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Abstract

Motivations like domain adaptation, trans-
fer learning, and feature learning have fu-
eled interest in inducing embeddings for
rare or unseen words, n-grams, synsets,
and other textual features. This paper
introduces a la carte embedding, a sim-
ple and general alternative to the usual
word2vec-based approaches for building
such representations that is based upon re-
cent theoretical results for GloVe-like em-
beddings. Our method relies mainly on
a linear transformation that is efficiently
learnable using pretrained word vectors
and linear regression. This transform is
applicable “on the fly” in the future when
a new text feature or rare word is en-
countered, even if only a single usage
example is available. We introduce a
new dataset showing how the a la carte
method requires fewer examples of words
in context to learn high-quality embed-
dings and we obtain state-of-the-art results
on a nonce task and some unsupervised
document classification tasks.

1 Introduction

Distributional word embeddings, which represent
the “meaning” of a word via a low-dimensional
vector, have been widely applied by many natu-
ral language processing (NLP) pipelines and algo-
rithms (Goldberg, 2016). Following the success of
recent neural (Mikolov et al., 2013) and matrix-
factorization (Pennington et al., 2014) methods,
researchers have sought to extend the approach
to other text features, from subword elements to
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n-grams to sentences (Bojanowski et al., 2016;
Poliak et al., 2017; Kiros et al., 2015). How-
ever, the performance of both word embeddings
and their extensions is known to degrade in small
corpus settings (Adams et al., 2017) or when em-
bedding sparse, low-frequency features (Lazari-
dou et al., 2017). Attempts to address these is-
sues often involve task-specific approaches (Rothe
and Schiitze, 2015; Iacobacci et al., 2015; Pagliar-
dini et al., 2018) or extensively tuning existing ar-
chitectures such as skip-gram (Poliak et al., 2017;
Herbelot and Baroni, 2017).

For computational efficiency it is desirable that
methods be able to induce embeddings for only
those features (e.g. bigrams or synsets) needed
by the downstream task, rather than having to pay
a computational prix fixe to learn embeddings for
all features occurring frequently-enough in a cor-
pus. We propose an alternative, novel solution via
a la carte embedding, a method which bootstraps
existing high-quality word vectors to learn a fea-
ture representation in the same semantic space via
a linear transformation of the average word em-
beddings in the feature’s available contexts. This
can be seen as a shallow extension of the distribu-
tional hypothesis (Harris, 1954), “a feature is char-
acterized by the words in its context,” rather than
the computationally more-expensive “a feature is
characterized by the features in its context” that
has been used implicitly by past work (Rothe and
Schiitze, 2015; Logeswaran and Lee, 2018).

Despite its elementary formulation, we demon-
strate that the a la carte method can learn faithful
word embeddings from single examples and fea-
ture vectors improving performance on important
downstream tasks. Furthermore, the approach is
resource-efficient, needing only pretrained embed-
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dings of common words and the text corpus used
to train them, and easy to implement and compute
via vector addition and linear regression. After
motivating and specifying the method, we illus-
trate these benefits through several applications:

e Embeddings of rare words: we introduce a
dataset! for few-shot learning of word vectors
and achieve state-of-the-art results on the task
of representing unseen words using only the
definition (Herbelot and Baroni, 2017).

Synset embeddings: we show how the
method can be applied to learn more fine-
grained lexico-semantic representations and
give evidence of its usefulness for stan-
dard word-sense disambiguation tasks (Nav-
igli et al., 2013; Moro and Navigli, 2015).

n-gram embeddings: we build seven mil-
lion n-gram embeddings from large text cor-
pora and use them to construct document em-
beddings that are competitive with unsuper-
vised deep learning approaches when evalu-
ated on linear text classification.

Our experimental results® clearly demonstrate the
advantages of a la carte embedding. For word
embeddings, the approach is an easy way to get
a good vector for a new word from its definition
or a few examples in context. For feature embed-
dings, the method can embed anything that does
not need labeling (such as a bigram) or occurs in
an annotated corpus (such as a word-sense). Our
document embeddings, constructed directly using
a la carte n-gram vectors, compete well with re-
cent deep neural representations; this provides fur-
ther evidence that simple methods can outperform
modern deep learning on many NLP benchmarks
(Arora et al.,, 2017; Mu and Viswanath, 2018;
Arora et al., 2018a,b; Pagliardini et al., 2018).

2 Related Work

Many methods have been proposed for extend-
ing word embeddings to semantic feature vectors,
with the aim of using them as interpretable and
structure-aware building blocks of NLP pipelines
(Kiros et al., 2015; Yamada et al., 2016). Many
exploit the structure and resources available for
specific feature types, such as methods for sense,
synsets, and lexemes (Rothe and Schiitze, 2015;

'Dataset: nlp.cs.princeton.edu/CRW
2Code: www.github.com/NLPrinceton/ALaCarte
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Iacobacci et al., 2015) that make heavy use of the
graph structure of the Princeton WordNet (PWN)
and similar resources (Fellbaum, 1998). By con-
trast, our work is more general, with incorporation
of structure left as an open problem. Embeddings
of n-grams are of special interest because they
do not need annotation or expert knowledge and
can often be effective on downstream tasks. Their
computation has been studied both explicitly (Yin
and Schutze, 2014; Poliak et al., 2017) and as an
implicit part of models for document embeddings
(Hill et al., 2016; Pagliardini et al., 2018), which
we use for comparison. Supervised and multi-
task learning of text embeddings has also been at-
tempted (Wang et al., 2017; Wu et al., 2017).

A main motivation of our work is to learn good
embeddings, of both words and features, from
only one or a few examples. Efforts in this area
can in many cases be split into contextual ap-
proaches (Lazaridou et al., 2017; Herbelot and Ba-
roni, 2017) and morphological methods (Luong
et al., 2013; Bojanowski et al., 2016; Pado et al.,
2016). The current paper provides a more ef-
fective formulation for context-based embeddings,
which are often simpler to implement, can im-
prove with more context information, and do not
require morphological annotation. Subword ap-
proaches, on the other hand, are often more com-
positional and flexible, and we leave the extension
of our method to handle subword information to
future work. Our work is also related to some
methods in domain adaptation and multi-lingual
correlation, such as that of Bollegala et al. (2014).

Mathematically, this work builds upon the lin-
ear algebraic understanding of modern word em-
beddings developed by Arora et al. (2018b) via an
extension to the latent-variable embedding model
of Arora et al. (2016). Although there have been
several other applications of this model for natu-
ral language representation (Arora et al., 2017; Mu
and Viswanath, 2018), ours is the first to provide
a general approach for learning semantic features
using corpus context.

3 Method Specification

We begin by assuming a large text corpus Cy con-
sisting of contexts c of words w in a vocabulary V,
with the contexts themselves being sequences of
words in V (e.g. a fixed-size window around the
word or feature). We further assume that we have
trained word embeddings v, € R? on this collo-
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cation information using a standard algorithm (e.g.
word2vec / GloVe). Our goal is to construct a good
embedding v € R? of a text feature f given a set
Cy of contexts it occurs in. Both f and its contexts
are assumed to arise via the same process that gen-
erates the large corpus Cy. In many settings below,
the number |Cy| of contexts available for a feature
f of interest is much smaller than the number |C,, |
of contexts that the typical word w € V occurs
in. This could be because the feature is rare (e.g.
unseen words, n-grams) or due to limited human
annotation (e.g. word senses, named entities).

3.1 A Linear Approach

A naive first approach to construct feature embed-
dings using context is additive, i.e. taking the av-
erage over all contexts of a feature f of the average
word vector in each context:

additive __ 1

g "

1
EPIAL

ceCy wece

This formulation reflects the training of commonly
used embeddings, which employs additive com-
position to represent the context (Mikolov et al.,
2013; Pennington et al., 2014). It has proved suc-
cessful in the bag-of-embeddings approach to sen-
tence representation (Wieting et al., 2016; Arora
et al., 2017), which can compete with LSTM rep-
resentations, and has also been given theoretical
justification as the maximum a posteriori (MAP)
context vector under a generative model related to
popular embedding objectives (Arora et al., 2016).
Lazaridou et al. (2017) use this approach to learn
embeddings of unknown word amalgamations, or
chimeras, given a few context examples.

The additive approach has some limitations be-
cause the set of all word vectors is seen to share
a few common directions. Simple addition ampli-
fies the component in these directions, at the ex-
pense of less common directions that presumably
carry more “signal.” Stop-word removal can help
to ameliorate this (Lazaridou et al., 2017; Herbelot
and Baroni, 2017), but does not deal with the fact
that content-words also have significant compo-
nents in the same direction as these deleted words.
Another mathematical framework to address this
lacuna is to remove the top one or top few prin-
cipal components, either from the word embed-
dings themselves (Mu and Viswanath, 2018) or
from their summations (Arora et al., 2017). How-
ever, this approach is liable to either not remove
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Change in Embedding Norm under Transform
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Figure 1: Plot of the ratio of embedding norms

after transformation as a function of word count.
While All-but-the-Top tends to affect only very
frequent words, a la carte learns to remove com-
ponents even from less common words.

enough noise or cause too much information loss
without careful tuning (c.f. Figure 1).

We now note that removing the component
along the top few principal directions is tanta-
mount to multiplying the additive composition by
a fixed (but data-dependent) matrix. Thus a natu-
ral extension is to use an arbitrary linear transfor-
mation which will be learned from the data, and
hence guaranteed to do at least as well as any of
the above ideas. Specifically, we find the trans-
form that can best recover existing word vectors
v —Wwhich are presumed to be of high quality—
from their additive context embeddings vadditive,
This can be posed as the following linear regres-
sion problem

1
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where A € R?*? is learned and we assume for
simplicity that |—i| is constant (e.g. if ¢ has a fixed
window size) and is thus subsumed by the trans-
form. After learning the matrix, we can embed
any text feature in the same semantic space as the
word embeddings via the following expression:

> va

ceCy wece

1

Vi — Avadditive — Al =
e [

3)

Note that A is fixed for a given corpus and set of
pretrained word embeddings and so does not need
to be re-computed to embed different features or
feature types.



Algorithm 1: The basic a la carte feature embedding induction method. All contexts ¢ consist
of sequences of words drawn from the vocabulary V.

Data: vocabulary V, corpus Cy, vectors v,, € R ¥V w € V, feature [, corpus Cy of contexts of f

Result: feature embedding v € R?
1 forw €V do

2 let C,, C Cy be the subcorpus of contexts of w

3 Uy ﬁ D v
ceCy w'ec

// compute each word’s context embedding uy

4 A+ argmin Y ||[vy — Auy||3 // compute context-to-feature transform A

AcRdxd wey
1
5 Uf — W Z Z Vuw

ceCy wee
6 Vy < AUf

// compute feature’s context embedding uy

// transform feature’s context embedding

Theoretical Justification: As shown by Arora
et al. (2018b, Theorem 1), the approximation (2)
holds exactly in expectation for some matrix A
when contexts ¢ € C are generated by sampling
a context vector v, € R? from a zero-mean Gaus-
sian with fixed covariance and drawing |c| words
using P(w|v,) o exp(ve, vy). The correctness
(again in expectation) of (3) under this model is a
direct extension. Arora et al. (2018b) use large text
corpora to verify their model assumptions, provid-
ing theoretical justification for our approach. We
observe that the best linear transform A can re-
cover vectors with mean cosine similarity as high
as 0.9 or more with the embeddings used to learn
it, thus also justifying the method empirically.

3.2 Practical Details

The basic a la carte method, as motivated in Sec-
tion 3.1 and specified in Algorithm 1, is straight-
forward and parameter-free (the dimension d is as-
sumed to have been chosen beforehand, along with
the other parameters of the original word embed-
dings). In practice we may wish to modify the re-
gression step in an attempt to learn a better trans-
formation matrix A. However, the standard first
approach of using /-regularized (Ridge) regres-
sion instead of simple linear regression gives little
benefit, even when we have more parameters than
word embeddings (i.e. when d? > [V)).

A more useful modification is to weight each
point by some non-decreasing function « of each
word’s corpus count ¢, i.e. to solve
“4)

A = argmin Z o) ||V — Aty |3

AcRdxd weY

where u,, is the additive context embedding. This
reflects the fact that more frequent words likely
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have better pretrained embeddings. In settings
where |V| is large we find that a hard threshold
(a(c) = 1., for some 7 > 1) is often useful.
When we do not have many embeddings we can
still give more importance to words with better
embeddings via a function such as a(c) = loge,
which we use in Section 5.1.

4 One-Shot and Few-Shot Learning of
Word Embeddings

While we can use our method to embed any type
of text feature, its simplicity and effectiveness is
rooted in word-level semantics: the approach as-
sumes pre-existing high quality word embeddings
and only considers collocations of features with
words rather than with other features. Thus to ver-
ify that our approach is reasonable we first check
how it performs on word representation tasks,
specifically those where word embeddings need to
be learned from very few examples. In this sec-
tion we first investigate how representation quality
varies with number of occurrences, as measured
by performance on a similarity task that we intro-
duce. We then apply the a la carte method to two
tasks measuring the ability to learn new or syn-
thetic words from context, achieving strong results
on the nonce task of Herbelot and Baroni (2017).

4.1 Similarity Correlation vs. Sample Size

Performance on pairwise word similarity tasks is
a standard way to evaluate word embeddings, with
success measured via the Spearman correlation
between a human score and the cosine similarity
between word vectors. An overview of widely
used datasets is given by Faruqui and Dyer (2014).
However, none of these datasets can be used di-
rectly to measure the effect of word frequency on



embedding quality, which would help us under-
stand the data requirements of our approach. We
address this issue by introducing the Contextual
Rare Words (CRW) dataset, a subset of 562 pairs
from the Rare Word (RW) dataset (Luong et al.,
2013) supplemented by 255 sentences (contexts)
for each rare word sampled from the Westbury
Wikipedia Corpus (WWC) (Shaoul and Westbury,
2010). In addition we provide a subset of the
WWC from which all sentences containing these
rare words have been removed. The task is to use
embeddings trained on this subcorpus to induce
rare word embeddings from the sampled contexts.
More specifically, the CRW dataset is con-
structed using all pairs from the RW dataset where
the rarer word occurs between 512 and 10000
times in WWC; this yields a set of 455 distinct
rare words. The lower bound ensures that we have
a sufficient number of rare word contexts, while
the upper bound ensures that a significant fraction
of the sentences from the original WWC remain in
the subcorpus we provide. In CRW, the first word
in every pair is the more frequent word and occurs
in the subcorpus, while the second word occurs in
the 255 sampled contexts but not in the subcorpus.
We provide word2vec embeddings trained on all
words occurring at least 100 times in the WWC
subcorpus; these vectors include those assigned to
the first (non-rare) words in the evaluation pairs.

Evaluation: For every rare word the method un-
der consideration is given eight disjoint subsets
containing 1,2, 4, ...,128 example contexts. The
method induces an embedding of the rare word for
each subset, letting us track how the quality of rare
word vectors changes with more examples. We re-
port the Spearman p (as described above) at each
sample size, averaged over 100 trials obtained by
shuffling each rare word’s 255 contexts.

The results in Figure 2 show that our a la
carte method significantly outperforms the addi-
tive baseline (1) and its variants, including stop-
word removal, SIF-weighting (Arora et al., 2017),
and top principal component removal (Mu and
Viswanath, 2018). We find that combining SIF-
weighting and top component removal also beats
these baselines, but still does worse than our
method. These experiments consolidate our in-
tuitions from Section 3 that removing common
components and frequent words is important and
that learning a data-dependent transformation is
an effective way to do this. However, if we train
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Figure 2: Spearman correlation between cosine
similarity and human scores for pairs of words in
the CRW dataset given an increasing number of
contexts per rare word. Our a la carte method out-
performs all previous approaches, even when re-
stricted to only eight example contexts.

word2vec embeddings from scratch on the subcor-
pus together with the sampled contexts we achieve
a Spearman correlation of 0.45; this gap between
word2vec and our method shows that there re-
mains room for even better approaches for few-
shot learning of word embeddings.

4.2 Learning Embeddings of New Concepts:
Nonces and Chimeras

We now evaluate our work directly on the tasks
posed by Herbelot and Baroni (2017), who devel-
oped simple datasets and methods to “simulate the
process by which a competent speaker encounters
a new word in known contexts.” The general goal
will be to construct embeddings of new concepts
in the same semantic space as a known embedding
vocabulary using contextual information consist-
ing of definitions or example sentences.

Nonces: We first discuss the definitional nonce
dataset made by the authors themselves, which has
a test-set consisting of 300 single-word concepts
and their definitions. The task of learning each
concept’s embedding is simulated by removing or
randomly re-initializing its vector and requiring
the system to use the remaining embeddings and
the definition to make a new vector that is close to
the original. Because the embeddings were con-
structed using data that includes these concepts,
an implicit assumption is made that including or
excluding one word does not greatly affect the se-



Nonce (Herbelot and Baroni, 2017)

Chimera (Lazaridou et al., 2017)

Method Mean Recip. Rank  Med. Rank 2 Sent. 4 Sent. 6 Sent.
word2vec 0.00007 111012 0.1459 0.2457 0.2498
additive 0.00945 3381 0.3627 0.3701 0.3595
additive, no stop words 0.03686 861 0.3376 0.3624 0.4080
nonce2vec 0.04907 623 0.3320 0.3668 0.3890
a la carte 0.07058 165.5 0.3634 0.3844 0.3941

Table 1: Comparison with baselines and nonce2vec (Herbelot and Baroni, 2017) on few-shot embedding
tasks. Performance on the chimeras task is measured using the Spearman correlation with human ratings.
Note that the additive baseline requires removing stop-words in order to improve with more data.

mantic space; this assumption is necessary in or-
der to have a good target vector for the system to
be evaluated against.

Using 259,376 word2vec embeddings trained
on Wikipedia as the base vectors, Herbelot and
Baroni (2017) heavily modify the skip-gram algo-
rithm to successfully learn on one definition, cre-
ating the nonce2vec system. The original skip-
gram algorithm and v394i%e are used as baselines,
with performance measured as the mean recipro-
cal rank and median rank of the concept’s original

vector among the nearest neighbors of the output.

To compare directly to their approach, we use
their word2vec embeddings along with contexts
from the Wikipedia corpus to construct context
vectors u,, for all words w apart from the 300
nonces. We then learn the a la carte transform A,
weighting the data points in the regression (4) us-
ing a hard threshold of at least 1000 occurrences in
Wikipedia. An embedding for each nonce can then
be constructed by multiplying A by the sum over
all word embeddings in the nonce’s definition. As
can be seen in Table 1, this approach significantly
improves over both baselines and nonce2vec; the
median rank of 165.5 of the original embedding
among the nearest neighbors of the nonce vector is
very low considering the vocabulary size is more
than 250,000, and is also significantly lower than
that of all previous methods.

Chimeras: The second dataset Herbelot and Ba-
roni (2017) consider is that of Lazaridou et al.
(2017), who construct unseen concepts by com-
bining two related words into a fake nonce word
(the “chimera”) and provide two, four, or six
example sentences for this nonce drawn from
sentences containing one of the two component
words. The desired nonce embeddings is then
evaluated via the correlation of its cosine similar-
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ity with the embeddings of several other words,
with ratings provided by human judges.

We use the same approach as in the nonce task,
except that the chimera embedding is the result of
summing over multiple sentences. From Table 1
we see that, while our method is consistently bet-
ter than both the additive baseline and nonce2vec,
removing stop-words from the additive baseline
leads to stronger performance for more sentences.
Since the a la carte algorithm explicitly trains
the transform to match the true word embedding
rather than human similarity measures, it is per-
haps not surprising that our approach is much
more dominant on the definitional nonce task.

5 Building Feature Embeddings using
Large Corpora

Having witnessed its success at representing un-
seen words, we now apply the a la carte method
to two types of feature embeddings: synset em-
beddings and n-gram embeddings. Using these
two examples we demonstrate the flexibility and
adaptability of our approach when handling dif-
ferent corpora, base word embeddings, and down-
stream applications.

5.1 Supervised Synset Embeddings for
Word-Sense Disambiguation

Embeddings of synsets, or sets of cognitive syn-
onyms, and related entities such as senses and
lexemes have been widely studied, often due to
the desire to account for polysemy (Rothe and
Schiitze, 2015; lacobacci et al., 2015). Such rep-
resentations can be evaluated in several ways, in-
cluding via their use for word-sense disambigua-
tion (WSD), the task of determining a word’s
sense from context. While current state-of-the-
art methods often use powerful recurrent models
(Raganato et al., 2017), we will instead use a sim-



SemEval-2013 Task 12

SemEval-2015 Task 13

Method nouns adj. nouns adv. verbs comb.
a la carte (SemCor) 60.0 722 677 852 60.6 68.1
a la carte (glosses) 51.8 753 625 79.0 558 642
a la carte (combined) 60.5 74.1 703 864 594  69.6
MES (SemCor) 58.8 79.5 60.0 87.6 66.7 66.8
Raganato et al. (2017) 66.9 72.4

Table 2: Application of a la carte synset embeddings to two standard WSD tasks. As all systems always
return exactly one answer, performance is measured in terms of accuracy. Results due to Raganato et al.
(2017), who use a bi-LSTM for this task, are given as the recent state-of-the-art result.

ple similarity-based approach that heavily depends
on the synset embedding itself and thus serves as
a more useful indicator of representation quality.
A major target for our simple systems is to beat
the most-frequent sense (MFS) method, which re-
turns for each word the sense that occurs most fre-
quently in a corpus such as SemCor. This base-
line is “notoriously hard-to-beat,” routinely best-
ing many systems in SemEval WSD competitions
(Navigli et al., 2013).

Synset Embeddings: We use SemCor (Langone
et al., 2004), a subset of the Brown Corpus (BC)
(Francis and Kucera, 1979) annotated using PWN
synsets. However, because the corpus is quite
small we use GloVe trained on Wikipedia instead
of on BC itself. The transform A is learned using
context embeddings u,, computed with windows
of size ten around occurrences of w in BC and
weighting each word by the log of its count during
the regression stage (4). Then we set the context
embedding u; of each synset s to be the average
sum of word embeddings representation over all
sentences in SemCor containing s. Finally, we ap-
ply the a la carte transform to get the synset em-
bedding vy = Au,.

Sense Disambiguation: To determine the sense
of a word w given its context ¢, we convert ¢ into
a vector using the a la carte transform A on the
sum of its word embeddings and return the synset
s of w whose embedding v is most similar to this
vector. We try two different synset embeddings:
those induced from SemCor as above and those
obtained by embedding a synset using its gloss,
or PWN-provided definition, in the same way as a
nonce in Section 4.2. We also consider a combined
approach in which we fall back on the gloss vector
if the synset does not appear in SemCor and thus
has no induced embedding.
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As shown in Table 2, synset embeddings in-
duced from SemCor alone beat MFS overall,
largely due to good noun results. The method im-
proves further when combined with the gloss ap-
proach. While we do not match the state-of-the-
art, our success in besting a difficult baseline using
very little fine-tuning and exploiting none of the
underlying graph structure suggests that the a la
carte method can learn useful synset embeddings,
even from relatively small data.

5.2 N-Gram Embeddings for Classification

As some of the simplest and most useful linguistic
features, n-grams have long been a focus of em-
bedding studies. Compositional approaches, such
as sums and products of unigram vectors, are often
used and work well on some evaluations, but are
often order-insensitive or very high-dimensional
(Mitchell and Lapata, 2010). Recent work by Po-
liak et al. (2017) works around this while staying
compositional; however, as we will see their ap-
proach does not seem to capture a bigram’s mean-
ing much better than the sum of its word vec-
tors. m-grams embeddings have also gained in-
terest for low-dimensional document representa-
tion schemes (Hill et al., 2016; Pagliardini et al.,
2018; Arora et al., 2018a), largely due to the suc-
cess of their sparse high-dimensional Bag-of-n-
Grams (BonG) counterparts (Wang and Manning,
2012). This setting of document embeddings de-
rived from n-gram features will be used for quan-
titative evaluation in this section.

We build n-gram embeddings using two cor-
pora: 300-dimensional Wikipedia embeddings,
which we evaluate qualitatively, and 1600-
dimensional embeddings on the Amazon Product
Corpus (McAuley et al., 2015), which we use for
document classification. For both we use as source
embeddings GloVe vectors trained on the respec-



Method beef up cutting edge harry potter tight lipped
Vuw, + Vs, meat, out cut, edges deathly, azkaban loose, fitting
‘(afudlifzz) but, however which, both which, but but, however
ECO meats, meat weft, edges robards, keach scaly, bristly
Sent2Vec add, reallocate science, multidisciplinary naruto, pokemon wintel, codebase
ala carte need, improve innovative, technology deathly, hallows worried, very

Table 3: Closest word embeddings (measured via cosine similarity) to the embeddings of four idiomatic
or entity-associated bigrams. From these examples we see that purely compositional methods may strug-
gle to construct context-aware bigram embeddings, even when the features are present in the corpus.
On the other hand, adding up corpus contexts (1) is dominated by stop-word information. Sent2Vec is
successful on half the examples, reflecting its focus on good sentence, not bigram, embeddings.

tive corpora over words occurring at least a hun-
dred times. Context embeddings are constructed
using a window of size ten and a hard threshold
at 1000 occurrences is used as the word-weighting
function in the regression (4). Unlike Poliak et al.
(2017), who can construct arbitrary embeddings
but need to train at least two sets of vectors of di-
mension at least 2d to do so, and Yin and Schutze
(2014), who determine which n-grams to repre-
sent via corpus counts, our a la carte approach
allows us to train exactly those embeddings that
we need for downstream tasks. This, combined
with our method’s efficiency, allows us to con-
struct more than two million bigram embeddings
and more than five million trigram embeddings,
constrained only by their presence in the large
source corpus.

Qualitative Evaluation: We first compare bi-
gram embedding methods by picking some id-
iomatic and entity-related bigrams and examining
the closest word vectors to their representations.
These word-pairs are picked because we expect
sophisticated feature embedding methods to en-
code a better vector than the sum of the two em-
beddings, which we use as a baseline. From Ta-
ble 3 we see that embeddings based on corpora
rather than composition are better able to embed
these bigrams to be close to concepts that are se-
mantically similar. On the other hand, as discussed
in Section 3 and evident from these results, the
additive context approach is liable to emphasize
stop-word directions due to their high frequency.

Document Embedding: Our main application
and quantitative evaluation of n-gram vectors is
to use them to construct document embeddings.
Given a length L document D = {wy,...,wp},
we define its embedding vp as a weighted con-
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catenation over sums of our induced n-gram em-
beddings, i.e.

T L T 1 L—n+1 T
VD = t; Vwe *77 n t; V(Wi 4n1)
where vy, w,,_,) 1S the embedding of the n-
gram (wy, ..., Wipn—1). Following Arora et al.

(2018a), we weight each n-gram component by %
to reflect the fact that higher-order n-grams have
lower quality embeddings because they occur less
often in the source corpus. While we concatenate
across unigram, bigram, and trigram embeddings
to construct our text representations, separate ex-
periments show that simply adding up the vec-
tors of all features also yields a smaller but still
substantial improvement over the unigram perfor-
mance. The higher embedding dimension due to
concatenation is in line with previous methods and
can also be theoretically supported as yielding a
less lossy compression of the n-gram information
(Arora et al., 2018a).

In Table 4 we display the result of running
cross-validated, ¢2-regularized logistic regression
on documents from MR movie reviews (Pang and
Lee, 2005), CR customer reviews (Hu and Liu,
2004), SUBJ subjectivity dataset (Pang and Lee,
2004), MPQA opinion polarity subtask (Wiebe
et al., 2005), TREC question classification (Li and
Roth, 2002), SST sentiment classification (binary
and fine-grained) (Socher et al., 2013), and IMDB
movie reviews (Maas et al., 2011). The first four
are evaluated using tenfold cross-validation, while
the others have train-test splits.

Despite the simplicity of our embeddings (a
concatenation over sums of a la carte n-gram vec-
tors), we find that our results are very competitive
with many recent unsupervised methods, achiev-
ing the best word-level results on two of the tested



Representation n dr MR CR SUBJ MPQA TREC SST(£1) SST IMDB
1 1% 711 77.0  91.0 85.1 86.8 80.7 36.8 88.3

BonG 2 i+ Vs 771.8 781 918 85.8 90.0 80.9 39.0  90.0
3 Vi+Vo+ Vs 718 783 914 85.6 89.8 80.1 423 89.8
1 1600 798 813 926 87.4 85.6 84.1 46.7 89.0

a la carte 2 3200 81.3 837 935 87.6 89.0 85.8 47.8 903
3 4800 81.8 843 938 87.6 89.0 86.7 48.1 909

Sent2Vec' 1-2 700 763 79.1 912 87.2 85.8 80.2 31.0 855

DisC? 2-3 3200-4800 80.1 815 926 87.9 90.0 85.5 46.7 89.6

skip-thoughts® 4800 80.3 83.8 942 88.9 93.0 85.1 45.8

SDAE* 2400 74.6  78.0  90.8 86.9 78.4

CNN-LSTM?® 4800 718 82.0 93.6 894 92.6

MC-QT® 4800 824 860 948 90.2 92.4 87.6

byte mLSTM" 4096 86.8 90.6 94.7 88.8 90.4 91.7 546 922

* Vocabulary sizes (i.e. BonG dimensions) vary by task; usually 10K-100K.

1,37

(Pagliardini et al., 2018; Kiros et al., 2015; Radford et al., 2017) Evaluation conducted using latest pretrained models.

Note that the latest available skip-thoughts implementation returns an error on the IMDB task.
2456 (Arora et al., 2018a; Hill et al., 2016; Gan et al., 2017; Logeswaran and Lee, 2018) Best results from publication.

Table 4: Performance of document embeddings built using a la carte n-gram vectors and recent unsu-
pervised word-level approaches on classification tasks, with the character LSTM of (Radford et al., 2017)
shown for comparison. Top three results are bolded and the best word-level performance is underlined.

datasets. The fact that we do especially well on
the sentiment tasks indicates strong exploitation of
the Amazon review corpus, which was also used
by DisC, CNN-LSTM, and byte mLSTM. At the
same time, the fact that our results are compara-
ble to neural approaches indicates that local word-
order may contain much of the information needed
to do well on these tasks. On the other hand, sep-
arate experiments do not show a substantial im-
provement from our approach over unigram meth-
ods such as SIF (Arora et al., 2017) on sentence
similarity tasks such as STS (Cer et al., 2017).
This could reflect either noise in the n-gram em-
beddings themselves or the comparative lower im-
portance of local word-order for textual similarity
compared to classification.

6 Conclusion

We have introduced a la carte embedding, a sim-
ple method for representing semantic features us-
ing unsupervised context information. A natu-
ral and principled integration of recent ideas for
composing word vectors, the approach achieves
strong performance on several tasks and promises
to be useful in many linguistic settings and to
yield many further research directions. Of partic-
ular interest is the replacement of simple window
contexts by other structures, such as dependency
parses, that could yield results in domains such as
question answering or semantic role labeling. Ex-
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tensions of the mathematical formulation, such as
the use of word weighting when building context
vectors as in Arora et al. (2018b) or of spectral
information along the lines of Mu and Viswanath
(2018), are also worthy of further study.

More practically, the Contextual Rare Words
(CRW) dataset we provide will support research
on few-shot learning of word embeddings. Both
in this area and for n-grams there is great scope
for combining our approach with compositional
approaches (Bojanowski et al., 2016; Poliak et al.,
2017) that can handle settings such as zero-shot
learning. More work is needed to understand the
usefulness of our method for representing (po-
tentially cross-lingual) entities such as synsets,
whose embeddings have found use in enhancing
WordNet and related knowledge bases (Camacho-
Collados et al., 2016; Khodak et al., 2017). Fi-
nally, there remain many language features, such
as named entities and morphological forms, whose
representation by our method remains unexplored.
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