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Abstract

In this work, we propose a novel,
implicitly-defined neural network archi-
tecture and describe a method to compute
its components. The proposed architec-
ture forgoes the causality assumption used
to formulate recurrent neural networks and
instead couples the hidden states of the
network, allowing improvement on prob-
lems with complex, long-distance depen-
dencies. Initial experiments demonstrate
the new architecture outperforms both the
Stanford Parser and baseline bidirectional
networks on the Penn Treebank Part-of-
Speech tagging task and a baseline bidi-
rectional network on an additional artifi-
cial random biased walk task.

1 Introduction

Feedforward neural networks were designed to ap-
proximate and interpolate functions. Recurrent
Neural Networks (RNNs) were developed to pre-
dict sequences. RNNs can be ‘unwrapped’ and
thought of as very deep feedforward networks,
with weights shared between each layer. Com-
putation proceeds one step at a time, like the tra-
jectory of an ordinary differential equation when
solving an initial value problem. The path of an
initial value problem depends only on the current
state and the current value of the forcing func-
tion. In a RNN, the analogy is the current hidden
state and the current input sequence. However, in
certain applications in natural language process-
ing, especially those with long-distance dependen-
cies or where grammar matters, sequence predic-

∗This work is sponsored by the Air Force Research Lab-
oratory under Air Force contract FA-8721-05-C-0002. Opin-
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tion may be better thought of as a boundary value
problem. Changing the value of the forcing func-
tion (analogously, of an input sequence element)
at any point in the sequence will affect the val-
ues everywhere else. The bidirectional recurrent
network (Schuster and Paliwal, 1997) attempts to
addresses this problem by creating a network with
two recurrent hidden states – one that progresses
in the forward direction and one that progresses
in the reverse. This allows information to flow in
both directions, but each state can only consider
information from one direction. In practice many
algorithms require more than two passes through
the data to determine an answer. We provide a
novel mechanism that is able to process informa-
tion in both directions, with the motivation being
a program which iterates over itself until conver-
gence.

1.1 Related Work

Bidirectional, long-distance dependencies in se-
quences have been an issue as long as there have
been NLP tasks, and there are many approaches to
dealing with them.

Hidden Markov models (HMMs) (Rabiner,
1989) have been used extensively for sequence-
based tasks, but they rely on the Markov assump-
tion – that a hidden variable changes its state
based only on its current state and observables.
In finding maximum likelihood state sequences,
the Forward-Backward algorithm can take into ac-
count the entire set of observables, but the under-
lying model is still local.

In recent years, popularity of the Long Short-
Term Memory (LSTM) (Hochreiter and Schmid-
huber, 1997) and variants such as the Gated Recur-
rent Unit (GRU) (Cho et al., 2014) has soared, as
they enable RNNs to process long sequences with-
out the problem of vanishing or exploding gradi-
ents (Pascanu et al., 2013). However, these models
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only allow for information/gradient information to
flow in the forward direction.

The Bidirectional LSTM (b-LSTM) (Graves
and Schmidhuber, 2005), a natural extension of
(Schuster and Paliwal, 1997), incorporates past
and future hidden states via two separate recurrent
networks, allowing information/gradients to flow
in both directions of a sequence. This is a very
loose coupling, however.

In contrast to these methods, our work goes a
step further, fully coupling the entire sequences of
hidden states of an RNN. Our work is similar to
(Finkel et al., 2005), which augments a CRF with
long-distance constraints. However, our work dif-
fers in that we extend an RNN and uses Netwon-
Krylov (Knoll and Keyes, 2004) instead of Gibbs
Sampling.

2 The Implicit Neural Network (INN)

2.1 Traditional Recurrent Neural Networks

A typical recurrent neural network has a (pos-
sibly transformed) input sequence [ξ1, ξ2, . . . , ξn]
and initial state hs and iteratively produces future
states:

h1 = f(ξ1, hs)
h2 = f(ξ2, h1)
. . .
hn = f(ξn, hn−1)

The LSTM, GRU, and related variants follow
this formula, with different choices for the state
transition function. Computation proceeds lin-
early, with each next state depending only on in-
puts and previously computed hidden states.

Figure 1: Traditional RNN structure.

2.2 Proposed Architecture

In this work, we relax this assumption by allowing
ht = f(ξt, ht−1, ht+1)

1. This leads to an implicit
set of equations for the entire sequence of hidden
states, which can be thought of as a single tensor

1A wider stencil can also be used, e.g. f(ht−2, ht−1, . . .).

H:
H = [h1, h2, . . . , hn]

This yields a system of nonlinear equations. This
setup has the potential to arrive at nonlocal, whole
sequence-dependent results. We also hope such a
system is more ‘stable’, in the sense that the pre-
dicted sequence may drift less from the true mean-
ing, since errors will not compound with each time
step in the same way.

There are many potential ways to architect a
neural network – in fact, this flexibility is one of
deep learning’s best features – but we restrict our
discussion to the structure depicted in Figure 2. In
this setup, we have the following variables:

data X
labels Y
parameters θ

and functions:

input layer transformation ξ = g(θ,X)
implicit hidden layer def. H = F (θ, ξ,H)
loss function L = `(θ,H, Y )

Our implicit definition function, F , is made up
of local state transitions and forms a system of
nonlinear equations that require solving, denoting
n as the length of the input sequence and hs, he as
boundary states:

h1 = f(hs, h2, ξ1)
. . .
hi = f(hi−1, hi+1, ξi)
. . .
hn = f(hn−1, he, ξn)

Figure 2: Proposed INN Architecture
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2.3 Computing the forward pass

To evaluate the network, we must solve the equa-
tionH = F (H). We computed this via an approx-
imate Newton solve, where we successively refine
an approximation Hn of H:

Hn+1 = Hn − (I −∇HF )−1(Hn − F (Hn))

Let k be the dimension of a single hidden state.
(I −∇HF ) is a sparse matrix, since∇HF is zero
except for k pairs of n × n block matrices, cor-
responding to the influence of the left and right
neighbors of each state.

Because of this sparsity, we can apply Krylov
subspace methods (Knoll and Keyes, 2004),
specifically the BiCG-STAB method (Van der
Vorst, 1992), since the system is non-symmetric.
This has the added advantage of only relying on
matrix-vector multiplies of the gradient of F .

2.4 Gradients

In order to train the model, we perform stochastic
gradient descent. We take the gradient of the loss
function:

∇θL = ∇θ`+∇H`∇θH

The gradient of the hidden units with respect to the
parameters can found via the implicit definition:

∇θH = ∇θF +∇HF∇θH +∇ξF∇θξ
= (I −∇HF )−1 (∇θF +∇ξF∇θξ)

where the factorization follows from the noting
that

(I −∇HF )∇θH = ∇θF +∇ξF∇θξ.

The entire gradient is thus:

∇θL =∇H`(I −∇HF )−1 (∇θF +∇ξF∇θξ)
+∇θ`

(1)
Once again, the inverse of I −∇HF appears, and
we can compute it via Krylov subspace methods.
It is worth mentioning the technique of computing
parameter updates by implicit differentiation and
conjugate gradients have been applied before, in
the context of energy minimization models in im-
age labeling and denoising (Domke, 2012).

2.5 Transition Functions

Recall the original GRU equations (Cho et al.,
2014), with slight notational modifications:

final h ht = (1− zt)ĥt + zth̃t
candidate h h̃t = tanh(Wxt + U(rtĥt) + b̃)

update weight zt = σ(Wzxt + Uzĥt + bz)

reset gate rt = σ(Wrxt + Urĥt + br)

We make the following substitution for ĥt
(which was set to ht−1 in the original GRU def-
inition):

state comb. ĥt = sht−1 + (1− s)ht+1

switch s =
sp

sp+sn

prev. switch sp = σ(Wpxt + Upht−1 + bp)
next switch sn = σ(Wnxt + Unht+1 + bn)

(2)
This modification makes the architecture both

implicit and bidirectional, since ĥt is a linear com-
bination of previous and future hidden states. The
switch variable s is determined by a competition
between two sigmoidal units sp and sn, represent-
ing the contributions of the previous and next hid-
den states, respectively.

2.6 Implementation Details

We implemented the implicit GRU structure us-
ing Theano (Bergstra et al., 2011). The product
∇HFv for various v, required for the BiCG-STAB
method, was computed via the Rop operator. In
computing ∇θL (Equation 1), we noted it is more
efficient to compute ∇H`(I −∇HF )−1 first, and
thus used the Lop operator.

All experiments used a batch size of 20. To
batch solve the linear equations, we simply solved
a single, very large block diagonal system of equa-
tions: each sequence in the batch was a single
block matrix, and we input the encompassing ma-
trix into our Theano BiCG solver. (In practice the
block diagonal system is represented as a 3-tensor,
but it is equivalent.) In this setup, each step does
receive separate update directions, but one global
step length. hS and he were fixed at zero, but
could be trained as parameters.

In solving multiple simultaneous systems of
equations, we noted some elements converged sig-
nificantly faster than others. For this reason, we
found it helpful to run Newton’s method from
two separate initializations for each element in our
batch, one selected randomly and the other set to a
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“one-step” approximation: Hidden states of a tra-
ditional GRU were computed in both forward (hfi )
and reverse (hbi ) directions, and hi was initialized
to f(hfi−1, h

b
i+1, ξi). If either of the two candidates

converged, we took its value and stopped comput-
ing the other. We also limited both the number
Newton iterations and BiCG-STAB iterations per
Newton iteration to 40.

3 Experiments

3.1 Biased random walks

We developed an artificial task with bidirectional
sequence-level dependencies to explore the perfor-
mance of our model. Our task was to find the
point at which a random walk, in the spirit of
the Wiener Process (Durrett, 2010), changes from
a zero to nonzero mean. We trained a network
to predict when the walk is no longer unbiased.
We generated algorithmic data for this problem,
the specifics of which are as follows: First, we
chose an integer interval lengthN uniformly in the
range 1 to 40. Then, we chose a (continuous) time
t′ ∈ [0, N), and a direction v ∈ Rd. We produced
the input sequence xi ∈ Rd, setting x0 = 0 and
iteratively computing xi+1 = xi +N (0, 1). After
time t, a bias term of b · v was added at each time
step (b·v·(t′−t)) for the first time step greater than
t′. b is a global scalar parameter. The network was
fed in these elements, and asked to predict y = 0
for times t ≤ t′ and y = 1 for times t > t′.

For each architecture, ξ was simply the unmod-
ified input vectors, zero-padded to the embedding
dimension size. The output was a simple binary
logistic regression. We produced 50,000 random
training examples, 2500 random validation exam-
ples, and 5000 random test examples. The implicit
algorithm used a hidden dimension of 200, and
the b-LSTM had an embedding dimension rang-
ing from 100 to 1000. b-LSTM dimension of 300
was the point where the total number of parame-
ters were roughly equal.

The results are shown in Table 1. The b-LSTM
scores reported are the maximum over sweeps
from 100 to 1500 hidden dimension size. The INN
outperforms the best b-LSTM in the more chal-
lenging cases where the bias size b is small.

3.2 Part-of-speech tagging

We next applied our model to a real-world prob-
lem. Part-of-speech tagging fits naturally in the se-
quence labeling framework, and has the advantage

b INN Error b-LSTM Error

2.0 0.0226 0.0210
1.0 0.0518 0.0589
0.75 0.0782 0.0879
0.5 0.119 0.132
0.25 0.189 0.205

Table 1: Biased walk classification performance.

of a standard dataset that we can use to compare
our network with other techniques. To train a part-
of-speech tagger, we simply let L be a softmax
layer transforming each hidden unit output into a
part of speech tag. Our input encoding ξ, is a con-
catenation of three sets of features, adapted from
(Huang et al., 2015): first, word vectors for 39,000
case-insensitive vocabulary words; second, six ad-
ditional ‘word vector’ components indicating the
presence of the top-2000 most common prefixes
and suffixes of words, for affix lengths 2 to 4; and
finally, eight other binary features to indicate the
presence of numbers, symbols, punctuation, and
more rich case data.

We trained the Part of Speech (POS) tagger
on the Penn Treebank Wall Street Journal cor-
pus (Marcus et al., 1993), blocks 0-18, validated
on 19-21, and tested on 22-24, per convention.
Training was done using stochastic gradient de-
scent, with an initial learning rate of 0.5. The
learning rate was halved if validation perplexity
increased. Word vectors were of dimension 320,
prefix and suffix vectors were of dimension 20.
Hidden unit size was equal to feature input size,
so in this case, 448.

As shown in Table 2, the INN outperformed
baseline GRU, bidirectional GRU, LSTM, and b-
LSTM networks, all with 628-dimensional hidden
layers (1256 for the bidirectional architectures),
The INN also outperforms the Stanford Part-of-
Speech tagger (Toutanova et al., 2003) (model
wsj-0-18-bidirectional-distsim.tagger

from 10-31-2016). Note that performance gains
past approximately 97% are difficult due to er-
rors/inconsistencies in the dataset, ambiguity, and
complex linguistic constructions including depen-
dencies across sentence boundaries (Manning,
2011).
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Architecture WSJ Accuracy

GRU 96.43
LSTM 96.47
Bidirectional GRU 97.28
b-LSTM 97.25
INN 97.37
Stanford POS Tagger 97.33

Table 2: Tagging performance relative to recur-
rent architectures and Stanford POS Tagger.

4 Time Complexity

The implicit experiments in this paper took ap-
proximately 3-5 days to run on a single Tesla K40,
while the explicit experiments took approximately
1-3 hours. Running time of the solver is approx-
imately nn × nb × tb where nn is the number
of Newton iterations, nb is the number of BiCG-
STAB iterations, and tb is the time for a single
BiCG-STAB iteration. tb is proportional to the
number of non-zero entries in the matrix (Van der
Vorst, 1992), in our case n(2k2 + 1). New-
ton’s method has second order convergence (Isaac-
son and Keller, 1994), and while the specific
bound depends on the norm of (I −∇HF )−1 and
the norm of its derivatives, convergence is well-
behaved. For nb, however, we are not aware of
a bound. For symmetric matrices, the Conjugate
Gradient method is known to take O(

√
κ) itera-

tions (Shewchuk et al., 1994), where κ is the con-
dition number of the matrix. However, our matrix
is nonsymmetric, and we expect κ to vary from
problem to problem. Because of this, we empiri-
cally estimated the correlation between sequence
length and total time to compute a batch of 20 hid-
den layer states.

For the random walk experiment with b = 0.5,
we found the the average run time for a given se-
quence length to be approximately 0.17n1.8, with
r2 = 0.994. Note that the exponent would have
been larger had we not truncated the number of
BiCG-STAB iterations to 40, as the inner itera-
tion frequently hit this limit for larger n. How-
ever, the average number of Newton iterations did
not go above 10, indicating that exiting early from
the BiCG-STAB loop did not prevent the New-
ton solver from converging. Run times for the
other random walk experiments were very similar,
indicating run time does not depend on b; How-
ever, for the POS task runtime was 0.29n1.3, with

r2 = 0.910.

5 Conclusion and Future Work

We have introduced a novel, implicitly defined
neural network architecture based on the GRU
and shown that it outperforms a b-LSTM on an
artificial random walk task and slightly outper-
forms both the Stanford Parser and a baseline bidi-
rectional network on the Penn Treebank Part-of-
Speech tagging task.

In future work, we intend to consider im-
plicit variations of other architectures, such as
the LSTM, as well as additional, more challeng-
ing, and/or data-rich applications. We also plan
to explore ways to speed up the computation of
(I−∇HF )−1. Potential speedups include approx-
imating the hidden state values by reducing the
number of Newton and/or BiCG-STAB iterations,
using cached previous solutions as initial values,
and modifying the gradient update strategy to keep
the batch full at every Newton iteration.

6 Acknowledgements

This work would not be possible without the sup-
port and funding of the Air Force Research Labo-
ratory. We also acknowledge Nick Malyska, Eliz-
abeth Salesky, and Jonathan Taylor at MIT Lin-
coln Lab for interesting technical discussions re-
lated to this work.

Cleared for Public Release on 29 Jul 2016. Originator
reference number: RH-16-115722. Case Number: 88ABW-
2016-3809.

176



References
James Bergstra, Frédéric Bastien, Olivier Breuleux,

Pascal Lamblin, Razvan Pascanu, Olivier Delalleau,
Guillaume Desjardins, David Warde-Farley, Ian
Goodfellow, Arnaud Bergeron, et al. 2011. Theano:
Deep learning on gpus with python. In NIPS 2011,
BigLearning Workshop, Granada, Spain.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bah-
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