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Abstract

While natural languages are composi-

tional, how state-of-the-art neural mod-

els achieve compositionality is still un-

clear. We propose a deep network, which

not only achieves competitive accuracy for

text classification, but also exhibits com-

positional behavior. That is, while creating

hierarchical representations of a piece of

text, such as a sentence, the lower layers of

the network distribute their layer-specific

attention weights to individual words. In

contrast, the higher layers compose mean-

ingful phrases and clauses, whose lengths

increase as the networks get deeper until

fully composing the sentence.

1 Introduction

Deep neural networks leverage task-specific archi-

tectures to develop hierarchical representations of

the input, where higher level representations are

derived from lower level features (Conneau et al.,

2016). Such hierarchical representations have

visually demonstrated compositionality in im-

age processing, i.e., pixels combine to form

shapes and then contours (Farabet et al., 2013;

Zeiler and Fergus, 2014). Natural languages are

also compositional, i.e., words combine to form

phrases and then sentences. Yet unlike in vision,

how deep neural models in NLP, which mainly

operate on distributed word embeddings, achieve

compositionality, is still unclear (Li et al., 2015,

2016).

We propose an Attention Gated Transforma-

tion (AGT) network, where each layer’s feature

generation is gated by a layer-specific attention

mechanism (Bahdanau et al., 2014). Specifically,

through distributing its attention to the original

given text, each layer of the networks tends to in-

crementally retrieve new words and phrases from

the original text. The new knowledge is then com-

bined with the previous layer’s features to create

the current layer’s representation, thus resulting

in composing longer or new phrases and clauses

while creating higher layers’ representations of the

text.

Experiments on the Stanford Sentiment Tree-

bank (Socher et al., 2013) dataset show that the

AGT method not only achieves very competitive

accuracy, but also exhibits compositional behav-

ior via its layer-specific attention. We empirically

show that, given a piece of text, e.g., a sentence,

the lower layers of the networks select individ-

ual words, e.g, negative and conjunction words

not and though, while the higher layers aim at

composing meaningful phrases and clauses such

as negation phrase not so much, where the phrase

length increases as the networks get deeper until

fully composing the whole sentence. Interestingly,

after composing the sentence, the compositions of

different sentence phrases compete to become the

dominating features of the end task.

Figure 1: An AGT network with three layers.
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2 Attention Gated Transformation

Network

Our AGT network was inspired by the Highway

Networks (Srivastava et al., 2015a,b), where each

layer is equipped with a transform gate.

2.1 Transform Gate for Information Flow

Consider a feedforward neural network with mul-

tiple layers. Each layer l typically applies a non-

linear transformation f (e.g., tanh, parameterized

by W
f
l ), on its input, which is the output of the

most recent previous layer (i.e., yl−1), to produce

its output yl. Here, l = 0 indicates the first layer

and y0 is equal to the given input text x, namely

y0 = x:

yl = f(yl−1,W
f
l ) (1)

While in a highway network (the left column of

Figure 1), an additional non-linear transform gate

function Tl is added to the lth(l > 0) layer:

yl = f(yl−1,W
f
l )Tl + yl−1(1− Tl) (2)

where the function Tl expresses how much of the

representation yl is produced by transforming the

yl−1 (first term in Equation 2), and how much

is just carrying from yl−1 (second term in Equa-

tion 2). Here Tl is typically defined as:

Tl = σ(W t
l yl−1 + btl) (3)

where W t
l is the weight matrix and btl the bias vec-

tor; σ is the non-linear activation function.

With transform gate T , the networks learn to de-

cide if a feature transformation is needed at each

layer. Suppose σ represents a sigmoid function.

In such case, the output of T lies between zero

and one. Consequently, when the transform gate

is one, the networks pass through the transforma-

tion f over yl−1 and block the pass of input yl−1;

when the gate is zero, the networks pass through

the unmodified yl−1, while the transformation f
over yl−1 is suppressed.

The left column of Figure 1 reflects the high-

way networks as proposed by (Srivastava et al.,

2015b). Our AGT method adds the right two

columns of Figure 1. That is, 1) the transform gate

Tl now is not a function of yl−1, but a function of

the selection vector s+l , which is determined by the

attention distributed to the given input x by the lth

layer (will be discussed next), and 2) the function

f takes as input the concatenation of yl−1 and s+l

to create feature representation yl. These changes

result in an attention gated transformation when

forming hierarchical representations of the text.

2.2 Attention Gated Transformation

In AGT, the activation of the transform gate at each

layer depends on a layer-specific attention mecha-

nism. Formally, given a piece of text x, such as a

sentence with N words, it can be represented as a

matrix B ∈ IRN×d. Each row of the matrix corre-

sponds to one word, which is represented by a d-

dimensional vector as provided by a learned word

embedding table. Consequently, the selection vec-

tor s+l , for the lth layer, is the softmax weighted

sum over the N word vectors in B:

s+l =
N∑

n=1

dl,nB[n : n] (4)

with the weight (i.e., attention) dl,n computed as:

dl,n =
exp(ml,n)∑N
n=1 exp(ml,n)

(5)

ml,n = wm
l tanh(Wm

l (B[n : n])) (6)

here, wm
l and Wm

l are the weight vector and

weight matrix, respectively. By varying the at-

tention weight dl,n, the s+l can focus on different

rows of the matrix B, namely different words of

the given text x, as illustrated by different color

curves connecting to s+ in Figure 1. Intuitively,

one can consider s+ as a learned word selection

component: choosing different sets of words of the

given text x by distributing its distinct attention.

Having built one s+ for each layer from the

given text x, the activation of the transform gate

for layer l (l > 0) (i.e., Equation 3) is calculated:

Tl = σ(W t
l s

+
l + btl) (7)

To generate feature representation yl, the function

f takes as input the concatenation of yl−1 and s+l .

That is, Equation 2 becomes:

yl =

{
s+l , l = 0

f([yl−1; s
+
l ],W

f
l )Tl + yl−1(1− Tl), l > 0

(8)

where [...;...] denotes concatenation. Thus, at

each layer l, the gate Tl can regulate either pass-

ing through yl−1 to form yl, or retrieving novel
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knowledge from the input text x to augment yl−1

to create a better representation for yl.

Finally, as depicted in Figure 1, the feature rep-

resentation of the last layer of the AGT is fed into

two fully connected layers followed by a softmax

function to produce a distribution over the possi-

ble target classes. For training, we use multi-class

cross entropy loss.

Note that, Equation 8 indicates that the repre-

sentation yl depends on both s+l and yl−1. In other

words, although Equation 7 states that the gate ac-

tivation at layer l is computed by s+l , the gate acti-

vation is also affected by yl−1, which embeds the

information from the layers below l.

Intuitively, the AGT networks are encouraged

to consider new words/phrases from the input text

at higher layers. Consider the fact that the s+0 at

the bottom layer of the AGT only deploys a lin-

ear transformation of the bag-of-words features.

If no new words are used at higher layers of

the networks, it will be challenge for the AGT

to sufficiently explore different combinations of

word sets of the given text, which may be im-

portant for building an accurate classifier. In con-

trast, through tailoring its attention for new words

at different layers, the AGT enables the words

selected by a layer to be effectively combined

with words/phrases selected by its previous lay-

ers to benefit the accuracy of the classification task

(more discussions are presented in Section 3.2).

3 Experimental Studies

3.1 Main Results

The Stanford Sentiment Treebank data contains

11,855 movie reviews (Socher et al., 2013). We

use the same splits for training, dev, and test

data as in (Kim, 2014) to predict the fine-

grained 5-class sentiment categories of the sen-

tences. For comparison purposes, following (Kim,

2014; Kalchbrenner et al., 2014; Lei et al., 2015),

we trained the models using both phrases and

sentences, but only evaluate sentences at test

time. Also, we initialized all of the word em-

beddings (Cherry and Guo, 2015; Chen and Guo,

2015) using the 300 dimensional pre-trained vec-

tors from GloVe (Pennington et al., 2014). We

learned 15 layers with 200 dimensions each,

which requires us to project the 300 dimensional

word vectors; we implemented this using a lin-

ear transformation, whose weight matrix and bias

term are shared across all words, followed by

a tanh activation. For optimization, we used

Adadelta (Zeiler, 2012), with learning rate of

0.0005, mini-batch of 50, transform gate bias of

1, and dropout (Srivastava et al., 2014) rate of

0.2. All these hyperparameters were determined

through experiments on the validation-set.

AGT 50.5
high-order CNN 51.2
tree-LSTM 51.0
DRNN 49.8
PVEC 48.7
DCNN 48.5
DAN 48.2
CNN-MC 47.4
CNN 47.2
RNTN 45.7
NBoW 44.5
RNN 43.2
SVM 38.3

Table 1: Test-set accuracies obtained; results ex-

cept the AGT are drawn from (Lei et al., 2015).

Figure 2: Soft attention distribution (top) and

phrase length distribution (bottom) on the test set.
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Table 1 presents the test-set accuracies obtained

by different strategies. Results in Table 1 indi-

cate that the AGT method achieved very competi-

tive accuracy (with 50.5%), when compared to the

state-of-the-art results obtained by the tree-LSTM

(51.0%) (Tai et al., 2015; Zhu et al., 2015) and

high-order CNN approaches (51.2%) (Lei et al.,

2015).

Top subfigure in Figure 2 depicts the distribu-
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Figure 3: Transform gate activities of the test-set

(top) and the first sentence in Figure 4 (bottom).
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tions of the attention weights created by differ-

ent layers on all test data, where the attention

weights of all words in a sentence, i.e., dl,n in

Equation 4, are normalized to the range between

0 and 1 within the sentence. The figure indicates

that AGT generated very spiky attention distribu-

tion. That is, most of the attention weights are ei-

ther 1 or 0. Based on these narrow, peaked bell

curves formed by the normal distributions for the

attention weights of 1 and 0, we here consider a

word has been selected by the networks if its at-

tention weight is larger than 0.95, i.e., receiving

more than 95% of the full attention, and a phrase

has been composed and selected if a set of consec-

utive words all have been selected.

In the bottom subfigure of Figure 2 we present

the distribution of the phrase lengths on the test

set. This figure indicates that the middle layers of

the networks e.g., 8th and 9th, have longer phrases

(green and blue curves) than others, while the lay-

ers at the two ends contain shorter phrases (red and

pink curves).

In Figure 3, we also presented the transform

gate activities on all test sentences (top) and that

of the first example sentence in Figure 4 (bottom).

These curves suggest that the transform gates at

the middle layers (green and blue curves) tended

to be close to zero, indicating the pass-through of

lower layers’ representations. On the contrary, the

gates at the two ends (red and pink curves) tended

to be away from zero with large tails, implying

the retrieval of new knowledge from the input text.

These are consistent with the results below.

Figure 4 presents three sentences with various

lengths from the test set, with the attention weights

numbered and then highlighted in heat map. Fig-

ure 4 suggests that the lower layers of the networks

selected individual words, while the higher layers

aimed at phrases. For example, the first and sec-

ond layers seem to select individual words carry-

ing strong sentiment (e.g., predictable, bad, never

and delicate), and conjunction and negation words

(e.g., though and not). Also, meaningful phrases

were composed and selected by later layers, such

as not so much, not only... but also, bad taste, bad

luck, emotional development, and big screen. In

addition, in the middle layer, i.e., the 8th layer,

the whole sentences were composed by filtering

out uninformative words, resulting in concise ver-

sions, as follows (selected words and phrases are

highlighted in color blocks).

1) though plot predictable movie never

feels formulaic attention nuances emo-

tional development delicate characters

2) bad company leaves bad taste not

only bad luck but also staleness script

3) not so much movie picture big screen

Interestingly, if relaxing the word selection cri-

teria, e.g., including words receiving more than the

median, rather than 95%, of the full attention, the

sentences recruited more conjunction and modifi-

cation words, e.g., because, for, a, its and on, thus

becoming more readable and fluent:

1) though plot is predictable movie never

feels formulaic because attention is on

nuances emotional development delicate

characters

2) bad company leaves a bad taste not

only because its bad luck timing but also

staleness its script

3) not so much a movie a picture book

for big screen

Now, consider the AGT’s compositional behavior

for a specific sentence, e.g., the last sentence in

Figure 4. The first layer solely selected the word

not (with attention weight of 1 and all other words

with weights close to 0), but the 2nd to 4th lay-

ers gradually pulled out new words book, screen

and movie from the given text. Incrementally,

the 5th and 6th layers further selected words to

form phrases not so much, picture book, and big

screen. Finally, the 7th and 8th layers added some
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Figure 4: Three sentences from the test set and their attention received from the 15 layers (L1 to L15).
though the plot is predicta, the movie never feels formula, becaus the attentionis on the nuance of the emotionadevelopmof the delicatecharacte
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L4 1.00 0.59 0.41 0.00 0.98 0.06 0.00 0.59 0.54 0.29 0.01 0.59 0.76
L5 1.00 0.80 0.60 0.03 0.99 0.12 0.03 0.74 0.70 0.50 0.03 0.72 0.87
L6 1.00 0.92 0.78 0.10 1.00 0.24 0.10 0.87 0.84 0.71 0.06 0.83 0.94
L7 1.00 0.96 0.87 0.21 1.00 0.33 0.21 0.93 0.88 0.81 0.08 0.89 0.97
L8 1.00 0.99 0.95 0.59 1.00 0.41 0.59 0.98 0.91 0.89 0.10 0.96 0.99
L9 1.00 0.99 0.95 0.64 1.00 0.26 0.64 0.98 0.85 0.85 0.05 0.96 0.99
L10 1.00 0.93 0.82 0.19 1.00 0.05 0.19 0.91 0.56 0.52 0.00 0.90 0.95
L11 1.00 0.85 0.71 0.09 1.00 0.02 0.09 0.85 0.34 0.29 0.00 0.85 0.91
L12 1.00 0.68 0.55 0.06 0.99 0.01 0.06 0.78 0.15 0.13 0.00 0.77 0.84
L13 1.00 0.19 0.23 0.02 0.63 0.00 0.02 0.27 0.04 0.05 0.00 0.53 0.48
L14 1.00 0.03 0.06 0.01 0.05 0.00 0.01 0.04 0.01 0.01 0.00 0.21 0.07
L15 1.00 0.02 0.05 0.00 0.02 0.00 0.00 0.02 0.01 0.01 0.00 0.15 0.03

conjunction and quantification words a and for to

make the sentence more fluent. This recursive

composing process resulted in the sentence “not

so much a movie a picture book for big screen”.

Interestingly, Figures 4 and 2 also imply that,

after composing the sentences by the middle layer,

the AGT networks shifted to re-focus on shorter

phrases and informative words. Our analysis on

the transform gate activities suggests that, dur-

ing this re-focusing stage the compositions of sen-

tence phrases competed to each others, as well as

to the whole sentence composition, for the domi-

nating task-specific features to represent the text.

3.2 Further Observations

As discussed at the end of Section 2.2, intuitively,

including new words at different layers allows

the networks to more effectively explore different

combinations of word sets of the given text than

that of using all words only at the bottom layer

of the networks. Empirically, we observed that, if

with only s+0 in the AGT network, namely remov-

ing s+i for i > 0, the test-set accuracy dropped

from 50.5% to 48.5%. In other words, transform-

ing a linear combination of the bag-of-words fea-

tures was insufficient for obtaining sufficient ac-

curacy for the classification task. For instance, if

being augmented with two more selection vectors

s+i , namely removing s+i for i > 2, the AGT was

able to improve its accuracy to 49.0%.

Also, we observed that the AGT networks

tended to select informative words at the lower

layers. This may be caused by the recursive form

of Equation 8, which suggests that the words re-

trieved by s+0 have more chance to combine with

and influence the selection of other feature words.

In our study, we found that, for example, the top

3 most frequent words selected by the first layer

of the AGT networks were all negation words: n’t,

never, and not. These are important words for sen-

timent classification (Zhu et al., 2014).

In addition, like the transform gate in the High-

way networks (Srivastava et al., 2015a) and the

forget gate in the LSTM (Gers et al., 2000), the

attention-based transform gate in the AGT net-

works is sensitive to its bias initialization. We

found that initializing the bias to one encouraged

the compositional behavior of the AGT networks.

4 Conclusion and Future Work

We have presented a novel deep network. It

not only achieves very competitive accuracy for

text classification, but also exhibits interesting

text compositional behavior, which may shed light

on understanding how neural models work in

NLP tasks. In the future, we aim to apply the

AGT networks to incrementally generating natu-

ral text (Guo, 2015; Hu et al., 2017).
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