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Abstract

Distributed word representations are
widely used for modeling words in NLP
tasks. Most of the existing models gen-
erate one representation per word and
do not consider different meanings of a
word. We present two approaches to learn
multiple topic-sensitive representations
per word by using Hierarchical Dirichlet
Process. We observe that by modeling
topics and integrating topic distributions
for each document we obtain representa-
tions that are able to distinguish between
different meanings of a given word.
Our models yield statistically significant
improvements for the lexical substitution
task indicating that commonly used
single word representations, even when
combined with contextual information,
are insufficient for this task.

1 Introduction

Word representations in the form of dense vec-
tors, or word embeddings, capture semantic and
syntactic information (Mikolov et al., 2013a; Pen-
nington et al., 2014) and are widely used in many
NLP tasks (Zou et al., 2013; Levy and Goldberg,
2014; Tang et al., 2014; Gharbieh et al., 2016).
Most of the existing models generate one repre-
sentation per word and do not distinguish between
different meanings of a word. However, many
tasks can benefit from using multiple representa-
tions per word to capture polysemy (Reisinger and
Mooney, 2010). There have been several attempts
to build repositories for word senses (Miller, 1995;
Navigli and Ponzetto, 2010), but this is laborious
and limited to few languages. Moreover, defin-
ing a universal set of word senses is challenging
as polysemous words can exist at many levels of
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granularity (Kilgarriff, 1997; Navigli, 2012).

In this paper, we introduce a model that uses
a nonparametric Bayesian model, Hierarchical
Dirichlet Process (HDP), to learn multiple topic-
sensitive representations per word. Yao and van
Durme (2011) show that HDP is effective in learn-
ing topics yielding state-of-the-art performance
for sense induction. However, they assume that
topics and senses are interchangeable, and train
individual models per word making it difficult to
scale to large data. Our approach enables us to use
HDP to model senses effectively using large unan-
notated training data. We investigate to what ex-
tent distributions over word senses can be approxi-
mated by distributions over topics without assum-
ing these concepts to be identical. The contribu-
tions of this paper are: (i) We propose three un-
supervised, language-independent approaches to
approximate senses with topics and learn multi-
ple topic-sensitive embeddings per word. (ii) We
show that in the Lexical Substitution ranking task
our models outperform two competitive baselines.

2 Topic-Sensitive Representations

In this section we describe the proposed models.
To learn topics from a corpus we use HDP (Teh
etal., 2006; Lau et al., 2014). The main advantage
of this model compared to non-hierarchical meth-
ods like the Chinese Restaurant Process (CRP) is
that each document in the corpus is modeled us-
ing a mixture model with topics shared between
all documents (Teh et al., 2005; Brody and Lap-
ata, 2009). HDP yields two sets of distributions
that we use in our methods: distributions over top-
ics for words in the vocabulary, and distributions
over topics for documents in the corpus.

Similarly to Neelakantan et al. (2014), we use
neighboring words to detect the meaning of the
context, however, we also use the two HDP dis-
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Figure 1: Illustration of our topic-sensitive representation models: (a) hard-topic labeled representations
(HTLE), (b) hard topic-labeled representations plus generic word representation (HTLEadd), (c) soft

topic-labeled representations (STLE).

tributions. By doing so, we take advantage of
the topic of the document beyond the scope of
the neighboring words, which is helpful when the
immediate context of the target word is not suf-
ficiently informative. We modify the Skipgram
model (Mikolov et al., 2013a) to obtain multiple
topic-sensitive representations per word type using
topic distributions. In addition, we do not cluster
context windows and train for different senses of
the words individually. This reduces the sparsity
problem and provides a better representation esti-
mation for rare words. We assume that meanings
of words can be determined by their contextual in-
formation and use the distribution over topics to
differentiate between occurrences of a word in dif-
ferent contexts, i.e., documents with different top-
ics. We propose three different approaches (see
Figure 1): two methods with hard topic labeling
of words and one with soft labeling.

2.1 Hard Topic-Labeled Representations

The trained HDP model can be used to hard-label a
new corpus with one topic per word through sam-
pling. Our first model variant (Figure 1(a)) re-
lies on hard labeling by simply considering each
word-topic pair as a separate vocabulary entry. To
reduce sparsity on the context side and share the
word-level information between similar contexts,
we use topic-sensitive representations for target
words (input to the network) and standard, i.e.,
unlabeled, word representations for context words
(output). Note that this results in different input
and output vocabularies. The training objective
is then to maximize the log-likelihood of context
words w;y; given the target word-topic pair w; :

1

1
LHarar-s6 = 7 DD logp(wiylwy)
=1 —ei<e

J#0

442

where [ is the number of words in the training cor-
pus, cis the context size and 7 is the topic assigned
to w; by HDP sampling. The embedding of a word
in context h(w;) is obtained by simply extracting
the row of the input lookup table (r) corresponding
to the HDP-labeled word-topic pair:
hyrie(wi) = r(w]) (D
A possible shortcoming of the HTLE model is
that the representations are trained separately and
information is not shared between different topic-
sensitive representations of the same word. To ad-
dress this issue, we introduce a model variant that
learns multiple topic-sensitive word representa-
tions and generic word representations simultane-
ously (Figure 1(b)). In this variant (HTLEadd), the
target word embedding is obtained by adding the
word-topic pair representation (r’) to the generic
representation of the corresponding word (rg):

hyripada(wi) = ©'(w]) +ro(w;) ()
2.2 Soft Topic-Labeled Representations

The model variants above rely on the hard label-
ing resulting from HDP sampling. As a soft al-
ternative to this, we can directly include the topic
distributions estimated by HDP for each document
(Figure 1(c)). Specifically, for each update, we use
the topic distribution to compute a weighted sum
over the word-topic representations (r”):
T
hsrip(w;) = Z p(ld) " (w(*)  (3)
k=1
where 7' is the total number of topics, d; the doc-
ument containing w;, and p(7x|d;) the probability
assigned to topic 73, by HDP in document d;. The
training objective for this model is:
1 d
Lsoper-sc = 7 > D, logp(wiyjw;,7)

i=1 —c<j<c
j#0



word

bat

Pre-trained w2v bats, batting, Pinch_hitter_Brayan_Pena, batsman, batted, Hawaiian_hoary, Batting
Pre-trained GloVe bats, batting, Bat, catcher, fielder, hitter, outfield, hitting, batted, catchers, balls
SGE on Wikipedia uroderma, magnirostrum, sorenseni, miniopterus, promops, luctus, micronycteris
TSE on Wikipedia ™ ball, pitchout, batter, toss-for, umpire, batting, bowes, straightened, fielder, flies
p T2 | vespertilionidae, heran, hipposideros, sorenseni, luctus, coxi, kerivoula, natterer
word jaguar
Pre-trained w2v jaguars, Macho_B, panther, lynx, rhino, lizard, tapir, tiger, leopard, Florida_panther
Pre-trained GloVe jaguars, panther, mercedes, Jaguar, porsche, volvo, ford, audi, mustang, bmw, biuck
SGE on Wikipedia electramotive, viper, roadster, saleen, siata, chevrolet, camaro, dodge, nissan, escort
. . 71 | ford, bmw, chevrolet, honda, porsche, monza, nissan, dodge, marauder, peugeot, opel
TSE on Wikipedia T2 | wiedii, puma, margay, tapirus, jaguarundi, yagouaroundi, vison, concolor, tajacu
word appeal
Pre-trained w2v appeals, appealing, appealed, Appeal, rehearing, apeal, Appealing, ruling, Appeals
Pre-trained GloVe appeals, appealed, appealing, Appeal, court, decision, conviction, plea, sought
SGE on Wikipedia court, appeals, appealed, carmody, upheld, verdict, jaruvan, affirmed, appealable
e T1 | court, case, appeals, appealed, decision, proceedings, disapproves, ruling
TSE on Wikipedia 7o | sfa, steadfast, lackadaisical, assertions, lack, symbolize, fans, attempt, unenthusiastic

Table 1: Nearest neighbors of three examples in different representation spaces using cosine similarity.
w2v and GloVe are pre-trained embeddings from (Mikolov et al., 2013a) and (Pennington et al., 2014)
respectively. SGE is the Skipgram baseline and TSE is our topic-sensitive Skipgram (cf. Equation (1)),
both trained on Wikipedia. 73, stands for HDP-inferred topic k.

where 7 is the topic of document d; learned by
HDP. The STLE model has the advantage of di-
rectly applying the distribution over topics in the
Skipgram model. In addition, for each instance,
we update all topic representations of a given word
with non-zero probabilities, which has the poten-
tial to reduce the sparsity problem.

2.3 Embeddings for Polysemous Words

The representations obtained from our models are
expected to capture the meaning of a word in dif-
ferent topics. We now investigate whether these
representations can distinguish between different
word senses. Table 1 provides examples of near-
est neighbors. For comparison we include our own
baseline, i.e., embeddings learned with Skipgram
on our corpus, as well as Word2Vec (Mikolov
et al., 2013b) and GloVe embeddings (Pennington
et al., 2014) pre-trained on large data.

In the first example, the word bat has two dif-
ferent meanings: animal or sports device. One
can see that the nearest neighbors of the baseline
and pre-trained word representations either center
around one primary, i.e., most frequent, meaning
of the word, or it is a mixture of different mean-
ings. The topic-sensitive representations, on the
other hand, correctly distinguish between the two
different meanings. A similar pattern is observed
for the word jaguar and its two meanings: car
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or animal. The last example, appeal, illustrates
a case where topic-sensitive embeddings are not
clearly detecting different meanings of the word,
despite having some correct words in the lists.
Here, the meaning attract does not seem to be cap-
tured by any embedding set.

These observations suggest that topic-sensitive
representations capture different word senses to
some extent. To provide a systematic validation of
our approach, we now investigate whether topic-
sensitive representations can improve tasks where
polysemy is a known issue.

3 Evaluation

In this section we present the setup for our exper-
iments and empirically evaluate our approach on
the context-aware word similarity and lexical sub-
stitution tasks.

3.1 Experimental setup

All word representations are learned on the En-
glish Wikipedia corpus containing 4.8M docu-
ments (1B tokens). The topics are learned on a
100K-document subset of this corpus using the
HDP implementation of Teh et al. (2006). Once
the topics have been learned, we run HDP on the
whole corpus to obtain the word-topic labeling
(see Section 2.1) and the document-level topic dis-
tributions (Section 2.2). We train each model vari-



Dimension LS-SE07 LS-CIC
Model 100 300 600 Dimension Dimension
SGE + C (Mikolov et al., 20132)  0.59 0.59  0.62 Model  Infer. 100 300 600 [100 300 600
MSSG (Neelakantan et al., 2014)  0.60 0.61  0.64 SGE 362 405 41.1 [304 321 323
o o os  SC w ke s il i s
HTLEadd 061 0.61 058 : : : : : :
STLE 059 058 0.55 HTLE 30.84 42.5% 43.04(32.1 327 33.0

Table 2: Spearman’s rank correlation performance
for the Word Similarity task on SCWS.

ant with window size ¢ = 10 and different embed-
ding sizes (100, 300, 600) initialized randomly.

We compare our models to several baselines:
Skipgram (SGE) and the best-performing multi-
sense embeddings model per word type (MSSG)
(Neelakantan et al., 2014). All model variants are
trained on the same training data with the same
settings, following suggestions by Mikolov et al.
(2013a) and Levy et al. (2015). For MSSG we use
the best performing similarity measure (avgSimC)
as proposed by Neelakantan et al. (2014).

3.2 Context-Aware Word Similarity Task

Despite its shortcomings (Faruqui et al., 2016),
word similarity remains the most frequently used
method of evaluation in the literature. There are
multiple test sets available but in almost all of
them word pairs are considered out of context. To
the best of our knowledge, the only word simi-
larity data set providing word context is SCWS
(Huang et al., 2012). To evaluate our models on
SCWS, we run HDP on the data treating each
word’s context as a separate document. We com-
pute the similarity of each word pair as follows:

Sim(wy,ws) = cos(h(w), h(ws))

where h(w;) refers to any of the topic-sensitive
representations defined in Section 2. Note that w;
and ws can refer to the same word.

Table 2 provides the Spearman’s correlation
scores for different models against the human
ranking. We see that with dimensions 100 and
300, two of our models obtain improvements over
the baseline. The MSSG model of Neelakantan
et al. (2014) performs only slightly better than our
HLTE model by requiring considerably more pa-
rameters (600 vs. 100 embedding size).

3.3 Lexical Substitution Task

This task requires one to identify the best replace-
ments for a word in a sentential context. The pres-

HTLEadd Smp 39.4* 41.3* 41.8 (304 315 31.7
STLE 352 367 39.0 329 323 339

HTLE 40.3* 42.8* 43.4*36.6* 40.9* 41.3*
HTLEadd Exp 39.9* 41.8% 422 |355% 37.9* 38.6
STLE 38.7% 41.0 41.0 |36.8* 36.8 37.1

Table 3: GAP scores on LS-SE07 and LS-CIC
sets. For SGE + C we use the context embeddings
to disambiguate the substitutions. Improvements
over the best baseline (MSSG) are marked 4 at
p < .01 and ® at p < .05.

ence of many polysemous target words makes this
task more suitable for evaluating sense embed-
ding. Following Melamud et al. (2015) we pool
substitutions from different instances and rank
them by the number of annotators that selected
them for a given context. We use two evaluation
sets: LS-SE07 (McCarthy and Navigli, 2007), and
LS-CIC (Kremer et al., 2014).

Unlike previous work (Szarvas et al., 2013; Kre-
mer et al., 2014; Melamud et al., 2015) we do
not use any syntactic information, motivated by
the fact that high-quality parsers are not available
for most languages. The evaluation is performed
by computing the Generalized Average Precision
(GAP) score (Kishida, 2005). We run HDP on the
evaluation set and compute the similarity between
target word w; and each substitution ws using two
different inference methods in line with how we
incorporate topics during training:

Sampled (Smp): Simse(ws, wy) =

2 cos(h(wy), o(w.))
c

Expected (Exp): Simrse(ws, wy) = Z p(1) p(")

7!

cos(h(wy), h(th/)) +

’ cos(h(w}), o(w. T
cos(h(wy), h(wy )) + 2 cos(h( C) (we)) p(7)

where h(w?) and h(w]') are the representations
for substitution word s with topic 7 and target
word t with topic 7’ respectively (cf. Section 2),
w, are context words of w; taken from a sliding
window of the same size as the embeddings, o(w..)
is the context (i.e., output) representation of w,,
and C is the total number of context words. Note

444



Model Dim = 100 Dim = 300 Dim = 600

n. v. adj. adv.|All | n. v. adj. adv.|All | n. v. adj. adv.|Al
SGE + C|37.2 31.6 37.1 42.2|36.6(39.2 35.0 39.0 55.4|40.9(39.7 35.7 39.9 56.2|41.6
HTLE |42.4 33.9 38.1 49.7|40.344.9 37.0 41.0 50.9|42.8|45.2 37.2 42.1 51.9|43.4

Table 4: GAP scores on the candidate ranking task on LS-SEQ7 for different part-of-speech categories.

that these two methods are consistent with how we
train HTLE and STLE.

The sampled method, similar to HTLE, uses the
HDP model to assign topics to word occurrences
during testing. The expected method, similar to
STLE, uses the HDP model to learn the probabil-
ity distribution of topics of the context sentence
and uses the entire distribution to compute the sim-
ilarity. For the Skipgram baseline we compute the
similarity Simsgg+c(ws, wy) as follows:

2 cos(h(ws), o(we))
c

cos(h(ws), h(w:)) +

which uses the similarity between the substitution
word and all words in the context, as well as the
similarity of target and substitution words.

Table 3 shows the GAP scores of our models
and baselines.! One can see that all models us-
ing multiple embeddings per word perform better
than SGE. Our proposed models outperform both
SGE and MSSG in both evaluation sets, with more
pronounced improvements for LS-CIC. We further
observe that our expected method is more robust
and performs better for all embedding sizes.

Table 4 shows the GAP scores broken down
by the main word classes: noun, verb, adjective,
and adverb. With 100 dimensions our best model
(HTLE) yields improvements across all POS tags,
with the largest improvements for adverbs and
smallest improvements for adjectives. When in-
creasing the dimension size of embeddings the im-
provements hold up for all POS tags apart from
adverbs. It can be inferred that larger dimension
sizes capture semantic similarities for adverbs and
context words better than other parts-of-speech
categories. Additionally, we observe for both eval-
uation sets that the improvements are preserved
when increasing the embedding size.

4 Related Work

While the most commonly used approaches learn
one embedding per word type (Mikolov et al.,
'We use the nonparametric rank-based Mann-Whitney-

Wilcoxon test (Sprent and Smeeton, 2016) to check for sta-
tistically significant differences between runs.
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2013a; Pennington et al., 2014), recent studies
have focused on learning multiple embeddings per
word due to the ambiguous nature of language
(Qiuetal.,2016). Huang et al. (2012) cluster word
contexts and use the average embedding of each
cluster as word sense embeddings, which yields
improvements on a word similarity task. Nee-
lakantan et al. (2014) propose two approaches,
both based on clustering word contexts: In the
first, they fix the number of senses manually, and
in the second, they use an ad-hoc greedy procedure
that allocates a new representation to a word if
existing representations explain the context below
a certain threshold. Li and Jurafsky (2015) used
a CRP model to distinguish between senses of
words and train vectors for senses, where the num-
ber of senses is not fixed. They use two heuris-
tic approaches for assigning senses in a context:
‘greedy’ which assigns the locally optimum sense
label to each word, and ‘expectation’ which com-
putes the expected value for a word in a given con-
text with probabilities for each possible sense.

5 Conclusions

We have introduced an approach to learn topic-
sensitive word representations that exploits the
document-level context of words and does not re-
quire annotated data or linguistic resources. Our
evaluation on the lexical substitution task suggests
that topic distributions capture word senses to
some extent. Moreover, we obtain statistically sig-
nificant improvements in the lexical substitution
task while not using any syntactic information.
The best results are achieved by our hard topic-
labeled model which learns topic-sensitive repre-
sentations by assigning topics to target words.
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