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Abstract
We present a transition-based dependency
parser that uses a convolutional neural
network to compose word representations
from characters. The character compo-
sition model shows great improvement
over the word-lookup model, especially
for parsing agglutinative languages. These
improvements are even better than using
pre-trained word embeddings from extra
data. On the SPMRL data sets, our sys-
tem outperforms the previous best greedy
parser (Ballesteros et al., 2015) by a mar-
gin of 3% on average.1

1 Introduction
As with many other NLP tasks, dependency pars-
ing also suffers from the out-of-vocabulary (OOV)
problem, and probably more than others since
training data with syntactical annotation is usually
scarce. This problem is particularly severe when
the target is a morphologically rich language. For
example, in the SPMRL shared task data sets (Sed-
dah et al., 2013, 2014), 4 out of 9 treebanks contain
more than 40% word types in the development set
that are never seen in the training set.
One way to tackle the OOV problem is to pre-

train the word embeddings, e.g., with word2vec
(Mikolov et al., 2013), from a large set of unlabeled
data. This comes with two main advantages: (1)
more word types, which means that the vocabulary
is extended by the unlabeled data, so that some of
the OOVwords now have a learned representation;
(2) more word tokens per type, which means that
the syntactic and semantic similarities of the words
are better modeled than only using the parser train-
ing data.

1The parser is available at http://www.ims.
uni-stuttgart.de/institut/mitarbeiter/
xiangyu/index.en.html

Pre-trained word embeddings can alleviate the
OOV problem by expanding the vocabulary, but
it does not model the morphological information.
Instead of looking up word embeddings, many
researchers propose to compose the word repre-
sentation from characters for various tasks, e.g.,
part-of-speech tagging (dos Santos and Zadrozny,
2014; Plank et al., 2016), named entity recogni-
tion (dos Santos and Guimarães, 2015), language
modeling (Ling et al., 2015), machine translation
(Costa-jussà and Fonollosa, 2016). In particular,
Ballesteros et al. (2015) use a bidirectional long
short-term memory (LSTM) character model for
dependency parsing. Kim et al. (2016) present
a convolutional neural network (CNN) character
model for language modeling, but make no com-
parison among the character models, and state that
“it remains open as to which character composition
model (i.e., LSTM or CNN) performs better”.
We propose to apply the CNN model by Kim

et al. (2016) in a greedy transition-based depen-
dency parser with feed-forward neural networks
(Chen and Manning, 2014; Weiss et al., 2015).
This model requires no extra unlabeled data but
performs better than using pre-trained word em-
beddings. Furthermore, it can be combined with
word embeddings from the lookup table since they
capture different aspects of word similarities.
Experimental results show that the CNN model

works especially well on agglutinative languages,
where the OOV rates are high. On other morpho-
logically rich languages, the CNN model also per-
forms at least as good as the word-lookup model.
Furthermore, our CNN model outperforms both

the original and our re-implementation of the bidi-
rectional LSTM model by Ballesteros et al. (2015)
by a large margin. It provides empirical evidence
to the aforementioned open question, suggesting
that the CNN is the better character composition
model for dependency parsing.
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2 Parsing Models
2.1 Baseline Parsing Model
As the baseline parsing model, we re-implement
the greedy parser in Weiss et al. (2015) with some
modifications, which brings about 0.5% improve-
ment, outlined below.2
Since most treebanks contain non-projective

trees, we use an approximate non-projective tran-
sition system similar to Attardi (2006). It has two
additional transitions (LEFT-2 and RIGHT-2) to the
Arc-Standard system (Nivre, 2004) that attach the
top of the stack to the third token on the stack, or
vice versa. We also extend the feature templates in
Weiss et al. (2015) by extracting the children of the
third token in the stack. The complete transitions
and feature templates are listed in Appendix A.
The feature templates consist of 24 tokens in the

configuration, we look up the embeddings of the
word forms, POS tags and dependency labels of
each token.3 We then concatenate the embeddings
Eword(ti), Etag(ti), Elabel(ti) for each token ti, and
use a dense layer with ReLU non-linearity to ob-
tain a compact representation f (ti) of the token:

x(ti) = [Eword(ti);Etag(ti);Elabel(ti)] (1)
f (ti) = max{0,Wfx(ti) + bf}

We concatenate the representations of the to-
kens and feed them through two hidden layers with
ReLU non-linearity, and finally into the softmax
layer to compute the probability of each transition:

h0 = [f (t1); f (t2); ...; f (t24)]
h1 = max{0,W1h0 + b1}
h2 = max{0,W2h1 + b2}

p(⋅|t1, ..., t24) = sof tmax(W3h2 + b3)

Eword , Etag, Elabel, Wf , W1, W2, W3, bf , b1,
b2, b3 are all the parameters that will be learned
through back propagation with averaged stochastic
gradient descent in mini-batches.
Note that Weiss et al. (2015) directly concate-

nate the embeddings of the words, tags, and labels
of all the tokens together as input to the hidden
layer. Instead, we first group the embeddings of
the word, tag, and label of each token and compute

2We only experiment with the greedy parser, since this pa-
per focuses on the character-level input features and is inde-
pendent of the global training and inference as in Weiss et al.
(2015); Andor et al. (2016).

3The tokens in the stack and buffer do not have labels yet,
we use a special label <NOLABEL> instead.

an intermediate representation with shared param-
eters, then concatenate all the representations as in-
put to the hidden layer.
2.2 LSTM Character Composition Model
To tackle the OOV problem, wewant to replace the
word-lookup table with a function that composes
the word representation from characters.
As a baseline character model, we re-implement

the bidirectional LSTM character composition
model following Ballesteros et al. (2015). We re-
place the lookup table Eword in the baseline parser
with the final outputs of the forward and backward
LSTMs ⃖⃖⃖⃖⃖⃖⃖⃖lstm and ⃖⃖⃖⃖⃖⃖⃖⃗lstm. Equation (1) is then re-
placed with

x(ti) = [⃖⃖⃖⃖⃖⃖⃖⃖lstm(ti); ⃖⃖⃖⃖⃖⃖⃖⃗lstm(ti);Etag(ti);Elabel(ti)].

We refer the readers to Ling et al. (2015) for the
details of the bidirectional LSTM.
2.3 CNN Character Composition Model
In contrast to the LSTM model, we propose to use
a “flat” CNN as the character composition model,
similar to Kim et al. (2016).4
Equation (1) is thus replaced with

x(ti) =[cnnl1(ti); cnnl2(ti); ...; cnnlk(ti);
Etag(ti);Elabel(ti)]. (2)

Concretely, the input of the model is a concate-
nated matrix of character embeddings C ∈ ℝdi×w,
where di is the dimensionality of character em-
beddings (number of input channels) and w is the
length of the padded word.5 We apply k convo-
lutional kernels  ∈ ℝdo×di×lk with ReLU non-
linearity on the input, where do is the number of
output channels and lk is the length of the ker-
nel. The output of the convolution operation is
Oconv ∈ ℝdo×(l−k+1), and we apply a max-over-
time pooling that takes the maximum activations
of the kernel along each channel, obtaining the fi-
nal output Ofinal ∈ ℝdo , which corresponds to
the most salient n-gram representation of the word,
denoted cnnlk in Equation (2). We then concate-
nate the outputs of several such CNNs with differ-
ent lengths, so that the information from different
n-grams are extracted and can interact with each
other.

4We do not use the highway networks since it did not im-
prove the performance in preliminary experiments.

5The details of the padding is in Appendix B.
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Model Ara Baq Fre Ger Heb Hun Kor Pol Swe Avg

Int

WORD 84.50 77.87 82.20 85.35 74.68 76.17 84.62 80.71 79.14 80.58
W2V 85.11 79.07 82.73 86.60 74.55 78.21 85.30 82.37 79.67 81.51

LSTM 83.42 82.97 81.35 85.34 74.03 83.06 86.56 80.13 77.44 81.48
CNN 84.65 83.91 82.41 85.61 74.23 83.68 86.99 83.28 80.00 82.75

LSTM+WORD 84.75 83.43 82.25 85.56 74.62 83.43 86.85 82.30 79.85 82.56
CNN+WORD 84.58 84.22 81.79 85.85 74.79 83.51 87.21 83.66 80.52 82.90
LSTM+W2V 85.35 83.94 83.04 86.38 75.15 83.30 87.35 83.00 79.38 82.99
CNN+W2V 85.67 84.37 83.09 86.81 74.95 84.08 87.72 84.44 80.35 83.50

Ext
B15-WORD 83.46 73.56 82.03 84.62 72.70 69.31 83.37 79.83 76.40 78.36
B15-LSTM 83.40 78.61 81.08 84.49 72.26 76.34 86.21 78.24 74.47 79.46
BestPub 86.21 85.70 85.66 89.65 81.65 86.13 87.27 87.07 82.75 85.79

Table 1: LAS on the test sets, the best LAS in each group is marked in bold face.

3 Experiments
3.1 Experimental Setup
We conduct our experiments on the treebanks from
the SPMRL 2014 shared task (Seddah et al., 2013,
2014), which includes 9 morphologically rich lan-
guages: Arabic, Basque, French, German, He-
brew, Hungarian, Korean, Polish, and Swedish.
All the treebanks are split into training, develop-
ment, and test sets by the shared task organizers.
We use the fine-grained predicted POS tags pro-
vided by the organizers, and evaluate the labeled
attachment scores (LAS) including punctuation.
We experiment with the CNN-based character

composition model (CNN) along with several base-
lines. The first baseline (WORD) uses the word-
lookup model described in Section 2.1 with ran-
domly initialized word embeddings. The sec-
ond baseline (W2V) uses pre-trained word embed-
dings by word2vec (Mikolov et al., 2013) with
the CBOW model and default parameters on the
unlabeled texts from the shared task organizers.
The third baseline (LSTM) uses a bidirectional
LSTM as the character composition model follow-
ing Ballesteros et al. (2015). Appendix C lists the
hyper-parameters of all the models.

Further analysis suggests that combining the
character composition models with word-lookup
models could be beneficial since they capture dif-
ferent aspects of word similarities (orthographic
vs. syntactic/semantic). We therefore experiment
with four combined models in two groups: (1) ran-
domly initialized word embeddings (LSTM+WORD
vs. CNN+WORD), and (2) pre-trained word embed-
dings (LSTM+W2V vs. CNN+W2V).
The experimental results are shown in Table 1,

with Int denoting internal comparisons (with
three groups) and Ext denoting external compar-
isons, the highest LAS in each group is marked in
bold face.

3.2 Internal Comparisons

In the first group, we compare the LAS of the
four single models WORD, W2V, LSTM, and CNN.
In macro average of all languages, the CNN model
performs 2.17% higher than the WORD model, and
1.24% higher than the W2V model. The LSTM
model, however, performs only 0.9% higher than
the WORD model and 1.27% lower than the CNN
model.
The CNN model shows large improvement in

four languages: three agglutinative languages
(Basque, Hungarian, Korean), and one highly in-
flected fusional language (Polish). They all have
high OOV rate, thus difficult for the baseline parser
that does not model morphological information.
Also, morphemes in agglutinative languages tend
to have unique, unambiguous meanings, thus eas-
ier for the convolutional kernels to capture.
In the second group, we observe that the addi-

tional word-lookup model does not significantly
improve the CNN moodel (from 82.75% in CNN
to 82.90% in CNN+WORD on average) while the
LSTMmodel is improved by a much larger margin
(from 81.48% in LSTM to 82.56% in LSTM+WORD
on average). This suggests that the CNN model
has already learned the most important informa-
tion from the the word forms, while the LSTM
model has not. Also, the combined CNN+WORD
model is still better than the LSTM+WORD model,
despite the large improvement in the latter.
In the third group where pre-trained word em-

beddings are used, combining CNN with W2V
brings an extra 0.75% LAS over the CNN model.
Combining LSTM with W2V shows similar trend
but with much larger improvement, yet again,
CNN+W2V outperforms LSTM+W2V both on aver-
age and individually in 8 out of 9 languages.

674



Model Case Ara Baq Fre Ger Heb Hun Kor Pol Swe Avg
CNN

ΔIV 0.12 2.72 -0.44 0.13 -0.35 1.48 1.30 0.98 1.39 0.81
ΔOOV 0.03 5.78 0.33 0.10 -1.04 5.04 2.17 2.34 0.95 1.74

LSTM
ΔIV -0.58 1.98 -0.55 -0.08 -1.23 1.62 1.12 -0.49 0.21 0.22
ΔOOV -0.32 5.09 0.12 -0.21 -1.99 4.74 1.51 0.10 0.38 1.05

Table 2: LAS improvements by CNN and LSTM in the IV and OOV cases on the development sets.
Mod Ara Baq Fre Ger Heb Hun Kor Pol Swe Avg
♣bc -1.23 -1.94 -1.35 -1.57 -0.79 -3.23 -1.22 -2.53 -1.54 -1.71
a♣c -3.47 -3.96 -2.39 -2.54 -1.24 -4.52 -3.21 -4.47 -4.19 -3.33
ab♣ -1.52 -15.31 -0.72 -1.23 -0.26 -13.97 -10.22 -3.52 -2.61 -5.48
a♣♣ -3.73 -19.29 -3.30 -3.49 -1.21 -17.89 -12.95 -6.22 -6.01 -8.23
♣b♣ -3.02 -18.06 -2.60 -3.54 -1.42 -18.43 -11.69 -6.22 -3.85 -7.65
♣♣c -5.11 -7.90 -4.05 -4.86 -2.50 -9.75 -4.56 -6.71 -6.74 -5.80

Table 3: Degradation of LAS of the CNN model on the masked development sets.

3.3 External Comparisons
We also report the results of the two mod-
els from Ballesteros et al. (2015): B15-WORD
with randomly initialized word embeddings and
B15-LSTM as their proposed model. Finally, we
report the best published results (BestPub) on
this data set (Björkelund et al., 2013, 2014).
On average, the B15-LSTM model improves

their own baseline by 1.1%, similar to the 0.9%
improvement of our LSTM model, which is much
smaller than the 2.17% improvement of the CNN
model. Furthermore, the CNN model is improved
from a strong baseline: our WORD model performs
already 2.22% higher than the B15-WORD model.

Comparing the individual performances on each
language, we observe that the CNN model almost
always outperforms the WORD model except for
Hebrew. However, both LSTM and B15-LSTM
perform higher than baseline only on the three
agglutinative languages (Basque, Hungarian, and
Korean), and lower than baseline on the other six.
Ballesteros et al. (2015) do not compare the ef-

fect of adding a word-lookup model to the LSTM
model as in our second group of internal com-
parisons. However, Plank et al. (2016) show that
combining the same LSTM character composition
model with word-lookup model improves the per-
formance of POS tagging by a very large mar-
gin. This partially confirms our hypothesis that the
LSTMmodel does not learn sufficient information
from the word forms.
Considering both internal and external compar-

isons in both average and individual performances,
we argue that CNN is more suitable than LSTM as
character composition model for parsing.
While comparing to the best published results

(Björkelund et al., 2013, 2014), we have to note
that their approach uses explicit morphological
features, ensemble, ranking, etc., which all can
boost parsing performance. We only use a greedy
parser with much fewer features, but bridge the 6
points gap between the previous best greedy parser
and the best published result bymore than one half.
3.4 Discussion on CNN and LSTM
We conjecture that the main reason for the bet-
ter performance of CNN over LSTM is its flex-
ibility in processing sub-word information. The
CNN model uses different kernels to capture n-
grams of different lengths. In our setting, a kernel
with a minimum length of 3 can capture short mor-
phemes; and with a maximum length of 9, it can
practically capture a normal word. With the flexi-
bility of capturing patterns from morphemes up to
words, the CNNmodel almost always outperforms
the word-lookup model.
In theory, LSTM has the ability to model much

longer sequences, however, it is composed step by
step with recurrence. For such deep network ar-
chitectures, more data would be required to learn
the same sequence, in comparison to CNN which
can directly use a large kernel to match the pat-
tern. For dependency parsing, training data is usu-
ally scarce, this could be the reason that the LSTM
has not utilized its full potential.
3.5 Analyses on OOV and Morphology
The motivation for using character composition
models is based on the hypothesis that it can ad-
dress the OOV problem. To verify the hypothesis,
we analyze the LAS improvements of the CNN and
LSTMmodel on the development sets in two cases:
(1) both the head and the dependent are in vocabu-
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lary or (2) at least one of them is out of vocabulary.
Table 2 shows the results, where the two cases are
denoted as ΔIV and ΔOOV. The general trend in
the results is that the improvements of both mod-
els in the OOV case are larger than in the IV case,
which means that the character composition mod-
els indeed alleviates the OOV problem. Also, CNN
improves on seven languages in the IV case and
eight languages in the OOV case, and it performs
consistently better than LSTM in both cases.
To analyze the informativeness of the mor-

phemes at different positions, we conduct an ab-
lation experiment. We split each word equally
into three thirds, approximating the prefix, stem,
and suffix. Based on that, we construct six modi-
fied versions of the development sets, in which we
mask one or two third(s) of the characters in each
word. Then we parse them with the CNN models
trained on normal data. Table 3 shows the degra-
dations of LAS on the six modified data sets com-
pared to parsing the original data, where the posi-
tion of ♣ signifies the location of the masks. The
three agglutinative languages Basque, Hungarian,
and Korean suffer the most with masked words.
In particular, the suffixes are the most informa-
tive for parsing in these three languages, since they
cause the most loss while masked, and the least
loss while unmasked. The pattern is quite differ-
ent on the other languages, in which the distinction
of informativeness among the three parts is much
smaller.
4 Conclusion
In this paper, we propose to use a CNN to compose
word representations from characters for depen-
dency parsing. Experiments show that the CNN
model consistently improves the parsing accuracy,
especially for agglutinative languages. In an exter-
nal comparison on the SPMRL data sets, our sys-
tem outperforms the previous best greedy parser.
We also provide empirical evidence and analy-

sis, showing that the CNN model indeed alleviates
the OOV problem and that it is better suited than
the LSTM in dependency parsing.
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A Transitions and Feature Templates

Transition Configurations (Before ⇒ After)
SHIFT (�, [wi|�], A)⇒ ([�|wi], �, A)
LEFT ([�|wi, wj], �, A)

⇒ ([�|wj], �, A ∪ (wj → wi))
RIGHT ([�|wi, wj], �, A)

⇒ ([�|wi], �, A ∪ (wi → wj))
LEFT-2 ([�|wi, wj , wk], �, A)

⇒ ([�|wj , wk], �, A ∪ (wk → wi))
RIGHT-2 ([�|wi, wj , wk], �, A)

⇒ ([�|wi, wj], �, A ∪ (wi → wk))

Table 4: The transition system in our experiments,
where the configuration is a tuple of (stack, buffer,
arcs).

s1, s2, s3, s4, b1, b2, b3, b4,
s1.lc1, s1.lc2, s1.rc1, s1.rc2,
s2.lc1, s2.lc2, s2.rc1, s2.rc2,
s3.lc1, s3.lc2, s3.rc1, s3.rc2,
s1.lc1.lc1, s1.lc1.rc1, s1.rc1.lc1, s1.rc1.rc1

Table 5: The list of tokens to extract feature tem-
plates, where si denotes the i-th token in the stack,
bi the i-th token in the buffer, lci denotes the i-th
leftmost child, rci the i-th rightmost child.

B Character Input Preprocessing
For the CNN input, we use a list of characters
with fixed length to for batch processing. We add
some special symbols apart from the normal al-
phabets, digits, and punctuations: <SOW> as the
start of the word, <EOW> as the end of the word,
<MUL> as multiple characters in the middle of
the word squeezed into one symbol, <PAD> as
padding equally on both sides, and <UNK> as char-
acters unseen in the training data.
For example, if we limit the input length to 9,

a short word ein will be converted into <PAD>-
<PAD>-<SOW>-e-i-n-<EOW>-<PAD>-<PAD>;
a long word prächtiger will be <SOW>-p-r-ä-
<MUL>-g-e-r-<EOW>. In practice, we set the
length as 32, which is long enough for almost all
the words.
C Hyper-Parameters
The common hyper-parameters of all the models
are tuned on the development set in favor of the
WORD model:

• 100,000 training steps with random sampling of
mini-batches of size 100;

• test on the development set every 2,000 steps;
• early stop if the LAS on the development does
not improve for 3 times in a row;

• learning rate of 0.1, with exponential decay rate
of 0.95 for every 2,000 steps;

• L2-regularization rate of 10−4;
• averaged SGD with momentum of 0.9;
• parameters are initialized following He et al.
(2015);

• dimensionality of the embeddings of each word,
tag, and label are 256, 32, 32, respectively;

• dimensionality of the hidden layers are 512, 256;
• dropout on both hidden layers with rate of 0.1;
• total norm constraint of the gradients is 10.
The hyper-parameters for the CNN model are:

• dimensionality of the character embedding is
32;

• 4 convolutional kernels of lengths 3, 5, 7, 9;
• number of output channels of each kernel is 64;
• fixed length for the character input is 32.
The hyper-parameters for the LSTM model are:

• 128 hidden units for both LSTMs;
• all the gates use orthogonal initialization;
• gradient clipping of 10;
• no L2-regularization on the parameters.

678


	Character Composition Model with Convolutional Neural Networks for Dependency Parsing on Morphologically Rich Languages

