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Abstract

We show the equivalence of two state-
of-the-art models for link prediction/
knowledge graph completion: Nickel et
al’s holographic embeddings and Trouil-
lon et al.’s complex embeddings. We first
consider a spectral version of the holo-
graphic embeddings, exploiting the fre-
quency domain in the Fourier transform
for efficient computation. The analysis of
the resulting model reveals that it can be
viewed as an instance of the complex em-
beddings with a certain constraint imposed
on the initial vectors upon training. Con-
versely, any set of complex embeddings
can be converted to a set of equivalent
holographic embeddings.

1 Introduction

Recently, there have been efforts to build and
maintain large-scale knowledge bases represented
in the form of a graph (knowledge graph) (Auer
et al., 2007; Bollacker et al., 2008; Suchanek et al.,
2007). Although these knowledge graphs con-
tain billions of relational facts, they are known
to be incomplete. Knowledge graph completion
(KGC) (Nickel et al., 2015) aims at augmenting
missing knowledge in an incomplete knowledge
graph automatically. It can be viewed as a task
of link prediction (Liben-Nowell and Kleinberg,
2003; Hasan and Zaki, 2011) studied in the field of
statistical relational learning (Getoor and Taskar,
2007). In recent years, methods based on vec-
tor embeddings of graphs have been actively pur-
sued as a scalable approach to KGC (Bordes et al.,
2011; Socher et al., 2013; Guu et al., 2015; Yang
et al., 2015; Nickel et al., 2016; Trouillon et al.,
2016b).

In this paper, we investigate the connection

between two models of graph embeddings that
have emerged along this line of research: The
holographic embeddings (Nickel et al., 2016) and
the complex embeddings (Trouillon et al., 2016b).
These models are simple yet achieve the current
state-of-the-art performance in KGC.

We begin by showing that holographic embed-
dings can be trained entirely in the frequency do-
main induced by the Fourier transform, thereby
reducing the time needed to compute the scoring
function from O(nlogn) to O(n), where n is the
dimension of the embeddings.

The analysis of the resulting training method
reveals that the Fourier transform of holographic
embeddings can be regarded as an instance of the
complex embeddings, with a specific constraint
(viz. conjugate symmetry property) cast on on the
initial values.

Conversely, we also show that every set of com-
plex embeddings has a set of holographic embed-
dings (with real vectors) that is equivalent, in the
sense that their scoring functions are equal up to
scaling.

2 Preliminaries

Let i denote the imaginary unit, R be the set of
real values, and C the set of complex values. We
write [v]; to denote the jth component of vector v.
A superscript T (e.g., v1) represents vector/matrix
transpose. For a complex scalar z, vector z, and
matrix Z, 7, Z, and Z represent their complex con-
jugate, and Re(z), Re(z), and Re(Z) denote their
real parts, respectively.

Let x = [xg x-1]T € R and y =
[vo -+ yn—1]T € R". Note that the vector indices
start from O for notational convenience. The cir-
cular convolution of x and y, denoted by x * y, is
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defined by

n—1

[x=*yl; = Z X[(j=k) mod n]Yk> (D
=0

where mod denotes modulus. Likewise, circular
correlation X % y is defined by

n—1

[xxyl; = Z X[(kj) mod n]Yk- ()
=0

While circular convolution is commutative, cir-
cular correlation is not; i.e., X *y = y * X, but
X *y # Y % x in general. As it can be verified
with Egs. (1) and (2), x x y = flip(x) * y, where
flip(x) = [xp-1 --- x0]T is a vector obtained by
arranging the components of X in reverse.

For n-dimensional vectors, naively computing
circular convolution/correlation by Eqs. (1) and
(2) requires o(n*) multiplications. However, we
can take advantage of the Fast Fourier Transform
(FFT) algorithm to accelerate the computation:
For circular convolution, first compute the discrete
Fourier transform (DFT) of x and y, and then com-
pute the inverse DFT of their elementwise vector
product, i.e.,

xxy=F (Fx) O FWY)),

where § : R” —» C"and ! : C* —» R" re-
spectively denote the DFT and inverse DFT, and
O denotes the elementwise product. DFT and in-
verse DFT can be computed in O(nlogn) time
with the FFT algorithm, and thus the computation
time for circular convolution is also O(nlogn).
The same can be said of circular correlation. Since

F(fip(x)) = F(x), we have
x*y=F (Fx) O Fy). 3)

By analogy to how the Fourier transform is used
in signal processing, the original real space R" is
called the “time” domain, and the complex space
C" where DFT vectors reside is called the “fre-
quency” domain.

3 Holographic embeddings for
knowledge graph completion

3.1 Knowledge graph completion

Let £ and R be the finite sets of entities and (bi-
nary) relations over entities, respectively. For each
relation » € R and each pair 5,0 € & of entities,
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Table 1: Correspondence between operations in
time and frequency domains. r < p indicates
p = &) (and alsor = g‘l(p)).

operation time frequency
scalar mult. ox —> o F(x)
summation x4y «—  FX) + F(y)
flip flip(x) «— J(x)
convolution xxy ««— FX)O F(y)
correlation Xx*xy «—  FX) O Fy)
dotproduct x-y = 1F®-F@y)

we are interested in whether (s, 0) holds! or not;
we write r(s,0) = +1 if it holds, and r(s,0) = —1
if not. To be precise, given a training set D =
R x & x € x {-1,+1} such that (r,s,0,y) € D
indicates y = r(s, 0), our task is to design a scor-
ing function f : R x £ x & — R such that for
each of the triples (r, s, 0) not observed in D, func-
tion f should give a higher value if r(s,0) = +1 is
more likely, and a smaller value for those that are
less likely. If necessary, f(, s, 0) can be converted
to probability by P[r(s,0) = +1] = o(f(z, s, 0)),
where 0 : R — (0, 1) is a sigmoid function.

Dataset D can be regarded as a directed graph in
which nodes represent entities £ and edges are la-
beled by relations R. Thus, the task is essentially
that of link prediction (Liben-Nowell and Klein-
berg, 2003; Hasan and Zaki, 2011). Often, it is
also called knowledge graph completion.

3.2 Holographic embeddings (HolE)

Nickel et al. (2016) proposed holographic em-
beddings (HolE) for knowledge graph completion.
Using training data D, this method learns the vec-
tor embeddings e, € R” of entities k € £ and the
embeddings w, € R” of relations » € R. The score
for triple (r, s, 0) is then given by

SHoIE(7, 5,0) = W, - (€5 x €,). 4)

Eq. (4) can be evaluated in time O(n log n) if e;xe,
is computed by Eq. (3).

4 Spectral training of HolE

To compute the circular correlation in the scoring
function of Eq. (4) efficiently, Nickel et al. (2016)
used Eq. (3) in Section 2 and FFT. In this sec-
tion, we extend this technique further, and con-

'Depending on the context, letter r is used either as an
index to an element in R or the binary relation it signifies.



sider training HolE solely in the frequency do-
main. That is, real-valued embeddings e, w, €
R" in the original “time” domain are abolished,
and instead we train their DFT counterparts €, =
F(er) € C" and oy = F(w,) € C" in the frequency
domain. This formulation eliminates the need of
FFT and inverse FFT, which are the major com-
putational bottleneck in HolE. As a result, Eq. (4)
can be computed in time O(n) directly from g and
0.

Indeed, equivalent counterparts in the frequency
domain exist for not only convolution/correlation
but all other computations needed for HolE: scalar
multiplication, summation (needed when vectors
are updated by stochastic gradient descent), and
dot product (used in Eq. (4)). The frequency-
domain equivalents for these operations are sum-
marized in Table 1. All of these can be performed
efficiently (in linear time) in the frequency do-
main.

In particular, the following relation holds for the
dot product between any “time” vectors X,y € R".

1
X-y =5 -5 &)

where the dot product on the right-hand side is the
complex inner product defined by a-b = a'b.
Eq. (5) is known as Parseval’s theorem (also called
the power theorem in (Smith, 2007)), and it states
that dot products in two domains are equal up to
scaling.

After embeddings &, m, € C" are learned in
the frequency domain, their time-domain coun-
terparts e; = & (gr) and w, = § !(®,) can be
recovered if needed, but this is not required as
far as computation of the scoring function is con-
cerned. Thanks to Parseval’s theorem, Eq. (4) can
be directly computed from the frequency vectors
&, o, € C" by

1 _
SHolE(7, 5,0) = ;wr (850 8). (6)

4.1 Conjugate symmetry of spectral
components

A complex vector § = [Ey --- E,1]T € C"is
said to be conjugate symmetric (or Hermitian) if
€/ = Eln-j)mod oy for j = 0,...,n =1, or, in other
words, if it can be written in the form

T
&0 v fiped)] if n is odd,

E T
[EO Y &2 ﬂip(?)] , ifniseven,

for some y € CM"/21=! and &y, &,/» € R.

The DFT &(x) is conjugate symmetric if and
only if x is a real vector. Thus, maintaining con-
jugate symmetry of “frequency” vectors is the key
to ensure their “time” counterparts remain in real
space. Below, we verify that this property is in-
deed preserved with stochastic gradient descent.
Moreover, conjugate symmetry provides a suffi-
cient condition under which dot product takes a
real value. It also has implications on space re-
quirement. These topics are covered in the rest of
this section.

4.2 Vector initialization and update in
frequency domain

Typically, at the beginning of training HolE, each
individual embedding is initialized by a random
vector. When we train HolE in the frequency do-
main, we could first generate a random real vector,
regard them as a HolE vector in the time domain,
and compute its DFT as the initial value in the fre-
quency domain. An alternative, easier approach
is to directly generate a random complex vector
that is conjugate symmetric, and use it as the ini-
tial frequency vector. This guarantees the inverse
DFT to be a real vector, i.e., there exists a valid
corresponding image in the time domain.

Given a training set D (see Section 3.1),
HolE is trained by minimizing the following
objective function over parameter matrix @ =
[e; - e wi--wgrl € RXUEH+RYD.

D log{1+exp(—yfitair(r; 5, o)} +MIOI (7)
(r,5,0,y)€D

where A € R is the hyperparameter controlling
the degree of regularization, and || - ||z denotes the
Frobenius norm.

In our version of spectral training of HolE,
the parameters matrix consists of frequency vec-
tors € and o, instead of e, and w,, i.e., @ =
[e1--gg @ - oR] € C*EHRD Let us dis-
cuss the stochastic gradient descent (SGD) update
with respect to these frequency vectors. In partic-
ular, we are interested in whether conjugate sym-
metry of vectors is preserved by the update.

Suppose vectors o,, €, €, are conjugate sym-
metric. Neglecting the contribution from the
regularization term” in Eq. (7), we see that in

’It can be easily verified that the contribution from the
regularization term to SGD update do not violate conjugate
symmetry.
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an SGD update step, 0.0 faoLe/0®,, 00 fuoLE/0Es,
and ad fioLe/0¢, are respectively subtracted from
0y, &, €,, where o € R is a factor not depending
on these parameters. Noting the equalities

W, - (€5 k€)= €5 (W, %xe,) =¢e, (W, *e)

(see (Nickel et al., 2016, Eq. (12), p. 1958)) and
their frequency counterparts

(l)r'(S_SQEO) 283'((1)_r®£0) =& (0, O &),

obtained through the translation of Table 1, we can
derive

0 _
fHOlE =& 0OE&,,
0m,

0 _
fHolE B o8,
O€;

0
fHoIE —0,0¢,
0¢g,

As seen from above, conjugation, scalar multipli-
cation, summation, and elementwise product are
used in the SGD update. And it is straightforward
to verify that all these operations preserve con-
jugate symmetry. It follows that if o, &, €, are
initially conjugate symmetric, they will remain so
during the course of training, which assures that
the inverse DFTs of the learned embeddings are
real vectors.

4.3 Real-valued dot product

In the scoring function of HolE (Eq. (4)), dot prod-
uct is used for generating a real-valued “score”
out of two vectors, w, and e; © e,. Likewise,
in Eq. (6), the dot product is applied to ®, and
€, O €,, which are complex-valued. However, pro-
vided that the conjugate symmetry of these vec-
tors is maintained, their dot product is always real.
This follows from Parseval’s theorem; the inverse
DFTs of these frequency vectors are real, and thus
their dot product is also real. Therefore, the dot
product of the corresponding frequency vectors is
real as well, according to Eq. (5).

4.4 Space requirement

A general complex vector § € C" can be stored
in memory as 2n floating-point numbers, i.e., one
each for the real and imaginary part of a compo-
nent. In our spectral representation of HolE, how-
ever, the first [n/2] components suffice to specify
the frequency vector &, since the vector is con-
jugate symmetric. Moreover, &y (and &, if n

is even) are real values. Thus, a spectral repre-
sentation of HolE can be specified with exactly n
floating-point numbers, which can be stored in the
same amount of memory as needed by the original
HolE.

5 Relation to Trouillon et al.’s complex
embeddings

5.1 Complex embeddings (ComplEx)

Trouillon et al. (2016b) proposed a model of
embedding-based knowledge graph completion,
called complex embeddings (ComplEx). The ob-
jective is similar to Nickel et al.’s; the embed-
dings e; of entities and w, of relations are to be
learned. In their model, however, these vectors
are complex-valued, and are based on the eigen-

decomposition of complex matrix X, = EW,ET
that encodes relation r € R over pairs of entities,
where X, € CEXEl g = [el,...,e|g|]T e Cléxn,
and W, = diag(w,) € C™" is a diagonal matrix
(with diagonal elements w, € C"). In practice,
X, needs to be a real matrix, because its (r, s)-
component must define the score for r(s,0). To
this end, Trouillon et al. simply extracted the
real part; i.e., X, = Re(EWrET). Trouillon et al.
(2016a) advocated this approach, by showing that
any real matrix X, can be expressed in this form.

With this formulation, the score for triple
(r, s,0) is given by

n—1
fComplEx(r, s,0) = Re [Z[Wr]j[es]j@] . (8

/=0

5.2 Equivalence of holographic and complex
embeddings

Now let us rewrite Eq. (8). Noting the definition
of complex dot product, i.e.,a-b = ﬁTb, we have

n—1
Dw e leo) = (e, 08) W,
=0

=(e;0€) W, (-a-b=a'b)
= (e_seeo) - Wy
=W, -(e;0€,) (-ab=ba

and since Re(z) = Re(z),
Re(w, - (6,0 €,)) = Re(W, - (¢, O €))).
Thus, Eq. (8) can be written as

fComplEx(ra 5,0) =Re(w, - (e;0e,)). (9)
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Here, a marked similarity is noticeable between
Eq. (9) and Eq. (6), the scoring function of our
spectral version of HolE (spectral HolE); Com-
plEx extracts the real part of complex dot prod-
uct, whereas in the spectral HolE, dot product is
guaranteed to be real because all embeddings sat-
isfy conjugate symmetry. Indeed, Eq. (6) can be
equally written as

JHole(r, 5,0) = % Re(w, - (£,08,)).  (10)
although the operator Re(-) in this formula is re-
dundant, since the inner product is guaranteed to
be real-valued. Nevertheless, Eq. (10) elucidates
the fact that the spectral HolE can be viewed as an
instance of ComplEx, with the embeddings con-
strained to be conjugate symmetric to make the
inner product in Eq. (10) real-valued.

Conversely, given a set of complex embeddings
for entities and relations, we can construct their
equivalent holographic embeddings, in the sense
that fcompiex(7, $,0) = cfuoe(r, s,0) for every
r,s,0, where ¢ > 0 is a constant. For each n-
dimensional complex embeddings X € {eg}rcs U
{W,};er € C" computed by ComplEx, we make a
corresponding HolE h(x) € R?**! as follows: For a
given complex embedding x = [xq - x,-1] € C",
first compute s(x) € C>"*! by

Xn-1  Xn-1

_ 1T
%]

(11

s(X) = [0 X0
=[o x fip®]|'

and then define h(x) = F !(s(x)). Since s(x) is
conjugate symmetric, h(x) is a real vector.

To verify if this conversion defines an equiva-
lent scoring function for any triple (7, s, 0), let us
now suppose complex embeddings w, € C" and
e;, e, € C" are given. Since we regard real vec-
tors h(w,), b(e,), h(e,) € R¥"*! as the holographic
embeddings of r, s and o, respectively, the HolE
score for the triple (7, s, 0) is given as

fHOlE(ra S, 0)

h(w,) - (h(ey) * heo))

1 —_—
ZS(W;’) - (s(ey) © s(e,))

(. Eq. (6))

1 — e L
55(Wr) : [O e, 0e, ﬂlp(esG)eo)] (."Eq. (11))

1 . — T _ e
- [0 W, ﬂlp(Wr)] . [O e;0Oe, fliple;0e,)

1 _ e =
~ (W @ 0 &) + flip(Wy) - flip(E; O e,))

]T
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Lw, @06+ @ 06,)
(- @0e) + W @ 06,)
% Re(w, - (e;0€,))

;fComplEx(r , 8, 0),

which shows that h(-) (or s(-)) gives the desired
conversion from ComplEx to HolE.

6 Conclusion

In this paper, we have shown that the holographic
embeddings (HolE) can be trained entirely in the
frequency domain. If stochastic gradient descent
is used for training, the conjugate symmetry of
frequency vectors is preserved, which ensures the
existence of the corresponding holographic em-
bedding in the original real space (time domain).
Also, this training method eliminates the need of
FFT and inverse FFT, thereby reducing the compu-
tation time of the scoring function from O(n log n)
to O(n).

Moreover, we have established the equivalence
of HolE and the complex embeddings (ComplEx):
The spectral version of HolE is subsumed by Com-
plEx as a special case in which conjugate symme-
try is imposed on the embeddings. Conversely, ev-
ery set of complex embeddings can be converted
to equivalent holographic embeddings.

Many systems for natural language process-
ing, such as those for semantic parsing and ques-
tion answering, benefit from access to information
stored in knowledge graphs. We plan to further in-
vestigate the property of spectral HolE and Com-
plEx in these applications.
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