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Abstract

Sentences are important semantic units of
natural language. A generic, distributional
representation of sentences that can cap-
ture the latent semantics is beneficial to
multiple downstream applications. We ob-
serve a simple geometry of sentences –
the word representations of a given sen-
tence (on average 10.23 words in all Se-
mEval datasets with a standard deviation
4.84) roughly lie in a low-rank subspace
(roughly, rank 4). Motivated by this ob-
servation, we represent a sentence by the
low-rank subspace spanned by its word
vectors. Such an unsupervised represen-
tation is empirically validated via seman-
tic textual similarity tasks on 19 different
datasets, where it outperforms the sophis-
ticated neural network models, including
skip-thought vectors, by 15% on average.

1 Introduction

Real-valued word representations have brought a
fresh approach to classical problems in NLP, rec-
ognized for their ability to capture linguistic reg-
ularities: similar words tend to have similar rep-
resentations; similar word pairs tend to have sim-
ilar difference vectors (Bengio et al., 2003; Mnih
and Hinton, 2007; Mikolov et al., 2010; Collobert
et al., 2011; Huang et al., 2012; Dhillon et al.,
2012; Mikolov et al., 2013; Pennington et al.,
2014; Levy and Goldberg, 2014; Arora et al.,
2015; Stratos et al., 2015). Going beyond words,
sentences capture much of the semantic informa-
tion. Given the success of lexical representations,
a natural question of great topical interest is how to
extend the power of distributional representations
to sentences.

There are currently two approaches to represent

sentences. A sentence contains rich syntactic in-
formation and can be modeled through sophisti-
cated neural networks (e.g., convolutional neural
networks (Kim, 2014; Kalchbrenner et al., 2014),
recurrent neural networks (Sutskever et al., 2014;
Le and Mikolov, 2014; Kiros et al., 2015; Hill
et al., 2016) and recursive neural networks (Socher
et al., 2013)). Another simple and common ap-
proach ignores the latent structure of sentences:
a prototypical approach is to represent a sentence
by summing or averaging over the vectors of the
words in this sentence (Wieting et al., 2015; Adi
et al., 2016; Kenter et al., 2016).

Recently, Wieting et al. (2015); Adi et al. (2016)
reveal that even though the latter approach ignores
all syntactic information, it is simple, straightfor-
ward, and remarkably robust at capturing the sen-
tential semantics. Such an approach successfully
outperforms the neural network based approaches
on textual similarity tasks in both supervised and
unsupervised settings.

We follow the latter approach but depart from
representing sentences in a vector space as in these
prior works; we present a novel Grassmannian
property of sentences. The geometry is motivated
by (Gong et al., 2017; Mu et al., 2016) where an
interesting phenomenon is observed – the local
context of a given word/phrase can be well rep-
resented by a low rank subspace. We propose to
generalize this observation to sentences: not only
do the word vectors in a snippet of a sentence (i.e.,
a context for a given word defined as several words
surrounding it) lie in a low-rank subspace, but the
entire sentence (on average 10.23 words in all Se-
mEval datasets with standard deviation 4.84) fol-
lows this geometric property as well:

Geometry of Sentences: The word rep-
resentations lie in a low-rank subspaces
(rank 3-5) for all words in a target sen-
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tence.

The observation indicates that the subspace con-
tains most of the information about this sentence,
and therefore motivates a sentence representation
method: the sentences should be represented in the
space of subspaces (i.e., the Grassmannian mani-
fold) instead of a vector space; formally:

Sentence Representation: A sentence
can be represented by a low-rank sub-
space spanned by its word representa-
tions.

Analogous to word representations of similar
words being similar vectors, the principle of sen-
tence representations is: similar sentences should
have similar subspaces. Two questions arise: (a)
how to define the similarity between sentences
and (b) how to define the similarity between sub-
spaces.

The first question has been already addressed
by the popular semantic textual similarity (STS)
tasks. Unlike textual entailment (which aims at in-
ferring directional relation between two sentences)
and paraphrasing (which is a binary classifica-
tion problem), STS provides a unified framework
of measuring the degree of semantic equivalence
(Agirre et al., 2012, 2013, 2014, 2015) in a contin-
uous fashion. Motivated by the cosine similarity
between vectors being a good index for word sim-
ilarity, we generalize this metric to subspaces: the
similarity between subspaces defined in this paper
is the `2-norm of the singular values between two
subspaces; note that the singular values are in fact
the cosine of the principal angles.

The key justification for our approach comes
from empirical results that outperform state-of-
the-art in some cases, and being comparable in
others. In summary, representing sentences by
subspaces outperforms representing sentences by
averaged word vectors (by 14% on average) and
sophisticated neural networks (by 15%) on 19 dif-
ferent STS datasets, ranging over different do-
mains (News, WordNet definition, and Twitter).

2 Geometry of Sentences

Assembling successful distributional word repre-
sentations (for example, GloVe (Pennington et al.,
2014)) into sentence representations is an active
research topic. Different from previous studies
(for example, doc2vec (Mikolov et al., 2013),
skip-thought vectors (Kiros et al., 2015), Siamese

CBOW (Kenter et al., 2016)), our main contri-
bution is to represent sentences using non-vector
space representations: a sentence can be well rep-
resented by the subspace spanned by the con-
text word vectors – such a method naturally
builds on any word representation method. Due
to the widespread use of word2vec and GloVe,
we use their publicly available word representa-
tions – word2vec(Mikolov et al., 2013) trained us-
ing Google News1 and GloVe (Pennington et al.,
2014) trained using Common Crawl2 – to test our
observations.

Observation Let v(w) ∈ Rd be the d-
dimensional word representation for a given word
w ∈ V , and s = (w1, . . . , wn) be a given sen-
tence. Consider the following sentence where
n = 32:

They would not tell me if there was any
pension left here, and would only tell me
if there was (and how much there was) if
they saw I was entitled to it.

After stacking the (non-functional) word vectors
v(w) to form a d×n matrix, we observe that most
energy (80% for GloVe and 72% for word2vec) of
such a matrix is contained in a rank-N subspace,
where N is much smaller than n (for comparison,
we choose N to be 4 and therefore N/n ≈ 13%).
Figure 1 provides a visual representation of this
geometric phenomenon, where we have projected
the d-dimensional word representations into 3-
dimensional vectors and use these 3-dimensional
word vectors to get the subspace for this sentence
(we set N = 2 here for visualization), and plot the
subspaces as 2-dimensional planes.

Geometry of Sentences The example above
generalizes to a vast majority of the sentences: the
word representations of a given sentence roughly
reside in a low-rank subspace, which can be ex-
tracted by principal component analysis (PCA).

Verification We empirically validate this ge-
ometric phenomenon by collecting 53,396 sen-
tences from the SemEval STS share tasks (Agirre
et al., 2012, 2013, 2014, 2015) and plotting the
fraction of energy being captured by the top N
components of PCA in Figure 2 for N = 3, 4, 5,

1https://code.google.com/archive/p/
word2vec/

2http://nlp.stanford.edu/projects/
glove/
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Figure 1: Geometry of sentences.

from where we can observe that on average 70%
of the energy is captured by a rank-3 subspace,
and 80% for a rank-4 subspace and 90% for rank-5
subspace. For comparison, the fraction of energy
of random sentences (generated i.i.d. from the un-
igram distribution) are also plotted in Figure 2.
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Figure 2: Fraction of energy captured by the top
principal components.

Representation The observation above moti-
vates our sentence representation algorithm: since
the words in a sentence concentrate on a few di-
rections, the subspace spanned by these directions
could in principle be a proper representation for
this sentence. The direction and subspace in turn
can be extracted via PCA as in Algorithm 1.

Similarity Metric The principle of sentence
representations is that similar sentences should
have similar representations. In this case, we
expect the similarity between subspaces to be a
good index for the semantic similarity of sen-
tences. In our paper, we define the similarity be-
tween subspaces as follows: let u1(s), ..., uN (s)
be the N orthonormal basis for a sentence s. Af-
ter stacking the N vectors in a d × N matrix

Algorithm 1: The algorithm for sentence rep-
resentations.
Input : a sentence s, word embeddings v(·),

and a PCA rank N .
1 Compute the first N principle components of

samples v(w′), w′ ∈ c,

u1, ..., uN ← PCA(v(w′), w′ ∈ s),

S ←
{

N∑

n=1

: αnun, αn ∈ R
}

Output: N orthonormal basis u1, ..., uN and
a subspace S.

U(s) = (u1(s), ..., uN (s)), we define the corre-
sponding cosine similarity as, CosSim(s1, s2) =√∑N

t=1 σ
2
t , where σt is the t-th singular value of

U(s1)
TU(s2).

Note that σt = cos(θt) where θt is the t-th
“principle angle” between two subspaces. Such
a metric is naturally related to the cosine similar-
ity between vectors, which has been empirically
validated to be a good measure of word similarity.

3 Experiments

In this section we evaluate our sentence represen-
tations empirically on the STS tasks. The objec-
tive of this task is to test the degree to which the al-
gorithm can capture the semantic equivalence be-
tween two sentences. For example, the similarity
between “a kid jumping a ledge with a bike” and
“a black and white cat playing with a blanket” is 0
and the similarity between “a cat standing on tree
branches” and “a black and white cat is high up on
tree branches” is 3.6. The algorithm is then evalu-
ated in terms of Pearson’s correlation between the
predicted score and the human judgment.

Datasets We test the performances of our algo-
rithm on 19 different datasets, which include Se-
mEval STS share tasks (Agirre et al., 2012, 2013,
2014, 2015), sourced from multiple domains (for
example, News, WordNet definitions and Twitter).

Baselines and Preliminaries Our main compar-
isons are with algorithms that perform unsuper-
vised sentence representation: average of word
representations (i.e., avg. (of GloVe and skip-
gram) where we use the average of word vec-
tors), doc2vec (D2V) (Le and Mikolov, 2014) and
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sophisticated neural networks (i.e., skip-thought
vectors (ST) (Kiros et al., 2015), Siamese CBOW
(SC) (Kenter et al., 2016)). In order to enable a
fair comparison, we use the Toronto Book Cor-
pus (Zhu et al., 2015) to train word embeddings.
In our experiment, we adapt the same setting as
in (Kenter et al., 2016) where we use skip-gram
(Mikolov et al., 2013) of and GloVe (Pennington
et al., 2014) to train a 300-dimensional word vec-
tors for the words that occur 5 times or more in the
training corpus. The rank of subspaces is set to be
4 for both word2vec and GloVe.

Results The detailed results are reported in Ta-
ble 1, from where we can observe two phenom-
ena: (a) representing sentences by its averaged
word vectors provides a strong baseline and the
performances are remarkably stable across differ-
ent datasets; (b) our subspace-based method out-
performs the average-based method by 14% on av-
erage and the neural network based approaches by
15%. This suggests that representing sentences by
subspaces maintains more information than sim-
ply taking the average, and is more robust than
highly-tuned sophisticated models.

When we average over the words, the average
vector is biased because of many irrelevant words
(for example, function words) in a given sentence.
Therefore, given a longer sentence, the effect of
useful word vectors become smaller and thus the
average vector is less reliable at capturing the se-
mantics. On the other hand, the subspace repre-
sentation is immune to this phenomenon: the word
vectors capturing the semantics of the sentence
tend to concentrate on a few directions which
dominate the subspace representation.

4 Conclusion

This paper presents a novel unsupervised sentence
representation leveraging the Grassmannian ge-
ometry of word representations. While the cur-
rent approach relies on the pre-trained word rep-
resentations, the joint learning of both word and
sentence representations and in conjunction with
supervised datasets such the Paraphrase Database
(PPDB) (Ganitkevitch et al., 2013) is left to fu-
ture research. Also interesting is the exploration of
neural network architectures that operate on sub-
spaces (as opposed to vectors), allowing for down-
stream evaluations of our novel representation.
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dataset l ST SC D2V
GloVe skip-gram

avg. subspace avg. subspace

2012

MSRpar 17.70 5.60 43.79 14.85 46.18 40.74 16.82 35.71
MSRvid 6.63 58.07 45.22 19.82 63.75 73.90 58.28 63.19
OnWn 7.57 60.45 64.44 35.73 56.72 63.21 42.22 58.43

SMTeuroparl 10.70 42.03 45.03 36.18 52.51 45.83 37.99 45.35
SMTnews 11.72 39.11 39.02 52.78 38.99 45.73 23.44 37.73

2013
FNWN 19.90 31.24 23.22 51.07 39.29 41.03 19.35 26.43
OnWn 7.17 24.18 49.85 49.26 52.48 72.03 58.30 56.52

headlines 7.21 38.61 65.34 28.90 49.07 66.13 41.53 62.84

2014

OnWn 7.74 48.82 60.73 60.84 60.15 76.28 55.38 67.13
deft-forum 8.38 37.36 40.82 22.63 22.75 42.60 32.87 45.30
deft-news 15.78 46.17 59.13 18.93 62.91 64.40 38.72 53.62
headlines 7.43 40.31 63.64 24.31 46.00 62.42 36.46 61.44
images 9.12 42.57 64.97 39.92 55.19 73.38 45.17 71.84

tweet-news 10.03 51.38 73.15 33.56 60.45 74.29 44.16 73.87

2015

answer-forum 15.03 27.84 21.81 28.59 31.39 69.50 34.83 57.62
answer-studetns 10.44 26.61 36.71 11.14 48.46 63.43 43.85 59.01

belief 13.00 45.84 47.69 30.58 44.73 69.65 49.24 64.48
headlines 7.50 12.48 21.51 22.64 44.80 65.67 44.23 68.02
images 9.12 21.00 25.60 34.14 66.40 80.12 56.47 70.53

Table 1: Pearson’s correlation (x100) on SemEval textual similarity task using 19 different datasets,
where l is the average sentence length of each dataset. Results that are better than the baselines are
marked with underlines and the best results are in bold.
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