs (w;, w;, syn) should have
a minimal possible distance score in the spe-
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cialized space, i.e., g(xX';, X';) = Gmin;

All antonymy pairs (w;, w;, ant) should have
a maximal distance in the specialized space,
Le., g(X/i, X,j) = gmax;z

. The distances g(x’;,x'x) in the specialized
space between some word w; and all other
words wy, that are not synonyms or antonyms
of w; should be in the interval (gmin, Imaz)-

Our goal is to discern semantic similarity from
semantic relatedness by comparing, in the spe-
cialized space, the distances between word pairs
(ws,wj,r) € C with distances that words w; and
w; from those pairs have with other vocabulary
words wy,. It is intuitive to enforce that the syn-
onyms are as close as possible and antonyms as
far as possible. However, we do not know what
the distances between non-synonymous and non-
antonymous words g(x’;, X,,) in the specialized
space should look like. This is why, for all other
words, similar to (Faruqui et al., 2016; Mrksi¢ et al.,
2017), we assume that the distances in the spe-
cialized space for all word pairs not found in C
should stay the same as in the distributional space:
9(x'i,x'1) = g(xi,%xy,). This way we preserve
the useful semantic content available in the original
distributional space.

In downstream tasks most errors stem from
vectors of semantically related words (e.g., car
— driver) being as similar as vectors of seman-
tically similar words (e.g., car — automobile).
To anticipate this, we compare the distances of
pairs (w;, wj,r) € C with the distances for pairs
(ws, wp,) and (wj, wy, ), where wy, and w,, are neg-
ative examples: the vocabulary words that are most
similar to w; and wj, respectively, in the original
distributional space X. Concretely, for each con-
straint (w;, w;,r) € C we retrieve (1) K vocabu-
lary words {w¥ }I  that are closest in the input
distributional space (according to the distance func-
tion g) to the word w; and (2) K vocabulary words
{wk}E | that are closest to the word w;. We then
create, for each constraint (wj, wj, r) € C, acor-
responding set M (termed micro-batch) of 2K + 1
embedding pairs coupled with a corresponding dis-
tance in the input distributional space:

'"The minimal distance value is g, = 0 for, e.g., cosine
distance or Euclidean distance.

2While some distance functions do have a theoretical max-
imum (e.g., gmaez = 2 for cosine distance), others (e.g., Eu-
clidean distance) may be theoretically unbounded. For un-
bounded distance measures, we propose using the maximal
distance between any two words from the vocabulary as gpqz-
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(b) Supervised specialization model

Figure 1: (a) High-level illustration of the explicit retrofitting approach: lexical constraints, i.e., pairs of
synonyms and antonyms, are transformed into respective micro-batches, which are then used to train the
supervised specialization model. (b) The low-level implementation of the specialization model, combining
the non-linear embedding specialization function f, defined as the deep fully-connected feed-forward
network, with the distance metric g, measuring the distance between word vectors after their specialization.

M(wifwjvr) = {(Xivx]'ng)} U
{(xi7xfn7g(xi7xfn))}1§:1 U

{(x5, %5, 9(x;,%0)) oz

M
with g, = gmin if 7 = sYN; gr = Gmaz if ¥ = ant.

3.2 Non-Linear Specialization Function

Our retrofitting framework learns a global explicit
specialization function which, when applied on
a distributional vector space, transforms it into a
space that better captures semantic similarity, i.e.,
discerns similarity from all other types of semantic
relatedness. We seek the optimal parameters 6
of the parametrized function f(x;6) : R* — R
(where d is the dimensionality of the input space).
The specialized embedding x’; of the word w; is
then obtained as x’; = f(x;;6). The specialized
space X' is obtained by transforming distributional
vectors of all vocabulary words, X' = f(X;6).

We define the specialization function f to be a
multi-layer fully-connected feed-forward network
with H hidden layers and non-linear activations
¢. The illustration of this network is given in Fig-
ure 1b. The ¢-th hidden layer is defined with a
weight matrix W* and a bias vector b':

hi(x;0:) = ¢ (h"*l(x; 01 )W' + bi) 2)

where 0; is the subset of network’s parameters
up to the i-th layer. Note that in this notation,
x = h%(x;0) and X’ = f(x,0) = h'(x;0). Let
dy, be the size of the hidden layers. The network’s
parameters are then as follows: W' & R%¥dn;
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Wi ¢ RWxdn ¢ {2,... H—1}; WH ¢
Rénxd: pi ¢ R e {1,...,H—1}; b ¢ RZ

3.3 Optimization Objectives

We feed the micro-batches consisting of 2K + 1
training instances to the specialization model (see
Section 3.1). Each training instance consists of a
pair of distributional (i.e., unspecialized) embed-
ding vectors x; and x; and a score g denoting the
desired distance between the specialized vectors
x’; and x’; of corresponding words w; and w;.

Mean Square Distance Objective (ER-MSD).
Let our training batch consist of N training in-
stances, {(x},x%, g*)} . The simplest objective
function is then the difference between the desired
and obtained distances of specialized vectors:

N

Jusp = (9076, £0) — ')

i=1

3

By minimizing the MSD objective we simply force
the specialization model to produce a specialized
embedding space X’ in which distances between all
synonyms amount to ¢.,;,, distances between all
antonyms amount to g,,4, and distances between
all other word pairs remain the same as in the orig-
inal space. The MSD objective does not lever-
age negative examples: it only indirectly enforces
that synonym (or antonym) pairs (w;, w;) have
smaller (or larger) distances than corresponding
non-constraint word pairs (w;, wy) and (w;, wg,).

Contrastive Objective (ER-CNT). An alterna-
tive to MSD is to directly contrast the distances
of constraint pairs (i.e., antonyms and synonyms)



with the distances of their corresponding negative
examples, i.e., the pairs from their respective micro-
batch (cf. Eq. (1) in Section 3.1). Such an ob-
jective should directly enforce that the similarity
scores for synonyms (antonyms) (w;, w;) are larger
(or smaller, for antonyms) than for pairs (w;, wy)
and (wj, wy) involving the same words w; and wj,
respectively. Let S and A be the sets of micro-
batches created from synonymy and antonymy con-
straints. Let Ms, = {(x},x3,¢") ™! be one
micro-batch created from one synonymy constraint
and let M, be the analogous micro-batch created
from one antonymy constraint. Let us then assume
that the first triple (i.e., for ¢ = 1) in every micro-
batch corresponds to the constraint pair and the re-
maining 2K triples (i.e., fori € {2,...,2K +1})
to respective non-constraint word pairs. We then
define the contrastive objective as follows:

2K +1 _ , N2
Jont = Z Z ((gl—gmm)— ¢ -4 ))
M,ES i=2

2K 41

+ Z Z ((gmaz - gi) - (9/1 - gli))

MgEA i=2

2

where ¢’ is a short-hand notation for the dis-
tance between vectors in the specialized space, i.e.,

9 (x1,%2) = g(x1,%3) = g(f (x1), f (x2))-

Topological Regularization. Because the distri-
butional space X already contains useful semantic
information, we want our specialized space X’ to
move similar words closer together and dissimi-
lar words further apart, but without disrupting the
overall topology of X. To this end, we define an
additional regularization objective that measures
the distance between the original vectors x; and xo
and their specialized counterparts x}; = f(x1) and
x5 = f(x2), for all examples in the training set:

N
Jrec = Y g(x1, f(x1) + 95, f(x2)) )
i=1
We minimize the final objective function J' = J +

AN RrEq. J is either Jysp or Joyr and A is the
regularization factor which determines how strictly
we retain the topology of the original space.

4 Experimental Setup

Distributional Vectors. In order to estimate the
robustness of the proposed explicit retrofitting pro-
cedure, we experiment with three different publicly
available and widely used collections of pre-trained
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distributional vectors for English: (1) SGNS-W2
— vectors trained on the Wikipedia dump from
the Polyglot project (Al-Rfou et al., 2013) using
the Skip-Gram algorithm with Negative Sampling
(SGNS) (Mikolov et al., 2013b) by Levy and Gold-
berg (2014b), using the context windows of size 2;
(2) GLOVE-CC - vectors trained with the GloVe
(Pennington et al., 2014) model on the Common
Crawl; and (3) FASTTEXT — vectors trained on
Wikipedia with a variant of SGNS that builds word
vectors by summing the vectors of their constituent
character n-grams (Bojanowski et al., 2017).

Linguistic Constraints. We experiment with the
sets of linguistic constraints used in prior work
(Zhang et al., 2014; Ono et al., 2015). These
constraints, extracted from WordNet (Fellbaum,
1998) and Roget’s Thesaurus (Kipfer, 2009), com-
prise a total of 1,023,082 synonymy word pairs and
380,873 antonymy word pairs.

Although this seems like a large number of lin-
guistic constraints, there is only 57,320 unique
words in all synonymy and antonymy constraints
combined, and not all of these words are found in
the dictionary of the pre-trained distributional vec-
tor space. For example, only 15.3% of the words
from constraints are found in the whole vocabu-
lary of SGNS-W2 embeddings. Similarly, we find
only 13.3% and 14.6% constraint words among the
200K most frequent words from the GLOVE-CC
and FASTTEXT vocabularies, respectively. This
low coverage emphasizes the core limitation of cur-
rent retrofitting methods, being able to specialize
only the vectors of words seen in the external con-
straints, and the need for our global ER method
which can specialize all word vectors from the dis-
tributional space.

ER Model Configuration. In all experiments,
we set the distance function g to cosine distance:
g(x1,%2) = 1= (x1-x2/(||x1]|[|x2|)) and use the
hyperbolic tangent as activation, ¢ = tanh. For
each constraint (w;,w;), we create ' = 4 corre-
sponding negative examples for both w; and wj,
resulting in micro-batches with 2K + 1 = 9 train-
ing instances.’ We separate 10% of the created
micro-batches as the validation set. We then tune
the hyper-parameter values, the number of hidden
layers H = 5 and their size d;, = 1000, and the

3For K < 4 we observed significant performance drop.
Setting K > 4 resulted in negligible performance gains but
significantly increased the model training time.



topological regularization factor A = 0.3 by mini-
mizing the model’s objective J' on the validation
set. We train the model in mini-batches, each con-
taining N, = 100 constraints (i.e., 900 training
instances, see above), using the Adam optimizer
(Kingma and Ba, 2015) with initial learning rate
set to 10~%. We use the loss on the validation set
as the early stopping criteria.

5 Results and Discussion

5.1 Word Similarity

Evaluation Setup. We first evaluate the quality
of the explicitly retrofitted embedding spaces in-
trinsically, on two word similarity benchmarks:
SimLex-999 dataset (Hill et al., 2015) and SimVerb-
3500 (Gerz et al., 2016), a recent dataset contain-
ing human similarity ratings for 3,500 verb pairs.*
We use Spearman’s p rank correlation between
gold and predicted word pair scores as the eval-
uation metric. We evaluate the specialized embed-
ding spaces in two settings. In the first setting,
termed lexically disjoint, we remove from our train-
ing set all linguistic constraints that contain any
of the words found in SimLex or SimVerb. This
way, we effectively evaluate the model’s ability
to generalize the specialization function to unseen
words. In the second setting (lexical overlap) we re-
tain the constraints containing SimLex or SimVerb
words in the training set. For comparison, we
also report performance of the state-of-the-art local
retrofitting model ATTRACT-REPEL (MrkSic et al.,
2017), which is able to specialize only the words
from the linguistic constraints.

Results. The results with our ER model applied
to three distributional spaces are shown in Table 1.
The scores suggest that the proposed ER model is
universally useful and robust. The ER-specialized
spaces outperform original distributional spaces
across the board, for both objective functions. The
results in the lexically disjoint setting are especially
indicative of the improvements achieved by the ER.
For example, we achieve a correlation gain of 18%
for the GLOVE-CC vectors on SimLex using a
specialization function learned without seeing a
single constraint with any SimLex word.

4Other word similarity datasets such as MEN (Bruni et al.,
2014) or WordSim-353 (Finkelstein et al., 2002) conflate the
concepts of true semantic similarity and semantic relatedness
in a broader sense. In contrast, SimLex and SimVerb explicitly
discern between the two, with pairs of semantically related
but not similar words (e.g. car and wheel) having low ratings.
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In the lexical overlap setting, we observe sub-
stantial gains only for GLOVE-CC. The modest
gains in this setting with FASTTEXT and SGNS-
W2 in fact strengthen the impression that the ER
model learns a general specialization function, i.e.,
it does not “overfit” to words from linguistic con-
straints. The ER model with the contrastive ob-
jective (ER-CNT) yields better performance on
average than the one using the simpler square dis-
tance objective (ER-MSD). This is expected, given
that the contrastive objective enforces the model to
distinguish pairs of semantically (dis)similar words
from pairs of semantically related words.

Finally, the post-processing ATTRACT-REPEL
model based on local vector updates seems to sub-
stantially outperform the ER method in this task.
The gap is especially visible for FASTTEXT and
SGNS-W2 vectors. However, since ATTRACT-
REPEL specializes only words seen in linguistic
constraints,” its performance crucially depends on
the coverage of test set words in the constraints.
ATTRACT-REPEL excels on the intrinsic evaluation
as the constraints cover 99.2% of SimLex words
and 99.9% of SimVerb words. However, its use-
fulness is less pronounced in real-life downstream
scenarios in which such high coverage cannot be
guaranteed, as demonstrated in Section 5.3.

Analysis. We examine in more detail the perfor-
mance of the ER model with respect to (1) the
type of constraints used for training the model:
synonyms and antonyms, only synonyms, or only
antonyms and (2) the extent to which we retain
the topology of the original distributional space
(i.e., with respect to the value of the topological
regularization factor A). All reported results were
obtained by specializing the GLOVE-CC distribu-
tional space in the lexically disjoint setting (i.e.,
employed constraints did not contain any of the
SimLex or SimVerb words).

In Table 2 we show the specialization perfor-
mance of the ER-CNT models (H = 5, A = 0.3),
using different types of constraints on SimLex-
999 (SL) and SimVerb-3500 (SV). We compare
the standard model, which exploits both synonym
and antonym pairs for creating training instances,
with the models employing only synonym and only
antonym constraints, respectively. Clearly, we
obtain the best specialization when combining syn-
onyms and antonyms. Note, however, that using

5This is why ATTRACT-REPEL cannot be applied in the
lexically disjoint setting: the scores simply stay the same.



Setting: lexically disjoint

Setting: lexical overlap

GLOVE-CC FASTTEXT SGNS-W2 GLOVE-CC FASTTEXT SGNS-W2
SL SV SL N SL SV SL N SL N SL SV
Distributional (X) 407 280 383 247 414 272 407 280 383 247 414 272
ATTRACT-REPEL 407 280 383 247 414 272 690 578 .629 502 .658 .544
ER-Specialized (X' = f(X))
ER-MSD 483 345 429 275 445 302 500 358 445 284 469 323
ER-CNT 582 439 433 272 435 329 .623 519 419 335 449 355

Table 1: Spearman’s p correlation scores for three standard English distributional vectors spaces on
English SimLex-999 (SL) and SimVerb-3500 (SV), using explicit retrofitting models with two different
objective functions (ER-MSD and ER-CNT, cf. Section 3.3).

Constraints (ER-CNT model) SL SV Model German Italian Croatian

Synonyms only 465 .339 Distributional (X) 407 .360 .249

Antonyms only 451 317 ER-Specialized (X')

Synonyms + Antonyms 582 439 ER-MSD 415 406 287
ER-CNT 533 448 315

Table 2: Performance (p) on SL and SV for ER-
CNT models trained with different constraints.

Figure 2: Specialization performance on SimLex-
999 (blue line) and SimVerb-3500 (red line) for
ER models with different topology regularization
factors A. Dashed lines indicate performance levels
of the distributional (i.e., unspecialized) space.

only synonyms or only antonyms also improves
over the original distributional space.

Next, in Figure 2 we depict the specialization
performance (on SimLex and SimVerb) of the ER
models with different values of the topology reg-
ularization factor A (H fixed to 5). The best per-
formance for is obtained for A = 0.3. Smaller
lambda values overly distort the original distribu-
tional space, whereas larger lambda values dampen
the specialization effects of linguistic constraints.

5.2 Language Transfer

Readily available large collections of synonymy
and antonymy word pairs do not exist for many
languages. This is why we also investigate zero-
shot specialization: we test if it is possible, with the
help of cross-lingual word embeddings, to transfer
the specialization knowledge learned from English
constraints to languages without any training data.

Evaluation Setup. We use the mapping model
of Smith et al. (2017) to induce a multilingual vec-
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Table 3: Spearman’s p correlation scores for Ger-
man, Italian, and Croatian embeddings in the trans-
fer setup: the vectors are specialized using the mod-
els trained on English constraints and evaluated on
respective language-specific SimLex-999 variants.

tor space® containing word vectors of three other

languages — German, Italian, and Croatian — along
with the English vectors.” Concretely, we map the
Italian CBOW vectors (Dinu et al., 2015), German
FastText vectors trained on German Wikipedia (Bo-
janowski et al., 2017), and Croatian Skip-Gram
vectors trained on HrWaC corpus (Ljubesi¢ and
Erjavec, 2011) to the GLOVE-CC English space.
We create the translation pairs needed to learn the
projections by automatically translating 4,000 most
frequent English words to all three other languages
with Google Translate. We then employ the ER
model trained to specialize the GLOVE-CC space
using the full set of English constraints, to special-
ize the distributional spaces of other languages. We
evaluate the quality of the specialized spaces on the
respective SimLex-999 dataset for each language
(Leviant and Reichart, 2015; Mrksié et al., 2017).

Results. The results are provided in Table 3.
They indicate that the ER models can substan-
tially improve (e.g., by 13% for German vector
space) over distributional spaces also in the lan-
guage transfer setup without seeing a single con-
straint in the target language. These transfer results
hold promise to support vector space specialization

®This model was chosen for its ease of use, readily avail-
able implementation, and strong comparative results (see
(Ruder et al., 2017)). For more details we refer the reader
to the original paper and the survey.

"The choice of languages was determined by the availabil-
ity of the language-specific SimLex-999 variants.



even for resource-lean languages. The more sophis-
ticated contrastive ER-CNT model variant again
outperforms the simpler ER-MSD variant, and it
does so for all three languages, which is consistent
with the findings from the monolingual English
experiments (see Table 1).

5.3 Downstream Tasks

We now evaluate the impact of our global ER
method on two downstream tasks in which differ-
entiating semantic similarity from semantic relat-
edness is particularly important: lexical text sim-
plification (LS) and dialog state tracking (DST).

5.3.1 Lexical Text Simplification

Lexical simplification aims to replace complex
words — used less frequently and known to fewer
speakers — with their simpler synonyms that fit into
the context, that is, without changing the meaning
of the original text. Because retaining the meaning
of the original text is a strict requirement, complex
words need to be replaced with semantically similar
words, whereas replacements with semantically re-
lated words (e.g., replacing “pilot” with “airplane”
in “Ferrari’s pilot won the race”) produce incor-
rect text which is more difficult to comprehend.

Simplification Using Distributional Vectors.
We use the LIGHT-LS lexical simplification algo-
rithm of Glavas and gtajner (2015) which makes
the word replacement decisions primarily based on
semantic similarities between words in a distribu-
tional vector space.® For each word in the input
text LIGHT-LS retrieves most similar replacement
candidates from the vector space. The candidates
are then ranked according to several measures of
simplicity and fitness for the context. Finally, the
replacement is made if the top-ranked candidate is
estimated to be simpler than the original word. By
plugging-in vector spaces specialized by the ER
model into LIGHT-LS, we hope to generate true
synonymous candidates more frequently than with
the unspecialized distributional space.

Evaluation Setup. We evaluate LIGHT-LS on
the LS dataset crowdsourced by Horn et al. (2014).
For each indicated complex word Horn et al. (2014)
collected 50 manual simplifications. We use two
evaluation metrics from prior work (Horn et al.,
2014; Glava§ and Stajner, 2015) to quantify the
quality and frequency of word replacements: (1)

8The Light-LS implementation is available at:
https://bitbucket.org/gg42554/embesimp
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GLOVE-CC FASTTEXT SGNS-W2
Emb. space A C A C A C
Distributional 66.0 940 57.8 84.0 56.0 79.1
Specialized
ATTRACT-REPEL 67.6 87.0 69.8 894 644 86.7
ER-CNT 73.8 930 712 932 684 923

Table 4: Lexical simplification performance with
explicit retrofitting applied on three input spaces.

accurracy (A) is the number of correct simplifica-
tions made (i.e., when the replacement made by
the system is found in the list of manual replace-
ments) divided by the total number of indicated
complex words; and (2) change (C) is the percent-
age of indicated complex words that were replaced
by the system (regardless of whether the replace-
ment was correct). We plug into LIGHT-LS both
unspecialized and specialized variants of three pre-
viously used English embedding spaces: GLOVE-
CC, FASTTEXT, and SGNS-W2. Additionally, we
again evaluate specializations of the same spaces
produced by the state-of-the-art local retrofitting
model ATTRACT-REPEL (MrkSic et al., 2017).

Results and Analysis. The results with LIGHT-
LS are summarized in Table 4. ER-CNT
model yields considerable gains over unspecial-
ized spaces for both metrics. This suggests that the
ER-specialized embedding spaces allow LIGHT-
LS to generate true synonymous candidate replace-
ments more often than with unspecialized spaces,
and also verifies the importance of specialization
for the LS task. Our ER-CNT model now also
yields better results than ATTRACT-REPEL in a
real-world downstream task. Only 59.6 % of all
indicated complex words and manual replacement
candidates from the LS dataset are now covered by
the linguistic constraints. This accentuates the need
to specialize the full distributional space in down-
stream applications as done by the ER model, while
ATTRACT-REPEL is limited to local vector updates
only of words seen in the constraints. By learning
a global specialization function the proposed ER
models seem more resilient to the observed drop
in coverage of test words by linguistic constraints.
Table 5 shows example substitutions of LIGHT-LS
when using different embedding spaces: original
GLOVE-CC space and its specializations obtained
with ER-CNT and ATTRACT-REPEL.

5.3.2 Dialog State Tracking

Finally, we also evaluate the importance of explicit
retrofitting in a downstream language understand-


https://bitbucket.org/gg42554/embesimp

Text GLOVE-CC ATTRACT-REPEL ER-CNT
Wrestlers portrayed a villain or a hero as they followed a series of events  character protagonist demon
that built tension

This large version number jump was due to a feeling that a version 1.0 with ones songs parts
no major missing pieces was imminent.

The storm continued, crossing North Carolina , and retained its strength until lost preserved preserved
June 20 when it became extratropical near Newfoundland

Tibooburra has an arid, desert climate with temperatures soaring above 40  subtropical humid dry

Celsius in summer, often reaching as high as 47 degrees Celsius.

Table 5: Examples of lexical simplifications performed with the Light-LS tool when using different
embedding spaces. The target word to be simplified is in bold.

GLOVE-CC embedding vectors JGA
Distributional (X) 797
Specialized (X' = f(X))

ATTRACT-REPEL 817
ER-CNT .816

Table 6: DST performance of GLOVE-CC embed-
dings specialized using explicit retrofitting.

ing task, namely dialog state tracking (DST) (Hen-
derson et al., 2014; Williams et al., 2016). A DST
model is typically the first component of a dialog
system pipeline (Young, 2010), tasked with cap-
turing user’s goals and updating the dialog state
at each dialog turn. Similarly as in lexical simpli-
fication, discerning similarity from relatedness is
crucial in DST (e.g., a dialog system should not
recommend an “expensive pub in the south” when
asked for a “cheap bar in the east”).

Evaluation Setup. To evaluate the impact of spe-
cialized word vectors on DST, we employ the Neu-
ral Belief Tracker (NBT), a DST model that makes
inferences purely based on pre-trained word vec-
tors (Mrksi¢ et al., 2017).> NBT composes word
embeddings into intermediate utterance and context
representations. For full model details, we refer the
reader to the original paper. Following prior work,
our DST evaluation is based on the Wizard-of-Oz
(WOZ) v2.0 dataset (Wen et al., 2017; Mrksi¢ et al.,
2017) which contains 1,200 dialogs (600 training,
200 validation, and 400 test dialogs). We evaluate
performance of the distributional and specialized
GLOVE-CC embeddings and report it in terms of
Jjoint goal accuracy (JGA), a standard DST evalua-
tion metric. All reported results are averages over
5 runs of the NBT model.

Results. We show DST performance in Table 6.
The DST results tell a similar story like word simi-
larity and lexical simplification results — the ER

*https://github.com/nmrksic/neural-belief-tracker
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model substantially improves over the distribu-
tional space. With linguistic specialization con-
straints covering 57% of words from the WOZ
dataset, ER model’s performance is on a par with
the ATTRACT-REPEL specialization. This further
confirms our hypothesis that the importance of
learning a global specialization for the full vocabu-
lary in downstream tasks grows with the drop of the
test word coverage by specialization constraints.

6 Conclusion

We presented a novel method for specializing word
embeddings to better discern similarity from other
types of semantic relatedness. Unlike existing
retrofitting models, which directly update vectors
of words from external constraints, we use the con-
straints as training examples to learn an explicit spe-
cialization function, implemented as a deep feed-
forward neural network. Our global specializa-
tion approach resolves the well-known inability of
retrofitting models to specialize vectors of words
unseen in the constraints. We demonstrated the
effectiveness of the proposed model on word sim-
ilarity benchmarks, and in two downstream tasks:
lexical simplification and dialog state tracking. We
also showed that it is possible to transfer the special-
ization to languages without linguistic constraints.
In future work, we will investigate explicit
retrofitting methods for asymmetric relations like
hypernymy and meronymy. We also intend to ap-
ply the method to other downstream tasks and to
investigate the zero-shot language transfer of the
specialization function for more language pairs.
ER code is publicly available at: https://
github.com/codogogo/explirefit.
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