RelTextRank: An Open Source Framework for Building Relational
Syntactic-Semantic Text Pair Representations

Kateryna Tymoshenko' and Alessandro Moschitti and Massimo Nicosia’ and Aliaksei Severyn'

TDISI, University of Trento, 38123 Povo (TN), Italy
Qatar Computing Research Institute, HBKU, 34110, Doha, Qatar
{kateryna.tymoshenko, massimo.nicosia}@unitn.it
{amoschitti, aseveryn}@gmail.com

Abstract

We present a highly-flexible UIMA-based
pipeline for developing structural kernel-
based systems for relational learning from
text, i.e., for generating training and test
data for ranking, classifying short text
pairs or measuring similarity between
pieces of text. For example, the proposed
pipeline can represent an input question
and answer sentence pairs as syntactic-
semantic structures, enriching them with
relational information, e.g., links between
question class, focus and named entities,
and serializes them as training and test
files for the tree kernel-based reranking
framework. The pipeline generates a num-
ber of dependency and shallow chunk-
based representations shown to achieve
competitive results in previous work. It
also enables easy evaluation of the models
thanks to cross-validation facilities.

1 Introduction

A number of recent works (Severyn et al,
2013; Tymoshenko et al., 2016b,a; Tymoshenko
and Moschitti, 2015) show that tree kernel meth-
ods produce state-of-the-art results in many dif-
ferent relational tasks, e.g., Textual Entailment
Recognition, Paraphrasing, question, answer and
comment ranking, when applied to syntactico-
semantic representations of the text pairs.

In this paper, we describe RelTextRank, a flex-
ible Java pipeline for converting pairs of raw texts
into structured representations and enriching them
with semantic information about the relations be-
tween the two pieces of text (e.g., lexical exact
match). The pipeline is based on the Apache
UIMA technology', which allows for the creation

1https ://uima.apache.org/

of highly modular applications and analysis of
large volumes of unstructured information.

RelTextRank is an open-source tool avail-
able at https://github.com/iKernels/
RelTextRank. It contains a number of
generators for shallow and dependency-based
structural representations, UIMA wrappers for
multi-purpose linguistic annotators, e.g., Stanford
CoreNLP (Manning et al., 2014), question classi-
fication and question focus detection modules, and
a number of similarity feature vector extractors. It
allows for: (i) setting experiments with the new
structures, also introducing new types of relational
links; (ii) generating training and test data both for
kernel-based classification and reranking, also in
a cross-validation setting; and (iii) generating pre-
dictions using a pre-trained classifier.

In the remainder of the paper, we describe
the structures that can be generated by the sys-
tem (Sec 2), the overall RelTextRank architecture
(Sec 3) and the specific implementation of its com-
ponents (Sec 4). Then, we provide some examples
of how to run the pipeline from the command line
(Sec 5)°. Finally, in Sec 6, we report some results
using earlier versions of RelTextRank.

2 Background

Recent work in text pair reranking and classi-
fication, e.g., answer sentence selection (AS) and
community question answering (cQA), has stud-
ied a number of structures for representing text
pairs along with their relational links, which pro-
vide competitive results when used in a standalone
system and the state of the art when combined
with feature vectors (Severyn et al., 2013; Ty-
moshenko et al., 2016b; Tymoshenko and Mos-
chitti, 2015) and embeddings learned by the neural
networks (Tymoshenko et al., 2016a). In this sec-

’The detailed documentation is available on the related
GitHub project.

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics-System Demonstrations, pages 79-84
Vancouver, Canada, July 30 - August 4, 2017. (©)2017 Association for Computational Linguistics
https://doi.org/10.18653/v1/P17-4014

https://doi.org/10.18653/v1/P17-4014
https://doi.org/10.18653/v1/P17-4014

ROOT |
ROOT
root
| root ——
3 7___7___,—7—'—_:::-_;_;;’—":::_:\7_ — -g‘____{;;i;-” :{\b T
T nsubj VBD dobj punct nsub] o8] punct
N] | |
NP VP NP | TN |
AN WP write:'v compound NNP . NP VBD N\P o
I RN | | | N |
Wp V]TD NTP NTP whow NNP christmas:n 7. WP writetv NNP NNP -
who write white christmas white:'n who:w white:n christmas:n 7
(a) CH (b) DT1 (c) DT2
ROOT ROOT
ROOT STTT— |
‘ S HUM S
write::v _)_7_,,3;7“'*::;:‘__ . T T
—— __ — _— RELNP VP RELNP . REL-NP VP FRELHUM-NP HUM
christmas:n N P e
| N N |
whitern GR.dobj POS-NNP \N]P VBD REL-IJ RELiNNS | REL—|NNP REL—|NNP V]|32 D|T Nl“‘IP Nl‘\IP N|N
GR-compound POS-NNP who write white christmas ? white christmas be a iving berlm song

(d) LCT fragment

(e) CHP structure enriched with the relational labels

Figure 1: Structures generated by RelTextRank

tion, we provide an overview of the structures and
relational links that can be generated by RelTex-
tRank (specific details are in the above papers).

2.1 RelTextRank Structures

RelTextRank can generate the following struc-
tural representations for a text pair (71,7%),
where, e.g., 71 can be a question and 75 a can-
didate answer passage for an AS task.

Shallow pos-chunk tree representation (CH
and CHP). Here, T} and 75 are both represented
as shallow tree structures with lemmas as leaves,
their POS-tags as their parent nodes. The POS-
tag nodes are further grouped under chunk and
sentence nodes. We provide two versions of this
structure: CHP (Fig. le), which keeps all infor-
mation while CH (Fig. 1a) excludes punctuation
marks and words outside of any chunk.
Constituency tree representation (CONST).
Standard constituency tree representation.
Dependency tree representations. We pro-
vide three dependency-based relational structures:
DT1, DT2 and LCT. DT1 (Fig. 1b) is a depen-
dency tree in which grammatical relations become
nodes and lemmas are located at the leaf level.
DT2 (Fig. 1c) is DT1 modified to include the
chunking information, and lemmas in the same
chunk are grouped under the same chunk node.
Finally, LCT (Fig. 1d) is a lexical-centered de-
pendency tree (Croce et al., 2011) with the gram-
matical relation RE L(head, child) represented as
(head (child GR-REL POS-pos(head)). Here REL

80

is a grammatical relation, head and child are the
head and child lemmas in the relation, respec-
tively, and pos (head) is the POS-tag of the head
lemma. GR- and POS- tags in the node name in-
dicate that the node is a grammar relation or part-
of-speech node, respectively.

2.2 RelTextRank relational links

Experimental results on multiple datasets (Sev-
eryn et al., 2013; Severyn and Moschitti, 2012)
show that encoding information about the relations
between 7' and 75 is crucial for obtaining the state
of the art in text pair ranking and classification.
RelTextRank provides two kinds of links: hard
string match, REL, and semantic match, FREL.
REL. If some lemma occurs both in 77 and 75,
we mark the respective POS-tag nodes and their
parents in the structural representations of 77 and
T» with REL labels for all the structures, except
for LCT. In LCT, we mark with REL— the POS
(POS-) and grammar relation (GR-) nodes.
FREL. When working in the question answering
setting, i.e., when 77 is a question and 75 is a can-
didate answer passage, we encode the question fo-
cus and question class information into the struc-
tural representations. We use FREL—-<QC> tag to
mark question focus in 7T;. Then, in 75, we mark
all the named entities 75 of type compatible with
the question class®. Here, <QC> is substituted

3We use the following mappings to check for compatibility(Stanford
named entity type — UIUC question class (Li and Roth, 2002)): Person, Or-
ganization — HUM ,ENTY; Misc — ENTY; Location —LOC; Date, Time,
Money, Percentage, Set, Duration —-NUM

Input Tit
T, « UIMA pipeline Projector
T RPEC) 5. Return
o ,\\(“’ 5\5’“ 4. Submit (R(T,T))
W (CAS, CAS)) Y
\4 &\0 [7 R(T,T))
: NP
¥ v 3. Submit (CAS;, CAS;) L Y
System Experiment
8. Return (R(T, T;), R(T;,T), FV,;)
i 6. Submit 7. Similarit
9. Submit : Yy
Output (R(le, T,;)I, R(T,T), FV,y) i?C({’A_S.’,-:)CAs,.,., feature vector
g » Ty FV, .
MLExample; ;; R(T:, 7) Y

MLExample; ;,

OutputWriter

VectorFeatureExtractor

Figure 2: Overall framework

with an actual question class. For all structures
in Sec. 2.1, except LCT, we prepend the FREL—
<QC> tag to the grand-parents of the lemma nodes.
In case of LCT, we mark the child grammatical
(GR-) and POS-tag (POS—) nodes of the lemma
nodes. Finally, only in case of CH? structure we
also add <QC> to the ROOT tree node as its right-
most child, and mark the question focus node sim-
ply as FREL. Fig. le shows an example of a CHP
enriched with REL and FREL links.*

3 System Architecture

RelTextRank has a modular architecture easy to
adjust towards new structures, features and rela-
tional links (see Fig. 2). The basic input of RelTex-
tRank is a text T;, and a list of n texts, T;q, ..., Ty,
to be classified or reranked as relevant or not for
T;. For example, in the QA setting, 7; would be
a question and Tj;, j = 1,...,n would be a list of
n candidate answer passages. The output of the
system is a file in the SVMLight-TK> format con-
taining the relational structures and feature vectors
generated from the (T}, (T;1, ..., T;)) tuples.

When launched, the RelTextRank System mod-
ule first initializes the other modules, such as the
UIMA text analysis pipeline responsible for lin-
guistic annotation of input texts, the Experiment
module responsible for generating the structural
representations enriched with the relational labels,
and, finally, the OutputWriter module, which
generates the output in the SVMLight-TK format.

At runtime, given an input (T, (T51, ..., Tin))
tuple, RelTextRank generates (T;,T;;) pairs (j =
1,...,n), and performs the following steps:

4Note that the structures in Fig. 1a- 1d here are depicted without REL and
FREL links, however, at runtime the classes described in Sec. 4 do enrich them
with the links

5http ://disi.unitn.it/moschitti/Tree-Kernel.htm

81

Step 1. Linguistic annotation. It runs a pipeline
of UIMA Analysis Engines (AEs), which wrap
linguistic annotators, e.g., Sentence Splitters, To-
kenizers, Syntactic parsers, to convert the input
text pairs (73, T;;) into the UIMA Common Anal-
ysis Structures (CASes), i.e., (CAS; and CAS;;).
CASes contain the original texts and all the lin-
guistic annotations produced by AEs. These pro-
duce linguistic annotations defined by a UIMA
Type System. In addition, there is an option to per-
sist the produced CASes, and not to rerun the an-
notators when re-processing a specific document.
Step 2. Generation of structural representa-
tions and feature vectors. The Experiment mod-
ule is the core architectural component of the sys-
tem, which takes CASes as input and generates the
relational structures for 7; and T;; along with their
feature vector representation, F'V; ;;. R(T;, T;;) is
the relational structure for T; enriched with the re-
lational links towards T;;, while R(7;;,T;) is the
opposite, i.e., the relational structure for 7;; with
respect to 7. Here, the Projector module gen-
erates (R(T;, Ti;), R(T;5, T;)) and the VectorFea-
tureExtractor module generates F'V; ;;. In Sec. 4,
we provide a list of Experiment modules that im-
plement the representations described in Sec. 2.1,
and a list of feature extractors to generate [V ;;.
Step 3. Generation of the output files. Once, all
the pairs generated from the (7}, (T}1, ..., Tjn)) tu-
ple have been processed, the OutputWriter mod-
ule writes them into training/test files. We provide
several output strategies described in Sec. 4.

4 Architecture Components

In order to generate the particular configuration
of train/test data, one must specify which System,
Experiment and VectorFeatureExtractor modules

Structure/previous usage Class Name

CH (Severyn et al., 2013; Tymoshenko et al., CHExperiment
2016b)

DT1 (Severyn et al., 2013; Tymoshenko and DT1Experiment
Moschitti, 2015)

DT2 (Tymoshenko and Moschitti, 2015) DT2Experiment
LCTq-DT2 4 (Tymoshenko and Moschitti, LCTgDT2aExperiment
2015)

CONST ConstExperiment
CHP (Tymoshenko et al., 2016a) CHpExperiment
CH-cQA (Barrén-Cedeno et al., 2016) CHcQaExperiment
CONST-cQA (Tymoshenko et al., 2016b) ConstQaExperiment

Table 1: List of experimental configurations

to be used. In this section, we describe the imple-
mentations of the architectural modules currently
available within RelTextRank.

System modules. These are the entry point to
the pipeline, they initialize the specific structure
and feature vector generation strategies (Exper-
iment and VectorFeatureExtractor) and define
the type (classification or reranking) and the
format of the output file. Currently, we provide
the system modules for generating classification
(ClassTextPairConversion) and rerank-
ing training (RERTextPairConversion)
files. Then, we provide a method to gen-
erate the cross-validation experimental data
(ClassCVTextPairConversion and CVR—
ERTextPairConversion). Additionally,
we provide a method for generating training/test
data for the answer comment reranking in cQA,
CQASemevalTaskA. Finally, we provide a
prediction module for classifying and rerank-
ing new text pairs with a pre-trained classifier
(TextPairPrediction).

Every System module uses a single Out-
putWriter module, whose type of Experiment and
FeatureVectorExtractor to be used are specified
with command line parameters (see Sec. 5.)
UIMA pipeline. We provide the UIMA AEs (see
it.unitn.nlpir.annotators), wrapping
the components of the Stanford pipeline (Manning
et al., 2014) and Illinois Chunker (Punyakanok
and Roth, 2001). The UIMA pipeline takes a pair
of texts, (73,7;;) as input, and outputs their re-
spective CASes, (CAS;, CAS;j).

RelTextRank also includes AEs for question
classification (QuestionClassifier) and
question focus detection (QuestionFocus-—
Annotator). Focus classification module
employs a model pre-trained as in (Severyn et al.,
2013). QuestionClassifier canbe run with
coarse- and fine-grained question classification
models trained on the UIUC corpus by (Li and

82

Algorithm 1 Generating training data for reranking

Require: S, Sq— - (T, T;;) pairs with positive and negative labels, re-
spectively
1: B4 «+ 0, E_ <+ 0, flip + true
2: forall sy € Sy do
foralls_ € S,_ do
if flip == true then
Ef < EfU(s4,s-)
flip < false
else
E_«+ E_U(s—,s4+)
. flip < true
10: return E,, E_

3
4
5:
6:
7.
8
9

Roth, 2002) as described in (Severyn et al., 2013).
The coarse-grained classier uses the following
categories, HUMan, ENTitY, LOCation, ABBR,
DESCription, NUMber classes, whereas the
fine-grained classifier splits the NUM class into
DATE, CURRENCY and QUANTITY.

Currently, we use a custom UIMA type system
defined for our pipeline, however, in future we
plan to use the type systems used in other widely
used UIMA pipelines, e.g., DKPro (de Castilho
and Gurevych, 2014).

Experiment modules. All the Experiment mod-
ule implementations are available as classes in the
it.unitn.nlpir.experiment . package.
Tab. 1 provides an overview of the structures cur-
rently available within the system. Here LCT(,-
DT24 represents 1; and T;; as LCT and DT2
structures, respectively. CH-cQA and CONST-
cQA are the CH and CONST structures adjusted
for cQA (see (Tymoshenko et al., 2016b)).
OutputWriter modules. In the it.unitn.
nlpir.system.datagen package, we pro-
vide the OutputWriters, which output the data
in the SVMLight-TK format in the classifica-
tion (ClassifierDataGen) and the reranking
(RerankingDataGenTrain and Rerank-
ingDataGenTest) modes. Currently, the type
of the OutputWriter can only be specified in the
code of the System module. It is possible to create
a new System module starting from the existing
one and code a different OutputWriter.

In the classification mode, one OutputWriter
generates one example for each text pair (75, T3;).
Another OutputWriter implementation generates
input data for kernel-based reranking (Shen et al.,
2003) using the strategy described in Alg. 1.
VectorFeatureExtractors. RelTextRank contains
feature extractors to compute: (i) cosine similar-
ity over the text pair: simcos(T1,T5), where the
input vectors are composed of word lemmas, bi-,
three- an four-grams, POS-tags; similarity based
on the PTK score computed for the structural rep-

Command 1. Generate training data

java -Xmx5G -Xss512m it.unitn.nlpir.system.core. RERTextPair Conversion -questionsPath data/wikiQA/WikiQA-train.questions.txt

-answersPath data/wikiQA/WikiQA-train.tsv.resultset -outputDir data/examples/wikiqa -filePersistence CASes/wikiQA
-candidatesToKeep 10 -mode train -expClassName it.unitn.nlpir.experiment.fqa. CHExperiment
-featureExtractorClass it.unitn.nlpir.features.presets.BaselineFeatures

Command 2. Use pre-trained model to do classification

java -Xmx5G -Xss512m it.unitn.nlpir.system.core.TextPairPrediction -svmModel data/wikiQA/wikiga-ch-rer-baselinefeats.model
-featureExtractorClass it.unitn.nlpir.features.presets.BaselineFeatures -questionsPath data/wikiQA/WikiQA-test.questions.txt

-answersPath data/wikiQA/WikiQA-test.tsv.resultset -outputFile data/examples/wikiqa/wikiqa-ch-rer-baselinefeats.pred
-expClassName it.unitn.nlpir.experiment.fqa. CHExperiment -mode reranking -filePersistence CASes/wikiQA/test

Table 2: Example commands to launch the pipeline

resentations of 77 and T»: simprg (11,12) =
PTK(Ty,T»), where the input trees can both be
the dependency trees and/or the shallow chunk
trees; (ii) IR score, which is a normalized score
assigned to the answer passage by an IR engine, if
available; (iii) question class as a binary feature.

Then, RelTextRank includes feature extractors
based on the DKPro Similarity tool (Bér et al.,
2013) for extracting (iv) longest common sub-
string/subsequence measure; (V) Jaccard similar-
ity coefficient on 1,2,3,4-grams; (vi) word contain-
ment measure (Broder, 1997); (vii) greedy string
tiling (Wise, 1996); and (viii) ESA similarity based
on Explicit Semantic Analysis (ESA) (Gabrilovich
and Markovitch, 2007),

We provide several predefined VectorFeature-
Extractors: BaselineFeatures, AllFea-
tures and NoESAAllFeatures®, which in-
corporate feature groups: (i)-(iii), (i)-(viii) and
(1)-(vii), respectively. Finally, we provide a fea-
ture extractor that reads the pre-extracted fea-
tures from file, FromFileVectorFeature.
The full list of features can be found by ex-
ploring the contents and documentation of the
it.unitn.nlpir.features package.

5 Running the pipeline

Documentation on the RelTextRank GitHub ex-
plains how to install and run the pipeline with
the various reranking and classification configu-
rations. Due to the space limitations, here we
only provide the sample commands for running
the training file generation for the reranking mode
(Tab. 2, Command 1) and using a pretrained model
to rank the produced data (Tab. 2, Command 2).

Command 1 runs the RERTextPairConversion
system (see Sec. 4), using the files specified as
-questionsPath and -answersPath parameters to
read the questions (7; in Fig 2) and their corre-

6 — . . .
The motivation behind this feature extractor is that ESA feature extrac-
tion process is time-consuming

83

sponding candidate answers (7;;, in Fig 2 with
7 = 1,...,n; -candidatesToKeep parameter spec-
ifies the value of n), respectively. -outputDir is
a path to the folder that will contain the resulting
training file, while -filePersistence indicates where
to persist the UIMA CASes containing the linguis-
tic annotations produced by the UIMA pipeline
(this is optional). -mode train indicates that we
are generating the training file. -expClassName
is a mandatory parameter, which indicates the
Experiment module (Fig. 2) we want to invoke,
i.e., which structure we wish to generate. In this
specific example, we build a CH structure (see
Tab. 1). Finally, -featureExtractorClass specifies
which features to include into the feature vector.

Command 2 runs a pipeline that uses a pre-
trained SVMLight-TK model (-svmModel
parameter) to rerank the candidate an-
swers (-answerPath) for the input questions
(-questionsPath), and stores them into a pre-
diction file (-outputFile). Here, we also in-
dicate which structure generator and feature
extractors to be used (-expClassName and -
featureExtractorClass). Note that -expClassName
and -featureExtractorClass must be exactly the
same as the ones used when generating the data
for training the model specified by svmModel.

6 Previous uses of RelTextRank

Tab. 3 reports the results of some of the state-
of-the-art AS and cQA systems that employ Re1-
TextRank as a component and combine the
structures produced by it with the feature vectors
of different nature, V. Here feature vectors are
either manually handcrafted thread-level features,
V4, or word and phrase vector features, V, for
cQA; or embeddings of T;, T;; learned by Convo-
lutional Neural Networks, Vo, for the AS task.

Due to space limitations, we do not describe ev-
ery system in detail, but provide link to a refer-
ence paper with the detailed setup description, and

\' + Rel.Structures
Corpus Reference paper Struct. Feat. MRR MAP MRR MAD
WikiQA (Tymoshenko et al., 2016a)* CHp Venny 6749 6641 73.88 71.99

TREC13 (Tymoshenko et al., 2016a) CH Veny 7932 7337 85.53*% 75.18*
SemEval-2016, 3.A, English (Tymoshenko et al., 2016b) CONST V: 8298 73.50 86.26 78.78
SemEval-2016, 3.D, Arabic (Barr6n-Cedeio et al., 2016) CONST V, 43775 38.33 52.55 45.50

Table 3: Previous uses of RelTextRank

mention which of the structures described in Sec. 2
they employ. (Tymoshenko et al., 2016a)* is a new
structure and embedding combination approach.

We show the results on two AS corpora, Wik-
iQA (Yang et al.,, 2015) and TRECI3 (Wang
et al., 2007). Then, we report the results ob-
tained when using RelTextRank in a cQA sys-
tem for English and Arabic comment selection
tasks in the SemEval-2016 competition, Tasks 3.A
and 3.D (Nakov et al., 2016).

V' column reports the performance of the sys-
tems that employ feature vectors only, while
+ Rel.Structures corresponds to the systems us-
ing a combination of relational structures gener-
ated by the earlier versions of Re1 TextRank and
feature vectors. The numbers marked by * were
obtained using relational structures only, since
combining features and trees decreased the overall
performance in that specific case. Rel.Structures
always improves the performance.

7 Conclusions

In this demonstration paper we have provided
an overview of the architecture and the particu-
lar components of the RelTextRank pipeline for
generating structural relational representations of
text pairs. In previous work, these representa-
tions have shown to achieve the state of the art
for factoid QA and cQA. In the future, we plan
to further evolve the pipeline, improving its code
and usability. Moreover, we plan to expand the
publicly available code to include more relational
links, e.g., Linked Open Data-based relations de-
scribed in (Tymoshenko et al., 2014). Finally, in
order to enable better compatibility with publicly
available tools, we plan to adopt the DKPro type
system (de Castilho and Gurevych, 2014).

Acknowledgments

This work has been partially supported by the
EC project CogNet, 671625 (H2020-ICT-2014-2,
Research and Innovation action).

References

D. Bir, T. Zesch, and I. Gurevych. 2013. Dkpro similarity:
An open source framework for text similarity. In ACL:
System Demonstrations.

84

A. Barr6n-Cedefio, G. Da San Martino, S. Joty, A. Moschitti,
F. Al-Obaidli, S. Romeo, K. Tymoshenko, and A. Uva.
2016. Convkn at semeval-2016 task 3: Answer and ques-
tion selection for question answering on arabic and english
fora. In SemEval-2016.

. Z Broder. 1997. On the resemblance and containment of
documents. In SEQUENCES.

. Croce, A. Moschitti, and R. Basili. 2011. Structured lexi-
cal similarity via convolution kernels on dependency trees.
In EMNLP.

. Eckart de Castilho and I. Gurevych. 2014. A broad-
coverage collection of portable NLP components for
building shareable analysis pipelines. In OIAF4HLT
Workshop (COLING).

. Gabrilovich and S. Markovitch. 2007. Computing se-
mantic relatedness using wikipedia-based explicit seman-
tic analysis. In IJCAI.

. Li and D. Roth. 2002. Learning question classifiers. In
COLING.

. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J.
Bethard, and D. McClosky. 2014. The Stanford CoreNLP
natural language processing toolkit. In ACL.

P. Nakov, L. Marquez, A. Moschitti, W. Magdy, H. Mubarak,
A. Freihat, J. Glass, and B. Randeree. 2016. Semeval-
2016 task 3: Community question answering. In SemEval.

V. Punyakanok and D. Roth. 2001. The use of classifiers in

sequential inference. In NIPS.

Severyn and A. Moschitti. 2012. Structural relationships

for large-scale learning of answer re-ranking. In SIGIR.

Severyn, M. Nicosia, and A. Moschitti. 2013. Learning

adaptable patterns for passage reranking. In CoNLL.

. Shen, A. Sarkar, and A. Joshi. 2003. Using LTAG Based
Features in Parse Reranking. In EMNLP.

. Tymoshenko, D. Bonadiman, and A. Moschitti. 2016a.
Convolutional neural networks vs. convolution kernels:
Feature engineering for answer sentence reranking. In
NAACL-HLT.

. Tymoshenko, D. Bonadiman, and A. Moschitti. 2016b.
Learning to rank non-factoid answers: Comment selection
in web forums. In CIKM.

. Tymoshenko and A. Moschitti. 2015. Assessing the im-
pact of syntactic and semantic structures for answer pas-
sages reranking. In CIKM.

. Tymoshenko, A. Moschitti, and A. Severyn. 2014. Encod-
ing semantic resources in syntactic structures for passage
reranking. In EACL.

Mengqiu Wang, Noah A. Smith, and Teruko Mitaura. 2007.
What is the Jeopardy model? A quasi-synchronous gram-
mar for QA. In EMNLP-CoNLL.

Michael J. Wise. 1996. Yap3: improved detection of similari-
ties in computer program and other texts. In ACM SIGCSE
Bulletin.

Y. Yang, W. Yih, and C. Meek. 2015. Wikiqa: A challenge
dataset for open-domain question answering. In EMNLP.

A.

A.

	RelTextRank: An Open Source Framework for Building Relational Syntactic-Semantic Text Pair Representations

