Improving Semantic Composition with Offset Inference

Thomas Kober, Julie Weeds, Jeremy Reffin and David Weir
TAG laboratory, Department of Informatics, University of Sussex
Brighton, BN1 9RH, UK
{t.kober, j.e.weeds, j.p.reffin, d.j.weir}@sussex.ac.uk

Abstract

Count-based distributional semantic mod-
els suffer from sparsity due to unobserved
but plausible co-occurrences in any text
collection.  This problem is amplified
for models like Anchored Packed Trees
(APTs), that take the grammatical type of a
co-occurrence into account. We therefore
introduce a novel form of distributional in-
ference that exploits the rich type struc-
ture in APTs and infers missing data by the
same mechanism that is used for semantic
composition.

1 Introduction

Anchored Packed Trees (APTs) is a recently pro-
posed approach to distributional semantics that
takes distributional composition to be a process
of lexeme contextualisation (Weir et al., 2016).
A lexeme’s meaning, characterised as knowledge
concerning co-occurrences involving that lexeme,
is represented with a higher-order dependency-
typed structure (the APT) where paths associated
with higher-order dependencies connect vertices
associated with weighted lexeme multisets. The
central innovation in the compositional theory is
that the APT’s type structure enables the precise
alignment of the semantic representation of each
of the lexemes being composed. Like other count-
based distributional spaces, however, it is prone to
considerable data sparsity, caused by not observ-
ing all plausible co-occurrences in the given data.
Recently, Kober et al. (2016) introduced a sim-
ple unsupervised algorithm to infer missing co-
occurrence information by leveraging the distribu-
tional neighbourhood and ease the sparsity effect
in count-based models.

In this paper, we generalise distributional in-
ference (DI) in APTs and show how precisely
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the same mechanism that was introduced to sup-
port distributional composition, namely “offset-
ting” APT representations, gives rise to a novel
form of distributional inference, allowing us to in-
fer co-occurrences from neighbours of these rep-
resentations. For example, by transforming a rep-
resentation of white to a representation of “things
that can be white”, inference of unobserved, but
plausible, co-occurrences can be based on find-
ing near neighbours (which will be nouns) of the
“things that can be white” structure. This further-
more exposes an interesting connection between
distributional inference and distributional compo-
sition. Our method is unsupervised and maintains
the intrinsic interpretability of APTs'.

2 Offset Representations

The basis of how composition is modelled in the
APT framework is the way that the co-occurrences
are structured. In characterising the distribu-
tional semantics of some lexeme w, rather than
just recording a co-occurrence between w and w’
within some context window, we follow Pad6 and
Lapata (2007) and record the dependency path
from w to w’. This syntagmatic structure makes it
possible to appropriately offset the semantic repre-
sentations of each of the lexemes being composed
in some phrase. For example many nouns will
have distributional features starting with the type
amod, which cannot be observed for adjectives or
verbs. Thus, when composing the adjective white
with the noun clothes, the feature spaces of the
two lexemes need to be aligned first. This can
be achieved by offsetting one of the constituents,
which we will explain in more detail in this sec-
tion.

We will make use of the following nota-
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tion throughout this work. A typed distribu-
tional feature consists of a path and a lexeme
such as in amod:white. Inverse paths are de-
noted by a horizontal bar above the dependency
relation such as in dob7j:prefer and higher-
order paths are separated by a dot such as in
amod . compound : dress.

Offset representations are the central compo-
nent in the composition process in the APT frame-
work. Figure 1 shows the APT representations for
the adjective white (left) and the APT for the noun
clothes (right), as might have been observed in a
text collection. Each node holds a multiset of lex-
emes and the anchor of an APT reflects the current
perspective of a lexeme at the given node. An off-
set representation can be created by shifting the
anchor along a given path. For example the lex-
eme white is at the same node as other adjectives
such as black and clean, whereas nouns such as
shoes or noise are typically reached via the amod
edge.

Offsetting in APTs only involves a change in
the anchor, the underlying structure remains un-
changed. By offsetting the lexeme white by amod
the anchor is shifted along the amod edge, which
results in creating a noun view for the adjective
white. We denote the offset view of a lexeme for
a given path by superscripting the offset path, for
example the amod offset of the adjective white is
denoted as white®™°?. The offsetting procedure
changes the starting points of the paths as visi-
ble in Figure 1 between the anchors for white and
white®™°9, since paths always begin at the anchor.
The red dashed line in Figure 1 reflects that anchor
shift. The lexeme white®™°° represents a proto-
typical “white thing”, that is, a noun that has been
modified by the adjective white. We note that all
edges in the APT space are bi-directional as ex-
emplified in the coloured amod and amod edges
in the APT for white, however for brevity we only
show uni-directional edges in Figure 1.

By considering the APT representations for the
lexemes white and clothes in Figure 1, it be-
comes apparent that lexemes with different parts
of speech are located in different areas of the
semantic space. If we want to compose the
adjective-noun phrase white clothes, we need to
offset one of the two constituents to align the fea-
ture spaces in order to leverage their distributional
commonalities. This can be achieved by either
creating a noun offset view of white, by shift-
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ing the anchor along the amod edge, or by cre-
ating an adjective offset representation of clothes
by shifting its anchor along amod. In this work
we follow Weir et al. (2016) and always offset
the dependent in a given relation. Table 1 shows
a subset of the features of Figure 1 as would
be represented in a vectorised APT. Vectorising
the whole APT lexicon results in a very high-
dimensional and sparse typed distributional space.
The features for white®™° (middle column) high-
light the change in feature space caused by offset-
ting the adjective white. The features of the off-
set view white®™°9, are now aligned with the noun
clothes such that the two can be composed. Com-
position can be performed by either selecting the
union or intersection of the aligned features.

white ‘ white*™? ‘ clothes
:clean
amod : shoes : shoes dress

amod.dobj:wear
amod.nsubj.earn

dobj:wear
nsubj:earn

amod : clean amod : wet

nsubj:admit

Table 1: Sample of vectorised features for the APTs shown
in Figure 1. Offsetting white by amod creates an offset view,
white®™°, representing a noun, and has the consequence of
aligning the feature space with clothes.

2.1 Qualitative Analysis of Offset
Representations

Any offset view of a lexeme is behaviourally iden-
tical to a “normal” lexeme. It has an associ-
ated part of speech, a distributional representation
which locates it in semantic space, and we can
find neighbours for it in the same way that we find
neighbours for any other lexeme. In this way, a
single APT data structure is able to provide many
different views of any given lexeme. These views
reflect the different ways in which the lexeme is

used. For example law"s"*7 is the nsubj off-
set representation of the noun law. This lexeme
is a verb and represents an action carried out by
the law. This contrasts with law®®3, which is the
dob 7 offset representation of the noun law. It is
also a verb, however represents actions done to the
law. Table 2 lists the 10 nearest neighbours for
a number of lexemes, offset by amod, dob7 and
nsub j respectively.

For example, the neighbourhood of the lexeme
ancient in Table 2 shows that the offset view for
ancient®™°% is a prototypical representation of an
“ancient thing”, with neighbours easily associated
with the property ancient. Furthermore, Table 2



amod

amod

. ,amod
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Figure 1: Structured distributional APT space. Different colours reflect different parts of speech. Boxes denote the current
anchor of the APT, circles represent nodes in the APT space, holding lexemes, and edges represent their relationship within the

space.

illustrates that nearest neighbours of offset views
are often other offset representations. This means
that for example actions carried out by a mother
tend to be similar to actions carried out by a father
or a parent.

2.2 Offset Inference

Our approach generalises the unsupervised algo-
rithm proposed by Kober et al. (2016), henceforth
“standard DI”, as a method for inferring missing
knowledge into an APT representation. Rather
than simply inferring potentially plausible, but un-
observed co-occurrences from near distributional
neighbours, inferences can be made involving off-
set APTs. For example, the adjective whifte can
be offset so that it represents a noun — a proto-
typical “white thing”. This allows inferring plau-
sible co-occurrences from other “things that can
be white”, such as shoes or shirts. Our algorithm
therefore reflects the contextualised use of a word.
This has the advantage of being able to make flex-
ible and fine grained distinctions in the inference
process. For example if the noun law is used as
a subject, our algorithm allows inferring plausi-
ble co-occurrences from “other actions carried out
by the law”. This contrasts the use of law as an
object, where offset inference is able to find co-
occurrences on the basis of “other actions done
to the law”. This is a crucial advantage over the
method of Kober et al. (2016) which only supports
inference on uncontextualised lexemes.

A sketch of how offset inference for a lexeme
w works is shown in Algorithm 1. Our algorithm
requires a distributional model M, an APT repre-
sentation for the lexeme w for which to perform
offset inference, a dependency path p, describing
the offset for w, and the number of neighbours k.
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The offset representation of w’ is then enriched
with the information from its distributional neigh-
bours by some merge function. We note that if the
offset path p is the empty path, we would recover
the algorithm presented by Kober et al. (2016).
Our algorithm is unsupervised, and agnostic to the
input distributional model and the neighbour re-
trieval function.

Algorithm 1 Offset Inference

1: procedure OFFSET_INFERENCE(M, w, p, k)
2 w’ « offset(w, p)

3 for all n in neighbours(M, w', k) do

4: w” < merge(w”, n)
5

6
7

end for
return w”
end procedure

Connection to Distributional Composition

An interesting observation is the similarity be-
tween distributional inference and distributional
composition, as both operations are realised by the
same mechanism — an offset followed by infer-
ring plausible co-occurrence counts for a single
lexeme in the case of distributional inference, or
for a phrase in the case of composition. The merg-
ing of co-occurrence dimensions for distributional
inference can also be any of the operations com-
monly used for distributional composition such as
pointwise minimum, maximum, addition or multi-
plication.

This relation creates an interesting dynamic be-
tween distributional inference and composition
when used in a complementary manner as in this
work. The former can be used as a process of co-
occurrence embellishment which is adding miss-



Offset Representation | Nearest Neighbours
ancient™°9 civilzation, mythology, tradition, ruin, monument, trackway, tomb, antiquity, folklore, deity
red®™° blue®™?, black®™?, green®®, dark®™°?, onion, pepper, red, tomato, carrot, garlic
economic®™? political®™, societal™®, cohabiting, economy, growth, cohabitant, globalisation, competitiveness,
globalization, prosperity
government®°®3 overthrow, party®®?, authority®"?, leader®°®7, capital®®?, force®?, state®”, official®*?, minister®*®7, oust
problem™°®? difficulty®®, solve, coded, issue®"3, injury?°"3, overcome, question®*”?, think, loss*°"7, relieve
law®°P? violate, rule®°®7, enact, repeal, principle®°®J, unmake, enforce, policy®*>?, obey, flout
researcher™s""3 physician™*"*3, writer"*"", theorize, thwart, theorise, hypothesize, surmise, student”*"**3, worker"*"*?, apprehend
mother™s™°? wife"s"", father”=**?, parent”*">?, woman"*""7, re-married, remarry, girl""> breastfeed, family""", disown
law"s*? rule”***3, principle™*"*7, policy”*"*?, criminalize, case™*">7, contract™*""3, prohibit, proscribe, enjoin, charge”s"’

Table 2: List of the 10 nearest neighbours of amod, dob j and nsub j offset representations.

ing information, however with the risk of introduc-
ing some noise. The latter on the other hand can be
used as a process of co-occurrence filtering, that is
leveraging the enriched representations, while also
sieving out the previously introduced noise.

3 Experiments

For our experiments we re-implemented the stan-
dard DI method of Kober et al. (2016) for a direct
comparison. We built an order 2 APT space on the
basis of the concatenation of ukWaC, Wackype-
dia and the BNC (Baroni et al., 2009), pre-parsed
with the Malt parser (Nivre et al., 2006). We
PPMI transformed the raw co-occurrence counts
prior to composition, using a negative SPPMI shift
of log5 (Levy and Goldberg, 2014b). We also
experimented with composing normalised counts
and applying the PPMI transformation after com-
position as done by Weeds et al. (2017), however
found composing PPMI scores to work better for
this task.

We evaluate our offset inference algorithm on
two popular short phrase composition benchmarks
by Mitchell and Lapata (2008) and Mitchell and
Lapata (2010), henceforth MLO8 and MLI10 re-
spectively. The MLOS dataset consists of 120 dis-
tinct verb-object (VO) pairs and the ML10 dataset
contains 108 adjective-noun (AN), 108 noun-noun
(NN) and 108 verb-object pairs. The goal is to
compare a model’s similarity estimates to human
provided judgements. For both tasks, each phrase
pair has been rated by multiple human annotators
on a scale between 1 and 7, where 7 indicates max-
imum similarity. Comparison with human judge-
ments is achieved by calculating Spearman’s p
between the model’s similarity estimates and the
scores of each human annotator individually. We
performed composition by intersection and tuned
the number of neighbours by a grid search over {0,
10, 30, 50, 100, 500, 1000} on the ML10 develop-
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ment set, selecting 10 neighbours for NNs, 100 for
ANs and 50 for VOs for both DI algorithms. We
calculate statistical significance using the method
of Steiger (1980).

Effect of the number of neighbours

Figure 2 shows the effect of the number of neigh-
bours for AN, NN and VO phrases, using offset
inference, on the ML10 development set. Interest-
ingly, NN compounds exhibit an early saturation
effect, while VOs and ANs require more neigh-
bours for optimal performance. One explanation
for the observed behaviour is that up to some
threshold, the neighbours being added contribute
actually missing co-occurrence events, whereas
past that threshold distributional inference de-
grades to just generic smoothing that is simply
compensating for sparsity, but overwhelming the
representations with non-plausible co-occurrence
information. A similar effect has also been ob-
served by Erk and Pado (2010) in an exemplar-
based model.
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Figure 2: Effect of the number of neighbours on the ML10
development set.
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Results

Table 3 shows that both forms of distributional in-
ference significantly outperform a baseline with-
out DI. On average, offset inference outperforms



the method of Kober et al. (2016) by a statistically
significant margin on both datasets.

ML10 MLO08
APT configuration | AN NN VO Avg VO
None 0.35 | 0.50 | 0.39 | 0.41 0.22
Standard DI 0.48% | 0.51 | 0.43% | 0.47F | 0.29¢
Offset Inference 0.49% | 0.52 | 0.44% | 0.48*F | 0.317¢

Table 3: Comparison of DI algorithms. I denotes statistical
significance at p < 0.01 in comparison to the method without
DI, * denotes statistical significance at p < 0.01 in compar-
ison to standard DI and { denotes statistical significance at
p < 0.05 in comparison to standard DI.

Table 4 shows that offset inference substantially
outperforms comparable sparse models by Dinu
et al. (2013) on MLO08, achieving a new state-of-
the-art, and matches the performance of the state-
of-the-art neural network model of Hashimoto
et al. (2014) on ML10, while being fully inter-
pretable.

Model | ML10 - Average | MLO8
Our work 0.48 0.31
Blacoe and Lapata (2012) 0.44 -
Hashimoto et al. (2014) 0.48 -

Weir et al. (2016) 0.43 0.26
Dinu et al. (2013) - 0.23 — 0.26
Erk and Pad6 (2008) - 0.27

Table 4: Comparison with existing methods.

4 Related Work

Distributional inference has its roots in the work
of Dagan et al. (1993, 1994), who aim to find
probability estimates for unseen words in bi-
grams, and Schiitze (1992, 1998) who leverages
the distributional neighbourhood through cluster-
ing of contexts for word-sense discrimination. Re-
cently Kober et al. (2016) revitalised the idea for
compositional distributional semantic models.
Composition with distributional semantic mod-
els has become a popular research area in re-
cent years. Simple, yet competitive methods, are
based on pointwise vector addition or multiplica-
tion (Mitchell and Lapata, 2008, 2010). However,
these approaches neglect the structure of the text
defining composition as a commutative operation.
A number of approaches proposed in the lit-
erature attempt to overcome this shortcoming by
introducing weighted additive variants (Guevara,
2010, 2011; Zanzotto et al., 2010). Another popu-
lar strand of work models semantic composition
on the basis of ideas arising in formal seman-
tics. Composition in such models is usually imple-
mented as operations on higher-order tensors (Ba-
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roni and Zamparelli, 2010; Baroni et al., 2014; Co-
ecke et al., 2011; Grefenstette et al., 2011; Grefen-
stette and Sadrzadeh, 2011; Grefenstette et al.,
2013; Kartsaklis and Sadrzadeh, 2014; Paperno
et al., 2014; Tian et al., 2016; Van de Cruys et al.,
2013). Another widespread approach to seman-
tic composition is to use neural networks (Bow-
man et al.,, 2016; Hashimoto et al., 2014; Hill
et al., 2016; Mou et al., 2015; Socher et al., 2012,
2014; Wieting et al., 2015; Yu and Dredze, 2015),
or convolutional tree kernels (Croce et al., 2011;
Zanzotto and Dell’ Arciprete, 2012; Annesi et al.,
2014) as composition functions.

The above approaches are applied to untyped
distributional vector space models where untyped
models contrast with typed models (Baroni and
Lenci, 2010) in terms of whether structural in-
formation is encoded in the representation as in
the models of Erk and Pad6 (2008); Gamallo
and Pereira-Farifia (2017); Levy and Goldberg
(2014a); Pad6é and Lapata (2007); Thater et al.
(2010, 2011); Weeds et al. (2014).

The perhaps most popular approach in the lit-
erature to evaluating compositional distributional
semantic models is to compare human word and
phrase similarity judgements with similarity esti-
mates of composed meaning representations, un-
der the assumption that better distributional repre-
sentations will perform better at these tasks (Bla-
coe and Lapata, 2012; Dinu et al., 2013; Erk and
Pado, 2008; Hashimoto et al., 2014; Hermann and
Blunsom, 2013; Kiela et al., 2014; Turney, 2012).

5 Conclusion

In this paper we have introduced a novel form
of distributional inference that generalises the
method introduced by Kober et al. (2016). We
have shown its effectiveness for semantic compo-
sition on two benchmark phrase similarity tasks
where we achieved state-of-the-art performance
while retaining the interpretability of our model.
We have furthermore highlighted an interesting
connection between distributional inference and
distributional composition.

In future work we aim to apply our novel
method to improve modelling selectional prefer-
ences, lexical inference, and scale up to longer
phrases and full sentences.
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