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Abstract

While there has been substantial progress
in factoid question-answering (QA), an-
swering complex questions remains chal-
lenging, typically requiring both a large
body of knowledge and inference tech-
niques. Open Information Extraction
(Open IE) provides a way to generate
semi-structured knowledge for QA, but to
date such knowledge has only been used
to answer simple questions with retrieval-
based methods. We overcome this limita-
tion by presenting a method for reasoning
with Open IE knowledge, allowing more
complex questions to be handled. Using a
recently proposed support graph optimiza-
tion framework for QA, we develop a new
inference model for Open IE, in particu-
lar one that can work effectively with mul-
tiple short facts, noise, and the relational
structure of tuples. Our model signifi-
cantly outperforms a state-of-the-art struc-
tured solver on complex questions of vary-
ing difficulty, while also removing the re-
liance on manually curated knowledge.

1 Introduction

Effective question answering (QA) systems have
been a long-standing quest of AI research. Struc-
tured curated KBs have been used successfully for
this task (Berant et al., 2013; Berant and Liang,
2014). However, these KBs are expensive to build
and typically domain-specific. Automatically con-
structed open vocabulary (subject; predicate; ob-
ject) style tuples have broader coverage, but have
only been used for simple questions where a single
tuple suffices (Fader et al., 2014; Yin et al., 2015).

Our goal in this work is to develop a QA system
that can perform reasoning with Open IE (Banko

et al., 2007) tuples for complex multiple-choice
questions that require tuples from multiple sen-
tences. Such a system can answer complex ques-
tions in resource-poor domains where curated
knowledge is unavailable. Elementary-level sci-
ence exams is one such domain, requiring com-
plex reasoning (Clark, 2015). Due to the lack of
a large-scale structured KB, state-of-the-art sys-
tems for this task either rely on shallow reasoning
with large text corpora (Clark et al., 2016; Cheng
et al., 2016) or deeper, structured reasoning with
a small amount of automatically acquired (Khot
et al., 2015) or manually curated (Khashabi et al.,
2016) knowledge.

Consider the following question from an Alaska
state 4th grade science test:

Which object in our solar system reflects
light and is a satellite that orbits around
one planet? (A) Earth (B) Mercury (C)
the Sun (D) the Moon

This question is challenging for QA systems be-
cause of its complex structure and the need for
multi-fact reasoning. A natural way to answer it
is by combining facts such as (Moon; is; in the
solar system), (Moon; reflects; light), (Moon; is;
satellite), and (Moon; orbits; around one planet).

A candidate system for such reasoning,
and which we draw inspiration from, is the
TABLEILP system of Khashabi et al. (2016).
TABLEILP treats QA as a search for an optimal
subgraph that connects terms in the question and
answer via rows in a set of curated tables, and
solves the optimization problem using Integer
Linear Programming (ILP). We similarly want
to search for an optimal subgraph. However, a
large, automatically extracted tuple KB makes
the reasoning context different on three fronts:
(a) unlike reasoning with tables, chaining tuples
is less important and reliable as join rules aren’t
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available; (b) conjunctive evidence becomes
paramount, as, unlike a long table row, a single
tuple is less likely to cover the entire question;
and (c) again, unlike table rows, tuples are noisy,
making combining redundant evidence essen-
tial. Consequently, a table-knowledge centered
inference model isn’t the best fit for noisy tuples.

To address this challenge, we present a new
ILP-based model of inference with tuples, im-
plemented in a reasoner called TUPLEINF. We
demonstrate that TUPLEINF significantly outper-
forms TABLEILP by 11.8% on a broad set of over
1,300 science questions, without requiring manu-
ally curated tables, using a substantially simpler
ILP formulation, and generalizing well to higher
grade levels. The gains persist even when both
solvers are provided identical knowledge. This
demonstrates for the first time how Open IE based
QA can be extended from simple lookup questions
to an effective system for complex questions.

2 Related Work

We discuss two classes of related work: retrieval-
based web question-answering (simple reason-
ing with large scale KB) and science question-
answering (complex reasoning with small KB).

Web QA: There exist several systems for
retrieval-based Web QA problems (Ferrucci et al.,
2010; Brill et al., 2002). While structured KBs
such as Freebase have been used in many (Berant
et al., 2013; Berant and Liang, 2014; Kwiatkowski
et al., 2013), such approaches are limited by the
coverage of the data. QA systems using semi-
structured Open IE tuples (Fader et al., 2013,
2014; Yin et al., 2015) or automatically extracted
web tables (Sun et al., 2016; Pasupat and Liang,
2015) have broader coverage but are limited to
simple questions with a single query.

Science QA: Elementary-level science QA tasks
require reasoning to handle complex questions.
Markov Logic Networks (Richardson and Domin-
gos, 2006) have been used to perform probabilistic
reasoning over a small set of logical rules (Khot
et al., 2015). Simple IR techniques have also
been proposed for science tests (Clark et al., 2016)
and Gaokao tests (equivalent to the SAT exam in
China) (Cheng et al., 2016).

The work most related to TUPLEINF is the
aforementioned TABLEILP solver. This approach
focuses on building inference chains using man-

ually defined join rules for a small set of curated
tables. While it can also use open vocabulary tu-
ples (as we assess in our experiments), its efficacy
is limited by the difficulty of defining reliable join
rules for such tuples. Further, each row in some
complex curated tables covers all relevant contex-
tual information (e.g., each row of the adaptation
table contains (animal, adaptation, challenge, ex-
planation)), whereas recovering such information
requires combining multiple Open IE tuples.

3 Tuple Inference Solver

We first describe the tuples used by our solver. We
define a tuple as (subject; predicate; objects) with
zero or more objects. We refer to the subject, pred-
icate, and objects as the fields of the tuple.

3.1 Tuple KB

We use the text corpora (S) from Clark
et al. (2016) to build our tuple KB. S contains
5 ⇥ 1010 tokens (280 GB of plain text) extracted
from Web pages as well as around 80,000 sen-
tences from various domain-targeted sources. For
each test set, we use the corresponding train-
ing questions Qtr to retrieve domain-relevant sen-
tences from S. Specifically, for each multiple-
choice question (q, A) 2 Qtr and each choice
a 2 A, we use all non-stopword stemmed tokens
in q and a as an ElasticSearch1 query against S. We
take the top 200 hits, run Open IE v4,2 and aggre-
gate the resulting tuples over all a 2 A and over
all questions in Qtr to create the tuple KB (T ).3

3.2 Tuple Selection

Given a multiple-choice question qa with question
text q and answer choices A={ai}, we select the
most relevant tuples from T and S as follows.

Selecting from Tuple KB: We use an inverted
index to find the 1,000 tuples that have the most
overlapping tokens with question tokens tok(qa).4

We also filter out any tuples that overlap only with
tok(q) as they do not support any answer. We
compute the normalized TF-IDF score by treating
the question, q, as a query and each tuple, t, as a

1https://www.elastic.co/products/elasticsearch
2http://knowitall.github.io/openie
3Available at http://allenai.org/data.html
4All tokens are stemmed and stop-word filtered.
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Figure 1: An example support graph linking a
question (top), two tuples from the KB (colored)
and an answer option (nitrogen).

document:

tf(x, q) = 1 if x 2 q, 0 otherwise

idf(x) = log (1 + N/nx)

tf-idf(t, q) =
X

x2t\q

idf(x)

where N is the total number of tuples in the KB
and nx is the number of tuples containing x. We
normalize the tf-idf score by the number of tokens
in t and q, and take the 50 top-scoring tuples Tqa .

On-the-fly tuples from text: To handle ques-
tions from new domains not covered by the train-
ing set, we extract additional tuples on the fly from
S (similar to Sharma et al. (2015)). We perform
the same ElasticSearch query described earlier for
building T. We ignore sentences that cover none or
all answer choices as they are not discriminative.
We also ignore long sentences (>300 characters)
and sentences with negation5 as they tend to lead
to noisy inference. We then run Open IE on these
sentences and re-score the resulting tuples using
the Jaccard score6 due to the lossy nature of Open
IE, and finally take the 50 top-scoring tuples T 0

qa .

3.3 Support Graph Search
Similar to TABLEILP, we view the QA task as
searching for a graph that best connects the terms
in the question (qterms) with an answer choice
via the knowledge; see Figure 1 for a simple il-
lustrative example. Unlike standard alignment
models used for tasks such as Recognizing Tex-
tual Entailment (RTE) (Dagan et al., 2010), how-
ever, we must score alignments between a set
Tqa [ T 0

qa of structured tuples and a (potentially
multi-sentence) multiple-choice question qa.

The qterms, answer choices, and tuples fields
form the set of possible vertices, V , of the support
graph. Edges connecting qterms to tuple fields and
tuple fields to answer choices form the set of pos-
sible edges, E . The support graph, G(V, E), is a

5containing not, ’nt, or except
6| tok(t) \ tok(qa) | / | tok(t) [ tok(qa) |

subgraph of G(V, E) where V and E denote “ac-
tive” nodes and edges, resp. We define an ILP
optimization model to search for the best support
graph (i.e., the active nodes and edges) as follows.

Variables
The ILP has a binary variable for each qterm (xq),
tuple (xt), tuple field (xf ), and answer choice (xa),
indicating whether the corresponding graph node
is active. There is a binary activity variable (xe)
for each edge e 2 E . For efficiency, we only create
a qterm!field edge and a field!choice edge if
the corresponding coefficient is no smaller than a
certain threshold (0.1 and 0.2, resp.).

Objective Function
The objective function coefficient ce of each edge
e(t, h) is determined by a word-overlap score.7

While TABLEILP used WordNet (Miller, 1995)
paths to compute the edge weight, this measure re-
sults in unreliable scores when faced with longer
phrases found in Open IE tuples.

Compared to a curated KB, it is easy to find
Open IE tuples that match irrelevant parts of the
questions. To mitigate this issue, we scale the co-
efficients cq of qterms in our ILP objective to focus
on important terms. Since the later terms in a ques-
tion tend to provide the most critical information,
we scale qterm coefficients based on their position
in the question. Also, qterms that appear in almost
all of the selected tuples tend not to be discrim-
inative as any tuple would support such a qterm.
Hence we scale qterm coefficients inversely by the
frequency with which they occur in the selected
tuples. Appendix A describes the coefficient for
qterm as well as other variables in detail.

Constraints
Since Open IE tuples do not come with schema
and join rules, we can define a substantially sim-
pler model compared to TABLEILP. This reduces
the reasoning capability but also eliminates the re-
liance on hand-authored join rules and regular ex-
pressions used in TABLEILP. We discovered (see
empirical evaluation) that this simple model can
achieve the same score as TABLEILP on the Re-
gents test (target test set used by TABLEILP) and
generalizes better to different grade levels.

We start with a few constraints defining what is
an active node or edge, shown as the first groups
of constraints in Table 1. To avoid positive edge
coefficients in the objective function resulting in

7w(t, h) =| tok(t) \ tok(h) | / | tok(h) |
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Active variable must have an active edge
Active edge must have an active source node
Active edge must have an active target node
Exactly one answer choice must be active
Active field implies tuple must be active
Active field must have < w1 connected edges
Active choice must have < w2 edges
Active qterm must have < w3 edges
Support graph must have < w4 active tuples
Active tuple must have � w5 active fields
Active tuple must have an edge to some qterm
Active tuple must have an edge to some choice
Active tuple must have active subject
If a tuple predicate aligns to q, the subject (object) must

align to a term preceding (following, resp.) q

Table 1: High-level ILP constraints; we report re-
sults for ~w = (2, 4, 4, 4, 2); the model can be im-
proved with more careful parameter selection

spurious edges in the support graph, we limit the
number of active edges from an active tuple, ques-
tion choice, tuple fields, and qterms (second group
of constraints in Table 1). Our model is also ca-
pable of using multiple tuples to support different
parts of the question as illustrated in Figure 1. To
avoid spurious tuples that only connect with the
question (or choice) or ignore the relation being
expressed in the tuple, we add constraints that re-
quire each tuple to connect a qterm with an answer
choice (third group of constraints in Table 1).

We also define new constraints based on the
Open IE tuple structure. Since an Open IE tu-
ple expresses a fact about the tuple’s subject,
we require that the subject must be active. To
avoid issues such as (Planet; orbit; Sun) matching
the sample question in the introduction (“Which
object. . .orbits around a planet”), we also add an
ordering constraint (fourth group in Table 1).

We note that TUPLEINF only combines parallel
evidence, i.e., each tuple must individually con-
nect words in the question to the answer choice.
For reliable multi-hop reasoning using OpenIE tu-
ples, one can add inter-tuple connections to the
support graph search, controlled by a small num-
ber of rules over Open IE predicates. Learning
such rules for the Science domain is an open prob-
lem and potential avenue for future work.

4 Experiments

Comparing our method with two state-of-the-art
systems for 4th and 8th grade science exams,
we demonstrate that (a) TUPLEINF with only au-
tomatically extracted tuples significantly outper-
forms TABLEILP with its original curated knowl-

Solvers 4th Grade 8th Grade

TABLEILP(C) 39.9 34.1
TUPLEINF(T+T’) 51.7 51.6

TABLEILP(C+T) 42.1 37.9
TUPLEINF(C+T) 47.5 48.0

Table 2: TUPLEINF is significantly better at struc-
tured reasoning than TABLEILP.9

edge as well as with additional tuples, and (b) TU-
PLEINF’s complementary approach to IR leads to
an improved ensemble. Numbers in bold indicate
statistical significance based on the Binomial ex-
act test (Howell, 2012) at p = 0.05.

We consider two question sets. (1) 4th Grade
set (1220 train, 1304 test) is a 10x larger superset
of the NY Regents questions (Clark et al., 2016),
and includes professionally written licensed ques-
tions. (2) 8th Grade set (293 train, 282 test) con-
tains 8th grade questions from various states.8

We consider two knowledge sources:
(1) The Sentence corpus (S) consists of

domain-targeted 80K sentences and 280 GB of
plain text extracted from web pages used by Clark
et al. (2016). This corpus is used as a collection of
sentences by the IR solver. It is also used to create
the tuple KB T (Sec. 3.1) and on-the-fly question-
specific tuples T 0

qa (Sec. 3.2) for TUPLEINF.
(2) TABLEILP uses ⇠70 Curated tables (C)

containing about 7,600 rows, designed for 4th
grade NY Regents exams.

We compare TUPLEINF with two state-of-the-
art baselines. IR is a simple yet powerful
information-retrieval baseline (Clark et al., 2016)
that selects the answer option with the best match-
ing sentence in a corpus. TABLEILP is the state-
of-the-art structured inference baseline (Khashabi
et al., 2016) developed for science questions.

4.1 Results

Table 2 shows that TUPLEINF, with no curated
knowledge, outperforms TABLEILP on both ques-
tion sets by more than 11%. The lower half of the
table shows that even when both solvers are given

8See the Middle School Without Diagrams set
from AI2 Science Questions v1 (Feb 2016) at
http://allenai.org/data/science-exam-questions.html for
the 8th Grade set. For future comparisons, we also report
our score on their smaller 4th Grade set: Elementary School
Without Diagrams (432 train, 339 test).

9TUPLEINF(T+T’) achieves a score of 56.1% on the El-
ementary School Without Diagrams test set (cf. Footnote 8)
compared to TABLEILP(C)’s score of 46.7%.
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Solvers 4th Grade 8th Grade

IR(S) 52.0 52.8
IR(S) + TABLEILP(C) 53.3 54.5
IR(S) + TUPLEINF(T+T’) 55.3 55.1

Table 3: TUPLEINF is complementarity to IR, re-
sulting in a strong ensemble

the same knowledge (C+T),10 the improved selec-
tion and simplified model of TUPLEINF11 results
in a statistically significant improvement. Our
simple model, TUPLEINF(C + T), also achieves
scores comparable to TABLEILP on the latter’s
target Regents questions (61.4% vs TABLEILP’s
reported 61.5%) without any specialized rules.

Table 3 shows that while TUPLEINF achieves
similar scores as the IR solver, the approaches
are complementary (structured lossy knowledge
reasoning vs. lossless sentence retrieval). The
two solvers, in fact, differ on 47.3% of the train-
ing questions. To exploit this complementarity,
we train an ensemble system (Clark et al., 2016)
which, as shown in the table, provides a substan-
tial boost over the individual solvers. Further,
IR + TUPLEINF is consistently better than IR +
TABLEILP.

Finally, in combination with IR and the statis-
tical association based PMI solver (which scores
54.1% by itself) of Clark et al. (2016), TUPLEINF

achieves a score of 58.2% on the 4th grade set.
This compares favorably to TABLEILP’s ensem-
ble score of 56.7%, again attesting to TUPLEINF’s
strength.12

5 Error Analysis

We describe four classes of failure of TUPLEINF,
and the future work they suggest.

Missing Important Words: Which material
will spread out to completely fill a larger con-
tainer? (A) air (B) ice (C) sand (D) water
In this question, we have tuples that support that
water will spread out and fill a larger container, but
miss the critical word “completely”. A method for
detecting salient question words would help here.

10See Appendix B for how tables (and tuples) are used by
TUPLEINF (and TABLEILP).

11On average, TABLEILP (TUPLEINF) has 3,403 (1,628,
resp.) constraints and 982 (588, resp.) variables. TUPLE-
INF’s ILP can be solved in half the time taken by TABLEILP,
reducing the overall question answering time by 68.6%.

12We observed no difference in scores on the 8th grade set.

Lossy IE: Which action is the best method to
separate a mixture of salt and water? . . .
The IR solver correctly answers this question by
using the sentence: Separate the salt and wa-
ter mixture by evaporating the water. However,
TUPLEINF is not able to answer this question as
Open IE is unable to extract tuples from this im-
perative sentence. While the additional structure
from Open IE is generally helpful for more ro-
bust matching, the conversion to tuples sometimes
loses important bits of information.

Bad Alignment: Which of the following gases is
necessary for humans to breathe in order to live?
(A) Oxygen (B) Carbon dioxide (C) Helium (D)
Water vapor
TUPLEINF returns “Carbon dioxide” as the answer
because of the tuple (humans; breathe out; carbon
dioxide). The chunk “to breathe” in the question
has a high alignment score to the “breathe out” re-
lation in the tuple, even though they have com-
pletely different meaning. An improved phrase
alignment module can mitigate this issue.

Out of Scope: Deer live in forest for shelter. If
the forest was cut down, which situation would
most likely happen? . . .
Such questions require modeling a state presented
in the question and reasoning over this state, which
is out of scope of our solver.

6 Conclusion

We presented a new QA system, TUPLEINF, that
can reason over a large, potentially noisy knowl-
edge base of (subject, predicate, object) style tu-
ples, in order to answer complex questions. Our
results establish TUPLEINF as a new state-of-the-
art structured reasoning solver for elementary-
level science that does not rely on curated knowl-
edge and generalizes to higher grade levels. Our
error analysis points to lossy IE and textual mis-
alignments as two main causes of failure, suggest-
ing future work around incorporating tuple context
and distributional similarity measures.
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