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Abstract

Discourse segmentation is a crucial step
in building end-to-end discourse parsers.
However, discourse segmenters only exist
for a few languages and domains. Typi-
cally they only detect intra-sentential seg-
ment boundaries, assuming gold standard
sentence and token segmentation, and re-
lying on high-quality syntactic parses and
rich heuristics that are not generally avail-
able across languages and domains. In
this paper, we propose statistical discourse
segmenters for five languages and three
domains that do not rely on gold pre-
annotations. We also consider the problem
of learning discourse segmenters when
no labeled data is available for a lan-
guage. Our fully supervised system ob-
tains 89.5% F; for English newswire, with
slight drops in performance on other do-
mains, and we report supervised and un-
supervised (cross-lingual) results for five
languages in total.

1 Introduction

Discourse segmentation is the first step in building
a discourse parser. The goal is to identify the min-
imal units — called Elementary Discourse Units
(EDU) — in the documents that will then be linked
by discourse relations. For example, the sentences
(1a) and (1b)! are each segmented into two EDUs,
then respectively linked by a CONTRAST and an
ATTRIBUTION relation. The EDUs are mostly
clauses and may cover a full sentence. This step
is crucial: making a segmentation error leads to an
error in the final analysis. Discourse segmentation
can also inform other tasks, such as argumentation

'The examples come from the RST Discourse Treebank.

lacroix@di.ku.dk

soegaard@ddi.ku.dk

mining, anaphora resolution, or speech act assign-
ment (Sidarenka et al., 2015).

(1) a. [Such trappings suggest a glorious past]
[but give no hint of a troubled present.|

b. [He said] [the thrift will to get regulators
to reverse the decision.]

We focus on the Rhetorical Structure Theory
(RST) (Mann and Thompson, 1988) — and re-
sources such as the RST Discourse Treebank
(RST-DT) (Carlson et al., 2001) — in which dis-
course structures are trees covering the docu-
ments. Most recent works on RST discourse pars-
ing focuses on the task of tree building, relying
on a gold discourse segmentation (Ji and Eisen-
stein, 2014; Feng and Hirst, 2014; Li et al., 2014;
Joty et al., 2013). However, discourse parsers’
performance drops by 12-14% when relying on
predicted segmentation (Joty et al., 2015), un-
derscoring the importance of discourse segmen-
tation. State-of-the-art performance for discourse
segmentation on the RST-DT is about 91% in F;
with predicted parses (Xuan Bach et al., 2012),
but these systems rely on a gold segmentation of
sentences and words, therefore probably overesti-
mating performance in the wild. We propose to
build discourse segmenters without making any
data assumptions. Specifically, rather than seg-
menting sentences, our systems segment docu-
ments directly.

Furthermore, only a few systems have been de-
veloped for languages other than English and do-
mains other than the Wall Street Journal texts from
the RST-DT. We are the first to perform exper-
iments across 5 languages, and 3 non-newswire
English domains. Since our goal is to provide
a system usable for low-resource languages, we
only use language-independent resources: here,
the Universal Dependencies (UD) (Nivre et al.,
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2016) Part-of-Speech (POS) tags, for which an-
notations exist for about 50 languages. For the
cross-lingual experiments, we also rely on cross-
lingual word embeddings induced from parallel
data. With a shared representation, we can transfer
model parameters across languages, or learn mod-
els jointly through multi-task learning.

Contributions: We (i) propose a general sta-
tistical discourse segmenter (ii) that does not as-
sume gold sentences and tokens, and (iii) evaluate
it across 5 languages and 3 domains.

We make our code available at https://bitbucket.
org/chloebt/discourse.

2 Related work

For English RST-DT, the best discourse segmen-
tation results were presented in Xuan Bach et al.
(2012) (F1 91.0% with automatic parse, 93.7
with gold parse) — and in Joty et al. (2015) for
the Instructional corpus (Subba and Di Euge-
nio, 2009) (F1 80.9% on 10-fold). Segmenters
based on handwritten rules have been developed
for Brazilian Portuguese (Pardo and Nunes, 2008)
(51.3% to 56.8%, depending on the genre), Span-
ish (da Cunha et al.,, 2010, 2012) (80%) and
Dutch (van der Vliet, 2010) (73% with automatic
parse, 82% with gold parse).”

Most statistical discourse segmenters are based
on classifiers (Fisher and Roark, 2007; Joty et al.,
2015). Subba and Di Eugenio (2007) were the first
to use a neural network, and Sporleder and Lapata
(2005) to model the task as a sequence prediction
problem. In this work, we do sequence prediction
using a neural network.

All these systems rely on a quite large range
of lexical and syntactic features (e.g. token, POS
tags, lexicalized production rules). Sporleder and
Lapata (2005) present arguments for a knowledge-
lean system that can be used for low-resourced
languages. Their system, however, still relies on
several tools and gold annotations (e.g. POS tag-
ger, chunker, list of connectives, gold sentences).
In contrast, we present what is to the best of our
knowledge the first work on discourse segmenta-
tion that is directly applicable to low-resource lan-
guages, presenting results for scenarios where no
labeled data is available for the target language.

Previous work, relying on gold sentence bound-
aries, also only considers intra-sentential segment

2 For German (Sidarenka et al., 2015) propose a seg-
menter in clauses (that may be EDU or not).
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boundaries. We move to processing entire docu-
ments, motivated by the fact that sentence bound-
aries are not easily detected across all languages.

3 Discourse segmentation

Nature of the EDUs Discourse segmentation is
the first step in annotating a discourse corpus. The
annotation guidelines define what is the nature of
the EDUs, broadly relying on lexical and syntac-
tic clues. If sentences and independent clauses are
always minimal units, some fine distinctions make
the task difficult.

In the English RST-DT (Carlson and Marcu,
2001), lexical information is crucial: for instance,
the presence of the discourse connective “but” in
example (1a)? indicates the beginning of an EDU.
In addition, clausal complements of verbs are gen-
erally not treated as EDUs. Exceptions are the
complements of attribution verbs, as in (1b), and
the infinitival clauses marking a PURPOSE rela-
tion as the second EDU in (2a). Note that, in
this latter example, the first infinitival clause (“to
cover up ...”) is, however, not considered as an
EDU. This fine distinction corresponds to one of
the main difficulties of the task. Another one is
linked to coordination: coordinated clauses are
generally segmented as in (2b), but not coordi-
nated verb phrases as in (2c¢).

(2) a. [A grand jury has been investigating
whether officials at Southern Co. ac-
counting conspired to cover up their ac-
counting for spare parts| [to evade federal
income taxes. |

[they parcel out money] [so that their
clients can find temporary living
quarters,] [buy food] (...) [and replaster
walls.]

[Under Superfund, those|] [who owned,
generated or transported hazardous waste]
[are liable for its cleanup, (. ..)]

Finally, in a multi-lingual and multi-domain set-
ting, note that all the corpora do not follow the
same rules: for example, the relation ATTRIBU-
TION is only annotated in the English RST-DT
and the corpora for Brazilian Portuguese, conse-
quently, complements of attribution verbs are not
segmented in the other corpora.

3 All the examples given come from (Carlson et al., 2001).



Binary task As in previous studies, we view
segmentation as a binary task at the word level:
a word is either an EDU boundary (label B, begin-
ning an EDU) or not (label I, inside an EDU). This
design choice is motivated by the fact that, in RST
corpora, the EDUs cover the documents entirely,
and that EDUs mostly are adjacent spans of text.
An exception is when embedded EDUs break up
another EDU, as in Example (3). The units 1 and
3 form in fact one EDU. We follow previous work
on treating this as three segments, but note that this
may not be the optimal solution.

(3) [But maintaining the key components (.. .)|;
[— a stable exchange rate and high levels of imports —] )
[will consume enormous amounts (. . .).]3

Document-level segmentation Contrary to pre-
vious studies, we do not assume gold sentences:
Since sentence boundaries are EDU boundaries,
our system jointly predicts sentence and intra-
sentential EDU boundaries.

4 Cross-lingual/-domain segmentation

Data is scarce for discourse. In order to build
statistical segmenters for new, low-resourced lan-
guages and domains, we propose to combine cor-
pora within a multi-task learning setting (Sec-
tion 5) leveraging data from well-resourced lan-
guages or domains. Models are trained on several
(source) languages (resp. domains) — each viewed
as an auxiliary task — for building a system for a
(target) language (resp. domain).

Cross-domain For cross-domain experiments,
the models are trained on all the other (source) do-
mains and parameters are tuned on data for the
target domain. This allows us to improve per-
formance when only few data points (i.e. devel-
opment set) are annotated for a specific domain
(semi-supervised setting).

Cross-lingual For cross-lingual experiments,
we tune our system’s parameters by training a sys-
tem on the data for three languages with sufficient
amounts of data (namely, German, Spanish and
Brazilian Portuguese), and using English data as a
development set. We then train a new model also
using multi-task learning (with these tuned param-
eters) using only source training data, and report
performance on the target test set. This allows us
to estimate performance when no data is available
for the language of interest (unsupervised adapta-
tion).
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S Multi-task learning

Our models perform sequence labeling based on
a stacked k-layer bi-directional LSTM, a variant
of LSTMs (Hochreiter and Schmidhuber, 1997)
that reads the input in both regular and reversed
order, allowing to take into account both left and
right contexts (Graves and Schmidhuber, 2005).
For our task, this enables us, for example, to dis-
tinguish between coordinated nouns and clauses.
This model takes as input a sequence of words
(and, here, POS tags) represented by vectors (ini-
tialized randomly or, for words, using pre-trained
embedding vectors). The sequence goes through
an embedding layer, and we compute the predic-
tions of the forward and backward states for the
k stacked layers. At the upper level, we compute
the softmax predictions for each word based on a
linear transformation. We use a logistic loss.

We also investigate joint training of multiple
languages and domains for discourse segmenta-
tion. We thus try to leverage languages and do-
mains regularities by sharing the architecture and
parameters through multi-task training, where an
auxiliary task is a source language (resp. domain)
different from the target language (resp. domain)
of interest. Specifically, we train models based
on hard parameters sharing (Caruana, 1993; Col-
lobert et al., 2011; Klerke et al., 2016; Plank et al.,
2016):* each task is associated with a specific out-
put layer, whereas the inner layers — the stacked
LSTMs — are shared across the tasks. At train-
ing time, we randomly sample data points from
one task and do forward predictions. During back-
propagation, we modify the weights of the shared
layers and the task-specific outer layer. The model
is optimized for one target task (corresponding to
the development data used). Except for the outer
layer, the target task model is thus regularized by
the induction of auxiliary models.

6 Corpora

Table 1 summarizes statistics about the data. For
English, we use four corpora, allowing us to eval-
uate cross-domain performance: the RST-DT (En-
DT) composed of Wall Street Journal articles;
the SFU review corpus’ (En-SFU-DT) contain-
ing product reviews; the instructional corpus (En-
Instr-DT) (Subba and Di Eugenio, 2009) built

*We used a modified version of (Plank et al., 2016) fixing
the random seed and using standard SGD.
Shttps://www.sfu.ca/~mtaboada



Corpus | #Doc  #EDU | #Sent #Words
En-SFU-DT 400 28,260 | 16,827 328,362
En-DT 385 21,789 | 9,074 210,584
PLDT 330 12,594 | 4,385 136,346
Es-DT 266 3,325 | 1,816 57,768
En-Instr-DT 176 5,754 | 3,090 56,197
De-DT 174 2,979 | 1,805 33,591
En-Gum-DT | 54 3,151 | 2,400 44,577
NI-DT 80 2,345 | 1,692 25,095

Table 1: Number of documents, EDUs, sentences
and words (according to UDPipe, see Section 7).

on instruction manuals; and the GUM corpus®
(En-Gum-DT) containing interviews, news, travel
guides and how-tos.

For cross-lingual experiments, we use anno-
tated corpora for Spanish (Es-DT) (da Cunha
et al., 2011),” German (De-DT) (Stede, 2004,
Stede and Neumann, 2014), Dutch (NI-DT) (Vliet
et al., 2011; Redeker et al., 2012) and, for Brazil-
ian Portuguese, we merged four corpora (Pt-
DT) (Cardoso et al., 2011; Collovini et al., 2007;
Pardo and Seno, 2005; Pardo and Nunes, 2003,
2004) as done in (Maziero et al., 2015).

Three other RST corpora exist, but we were not
able to obtain cross-lingual word embeddings for
Basque (Iruskieta et al., 2013) and Chinese (Wu
et al.,, 2016), and could not obtain the data for
Tamil (Subalalitha and Parthasarathi, 2012).

7 Experiments

Data We use the official test sets for the En-DT
(38 documents) and the Es-DT (84). For the oth-
ers, we randomly choose 38 documents as test set,
and either keep the rest as development set (NI-
DT) or split it into a train and a development set.

Baselines As baselines at the document level,
we report the scores obtained (a) when only con-
sidering the sentence boundaries predicted using
UDPipe (Straka et al., 2016) (UDP-S),® and (b)
when EDU boundaries are added after each token
PoS-tagged with “PUNCT” (UDP-P), marking ei-
ther an inter- or an intra-sentential boundary.

Systems As described in Section 3, our systems
are either mono-lingual or mono-domain (mono),
or based on a joint training across languages or
domains (cross). The “mono” systems are built for

Shttps://corpling.uis.georgetown.edu/gum/
"We only use the test set from the annotator A.
8http://ufal. mff.cuni.cz/udpipe
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| Mono | Cross UDP-S UDP-P

., En-DT 89.5 | 624 556 575
% PeDT 822 | 640 490 625
S Es-DT 793 | 643 649 533
£ De-DT 85.1 | 766  69.7  68.7
~ NI-DT - 82.6 802 766
«» En-DT (news) | 89.5 63.0 55.6 57.5
£ EnSFUDT | 855 | 815 702  66.1
£ Enlnst-DT | 871 | 777 665  69.5
S En-Gum-DT - 681 772  61.8

Table 2: Results (F}), comparing cross-lingual
and cross-domain results with UDPipe.

the languages and domains represented by enough
data (upper part of Table 1). The “cross” models
are trained using multi-task learning.

Parameters The hyper-parameters are tuned on
the development set: number of iterations 7 &
{10, 20, 30}, Gaussian noise o € {0.1,0.2}, and
number of dimensions d € {50,500}. We fix the
number n of stacked hidden layers to 2 and the size
of the hidden layers A to 100 after experimenting
on the En-DT.? Our final models use o = 0.2 and
d = 500.

Representation We use tokens and POS tags as
input data.'® The aim is to build a representa-
tion considering the current word and its context,
i.e. its POS and the surrounding words/POS. We
use the pre-trained UDPipe models to postag the
documents for all languages. We experiment with
randomly initialized and pre-trained cross-lingual
word embeddings built on Europarl (Levy et al.,
2017), keeping either the full 500 dimensions, or
the first 50 ones.

Results Our systems are evaluated using F over
the boundaries (B labels), disregarding the first
word of each document. Our scores are summa-
rized in Table 2.

Our supervised, monolingual systems unsur-
prisingly give the best performance, with F7 above
80%. The results are generally linked to the size of
the corpora, the larger the better. Only exception
is the En-SFU-DT, which, however, include more
varied annotation (the authors stated that the anno-
tations “have not been checked for reliability™).

The (semi-supervised) cross-domain setting al-
lows us to present the scores one can expect when

*With n € {1,2,3} and h € {100, 200,400}).

A document is a sequence alternating words and POS.
The tokens are labeled with a B or an I, the POS, always
labeled with an I, are inserted after each token they refer to.



only 25 documents are annotated for a new domain
(i.e. the development set for the target domain),
and to give the first results on the En-Gum-DT,
but here, our model is actually outperformed by
the sentence-based baseline (UDP-S).

The (unsupervised) cross-lingual models are
generally largely better than UDPipe. These are
scores that one can expect when doing cross-
lingual transfer to build a discourse segmenter for
a new language for which no annotated data are
available. The performance is still quite high,
demonstrating the coherence between the anno-
tation schemes, and the potential of cross-lingual
transfer. We acknowledge that this is a small set of
relatively similar Indo-European languages, how-
ever.

Note that the sentence-based baseline has a high
precision (e.g. 96.6 on Es-DT against 59.8 for
the cross-lingual system), but a much lower recall,
since it mainly predicts the sentence boundaries.
On corpora that mostly contain sentential EDUs
(e.g. NI-DT, see Table 1), this is a good strat-
egy. Using the punctuation (UDP-P) could be a
better approximation for corpora with more var-
ied EDUs, see the large gain for the Pt-DT and the
En-Instr-DT.

Our scores are not directly comparable with
sentence-level state-of-the-art systems (see Sec-
tion 2). However, for En-DT, our best system
correctly identifies 950 sentence boundaries out of
991, but gets only 84.5% in F7 for intra-sentential
boundaries,'! thus lower than the state-of-the-art
(91.0%). This is because we consider much less
information, and because the system was not opti-
mized for this task. Interestingly, our simple sys-
tem beats HILDA (Hernault et al., 2010) (74.1% in
F1), is as good as the other neural network based
system (Subba and Di Eugenio, 2007), and is close
to SPADE (Soricut and Marcu, 2003) (85.2% in
F1) (Joty et al., 2015), while all of these systems
use parse tree information.

Finally, looking at the errors of our system on
the En-DT, we found that most of them are on the
tokens “to” (30 out of 94 not predicted as 'B’) and
“and” (24 out of 103), as expected given the anno-
tation guidelines (see Section 3). These words are
highly ambiguous regarding discourse segmenta-
tion (e.g. in the test set, 42.3% of “and” indicates a
boundary). We also found errors with coordinated

"'This score ignores the sentences containing only one
EDU (Sporleder and Lapata, 2005).
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verb phrases — e.g. “[when rates are rising] [and
shift out at times|” — that should be split (Carl-
son et al., 2001), a distinction hard to make with-
out syntactic trees. Finally, since we use predicted
POS tags, our system learns from noisy data and
makes errors due to postagging and tokenisation
eITors.

8 Conclusion

We proposed new discourse segmenters with good
performance for many languages and domains, at
the document level, within a fully predicted setting
and using only language independent tools.
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