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Abstract

Transition-based dependency parsers of-
ten need sequences of local shift and re-
duce operations to produce certain attach-
ments. Correct individual decisions hence
require global information about the sen-
tence context and mistakes cause error
propagation. This paper proposes a novel
transition system, arc-swift, that enables
direct attachments between tokens farther
apart with a single transition. This al-
lows the parser to leverage lexical infor-
mation more directly in transition deci-
sions. Hence, arc-swift can achieve sig-
nificantly better performance with a very
small beam size. Our parsers reduce error
by 3.7–7.6% relative to those using exist-
ing transition systems on the Penn Tree-
bank dependency parsing task and English
Universal Dependencies.

1 Introduction

Dependency parsing is a longstanding natural lan-
guage processing task, with its outputs crucial to
various downstream tasks including relation ex-
traction (Schmitz et al., 2012; Angeli et al., 2015),
language modeling (Gubbins and Vlachos, 2013),
and natural logic inference (Bowman et al., 2016).

Attractive for their linear time complexity and
amenability to conventional classification meth-
ods, transition-based dependency parsers have
sparked much research interest recently. A
transition-based parser makes sequential predic-
tions of transitions between states under the re-
strictions of a transition system (Nivre, 2003).
Transition-based parsers have been shown to excel
at parsing shorter-range dependency structures, as
well as languages where non-projective parses are
less pervasive (McDonald and Nivre, 2007).
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Figure 1: An example of the state of a transition-
based dependency parser, and the transition se-
quences used by arc-eager and arc-swift to induce
the correct parse. The state shown is generated by
the first six transitions of both systems.

However, the transition systems employed in
state-of-the-art dependency parsers usually define
very local transitions. At each step, only one or
two words are affected, with very local attach-
ments made. As a result, distant attachments re-
quire long and not immediately obvious transi-
tion sequences (e.g., ate→chopsticks in Figure 1,
which requires two transitions). This is further ag-
gravated by the usually local lexical information
leveraged to make transition predictions (Chen
and Manning, 2014; Andor et al., 2016).

In this paper, we introduce a novel transition
system, arc-swift, which defines non-local transi-
tions that directly induce attachments of distance
up to n (n = the number of tokens in the sentence).
Such an approach is connected to graph-based
dependency parsing, in that it leverages pairwise
scores between tokens in making parsing deci-
sions (McDonald et al., 2005).

We make two main contributions in this paper.
Firstly, we introduce a novel transition system for
dependency parsing, which alleviates the difficulty
of distant attachments in previous systems by al-
lowing direct attachments anywhere in the stack.
Secondly, we compare parsers by the number of
mistakes they make in common linguistic con-
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arc-standard arc-hybrid
Shift (σ, i|β,A)⇒ (σ|i, β, A)
LArc (σ|i|j, β,A)⇒ (σ|j, β,A ∪ {(j → i)})
RArc (σ|i|j, β,A)⇒ (σ|i, β, A ∪ {(i→ j)})

Shift (σ, i|β,A)⇒ (σ|i, β,A)
LArc (σ|i, j|β,A)⇒ (σ, j|β,A ∪ {(j → i)})
RArc (σ|i|j, β,A)⇒ (σ|i, β, A ∪ {(i→ j)})

arc-eager arc-swift

Shift (σ, i|β,A)⇒ (σ|i, β, A)
LArc (σ|i, j|β,A)⇒ (σ, j|β,A ∪ {(j → i)})
RArc (σ|i, j|β,A)⇒ (σ|i|j, β,A ∪ {(i→ j)})
Reduce (σ|i, β, A)⇒ (σ, β,A)

Shift (σ, i|β,A)⇒ (σ|i, β, A)
LArc[k] (σ|ik| . . . |i1, j|β,A)

⇒ (σ, j|β,A ∪ {(j → ik)})
RArc[k] (σ|ik| . . . |i1, j|β,A)

⇒ (σ|ik|j, β,A ∪ {(ik → j)})

Figure 2: Transitions defined by different transition systems.

structions. We show that arc-swift parsers reduce
errors in attaching prepositional phrases and con-
junctions compared to parsers using existing tran-
sition systems.

2 Transition-based Dependency Parsing

Transition-based dependency parsing is performed
by predicting transitions between states (see Fig-
ure 1 for an example). Parser states are usu-
ally written as (σ|i, j|β,A), where σ|i denotes
the stack with token i on the top, j|β denotes the
buffer with token j at its leftmost, and A the set of
dependency arcs. Given a state, the goal of a de-
pendency parser is to predict a transition to a new
state that would lead to the correct parse. A tran-
sition system defines a set of transitions that are
sound and complete for parsers, that is, every tran-
sition sequence would derive a well-formed parse
tree, and every possible parse tree can also be de-
rived from some transition sequence.1

Arc-standard (Nivre, 2004) is one of the first
transition systems proposed for dependency pars-
ing. It defines three transitions: shift, left arc
(LArc), and right arc (RArc) (see Figure 2 for defi-
nitions, same for the following transition systems),
where all arc-inducing transitions operate on the
stack. This system builds the parse bottom-up, i.e.,
a constituent is only attached to its head after it has
received all of its dependents. A potential draw-
back is that during parsing, it is difficult to predict
if a constituent has consumed all of its right de-
pendents. Arc-eager (Nivre, 2003) remedies this
drawback by defining arc-inducing transitions that
operate between the stack and the buffer. As a re-
sult, a constituent no longer needs to be complete

1We only focus on projective parses for the scope of this
paper.

before it can be attached to its head to the left,
as a right arc doesn’t prevent the attached depen-
dent from taking further dependents of its own.2

Kuhlmann et al. (2011) propose a hybrid system
derived from a tabular parsing scheme, which they
have shown both arc-standard and arc-eager can
be derived from. Arc-hybrid combines LArc from
arc-eager and RArc from arc-standard to build
dependencies bottom-up.

3 Non-local Transitions with arc-swift

The traditional transition systems discussed in
Section 2 only allow very local transitions affect-
ing one or two words, which makes long-distance
dependencies difficult to predict. To illustrate the
limitation of local transitions, consider parsing the
following sentences:

I ate fish with ketchup.
I ate fish with chopsticks.

The two sentences have almost identical struc-
tures, with the notable difference that the prepo-
sitional phrase is complementing the direct object
in the first case, and the main verb in the second.

For arc-standard and arc-hybrid, the parser
would have to decide between Shift and RArc
when the parser state is as shown in Figure 3a,
where ? stands for either “ketchup” or “chop-
sticks”.3 Similarly, an arc-eager parser would deal
with the state shown in Figure 3b. Making the cor-
rect transition requires information about context
words “ate” and “fish”, as well as “?”.

2A side-effect of arc-eager is that there is sometimes spu-
rious ambiguity between Shift and Reduce transitions. For
the example in Figure 1, the first Reduce can be inserted be-
fore the third Shift without changing the correctness of the
resulting parse, i.e., both are feasible at that time.

3For this example, we assume that the sentence is being
parsed into Universal Dependencies.
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Figure 3: Parser states that present difficult tran-
sition decisions in traditional systems. In these
states, parsers would need to incorporate context
about “ate”, “fish”, and “?” to make the correct
local transition.

Parsers employing traditional transition systems
would usually incorporate more features about the
context in the transition decision, or employ beam
search during parsing (Chen and Manning, 2014;
Andor et al., 2016).

In contrast, inspired by graph-based parsers, we
propose arc-swift, which defines non-local tran-
sitions as shown in Figure 2. This allows direct
comparison of different attachment points, and
provides a direct solution to parsing the two exam-
ple sentences. When the arc-swift parser encoun-
ters a state identical to Figure 3b, it could directly
compare transitions RArc[1] and RArc[2] instead
of evaluating between local transitions. This re-
sults in a direct attachment much like that in a
graph-based parser, informed by lexical informa-
tion about affinity of the pairs of words.

Arc-swift also bears much resemblance to arc-
eager. In fact, an LArc[k] transition can be viewed
as k− 1 Reduce operations followed by one LArc
in arc-eager, and similarly for RArc[k]. Reduce is
no longer needed in arc-swift as it becomes part of
LArc[k] and RArc[k], removing the ambiguity in
derived transitions in arc-eager. arc-swift is also
equivalent to arc-eager in terms of soundness and
completeness.4 A caveat is that the worst-case
time complexity of arc-swift is O(n2) instead of
O(n), which existing transition-based parsers en-
joy. However, in practice the runtime is nearly

4This is easy to show because in arc-eager, all Reduce
transitions can be viewed as preparing for a later LArc or
RArc transition. We also note that similar to arc-eager
transitions, arc-swift transitions must also satisfy certain
pre-conditions. Specifically, an RArc[k] transition requires
that the top k − 1 elements in the stack are already at-
tached; LArc[k] additionally requires that the k-th element
is unattached, resulting in no more than one feasible LArc
candidate for any parser state.

linear, thanks to the usually small number of re-
ducible tokens in the stack.

4 Experiments

4.1 Data and Model

We use the Wall Street Journal portion of Penn
Treebank with standard parsing splits (PTB-
SD), along with Universal Dependencies v1.3
(Nivre et al., 2016) (EN-UD). PTB-SD is con-
verted to Stanford Dependencies (De Marneffe
and Manning, 2008) with CoreNLP 3.3.0 (Man-
ning et al., 2014) following previous work. We
report labelled and unlabelled attachment scores
(LAS/UAS), removing punctuation from all eval-
uations.

Our model is very similar to that of (Kiper-
wasser and Goldberg, 2016), where features are
extracted from tokens with bidirectional LSTMs,
and concatenated for classification. For the three
traditional transition systems, features of the top
3 tokens on the stack and the leftmost token in
the buffer are concatenated as classifier input. For
arc-swift, features of the head and dependent to-
kens for each arc-inducing transition are concate-
nated to compute scores for classification, and fea-
tures of the leftmost buffer token is used for Shift.
For other details we defer to Appendix A. The full
specification of the model can also be found in
our released code online at https://github.
com/qipeng/arc-swift.

4.2 Results

We use static oracles for all transition systems, and
for arc-eager we implement oracles that always
Shift/Reduce when ambiguity is present (arc-
eager-S/R). We evaluate our parsers with greedy
parsing (i.e., beam size 1). The results are shown
in Table 1.5 Note that K&G 2016 is trained with a
dynamic oracle (Goldberg and Nivre, 2012), An-
dor 2016 with a CRF-like loss, and both Andor
2016 and Weiss 2015 employed beam search (with
sizes 32 and 8, respectively).

For each pair of the systems we implemented,
we studied the statistical significance of their dif-
ference by performing a paired test with 10,000
bootstrap samples on PTB-SD. The resulting p-
values are analyzed with a 10-group Bonferroni-
Holm test, with results shown in Table 2. We note

5In the interest of space, we abbreviate all transition sys-
tems (TS) as follows in tables: asw for arc-swift, asd for arc-
standard, aeS/R for arc-eager-S/R, and ah for arc-hybrid.
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Model TS
PTB-SD EN-UD

UAS LAS UAS LAS

This work asd 94.0 91.7 85.6 81.5
This work aeS 94.0 91.8 85.4 81.4
This work aeR 93.8 91.7 85.2 81.2
This work ah 93.9 91.7 85.4 81.3
This work asw 94.3 92.2 86.1 82.2

Andor 2016 asd 94.6 92.8 84.8* 80.4*
K&G 2016 ah 93.9 91.9
Weiss 2015 asd 94.0 92.1
C&M 2014 asd 91.8 89.6

Table 1: Performance of parsers using different
transition systems on the Penn Treebank dataset.
*: Obtained from their published results online.6

aeS asd ah aeR

asw ***/*** ***/*** ***/*** ***/***
aeS -/- -/- */-
asd -/- */-
ah -/-

Table 2: Significance test for transition systems.
Each grid shows adjusted test result for UAS and
LAS, respectively, showing whether the system on
the row is significantly better than that on the col-
umn. “***” stands for p < 0.001, “**” p < 0.01,
“*” p < 0.05, and “-” p ≥ 0.05.

that with almost the same implementation, arc-
swift parsers significantly outperform those using
traditional transition systems. We also analyzed
the performance of parsers on attachments of dif-
ferent distances. As shown in Figure 4, arc-swift
is equally accurate as existing systems for short
dependencies, but is more robust for longer ones.

While arc-swift introduces direct long-distance
transitions, it also shortens the overall sequence
necessary to induce the same parse. A parser could
potentially benefit from both factors: direct attach-
ments could make an easier classification task, and
shorter sequences limit the effect of error propa-
gation. However, since the two effects are corre-
lated in a transition system, precise attribution of
the gain is out of the scope of this paper.

Computational efficiency. We study the com-
putational efficiency of the arc-swift parser by

6https://github.com/tensorflow/models/
blob/master/syntaxnet/g3doc/universal.md
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Figure 4: Parser attachment errors on PTB-SD
binned by the length of the gold dependency.

comparing it to an arc-eager parser. On the PTB-
SD development set, the average transition se-
quence length per sentence of arc-swift is 77.5%
of that of arc-eager. At each step of parsing,
arc-swift needs to evaluate only about 1.24 times
the number of transition candidates as arc-eager,
which results in very similar runtime. In contrast,
beam search with beam size 2 for arc-eager re-
quires evaluating 4 times the number of transition
candidates compared to greedy parsing, which re-
sults in a UAS 0.14% worse and LAS 0.22% worse
for arc-eager compared to greedily decoded arc-
swift.

4.3 Linguistic Analysis
We automatically extracted all labelled attachment
errors by error type (incorrect attachment or re-
lation), and categorized a few top parser errors
by hand into linguistic constructions. Results on
PTB-SD are shown in Table 3.7 We note that
the arc-swift parser improves accuracy on prepo-
sitional phrase (PP) and conjunction attachments,
while it remains comparable to other parsers on
other common errors. Analysis on EN-UD shows
a similar trend. As shown in the table, there are
still many parser errors unaccounted for in our
analysis. We leave this to future work.

7We notice that for some examples the parsers predicted
a ccomp (complement clause) attachment to verbs “says” and
“said”, where the CoreNLP output simply labelled the rela-
tion as dep (unspecified). For other examples the relation be-
tween the prepositions in “out of” is labelled as prep (preposi-
tion) instead of pcomp (prepositional complement). We sus-
pect this is due to the converter’s inability to handle certain
corner cases, but further study is warranted.
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asw aeS asd

PP attachment 545 569 571
Noun/Adjective confusion 221 230 221
Conjunction attachment 156 170 164
Adverbial attachment 123 122 143

Total Errors 3884 4100 4106

Table 3: Common parser errors on PTB-SD. The
top 4 common errors are categorized and shown
in this table. Errors not shown are in a long-tail
distribution and warrant analyses in future work.

5 Related Work

Previous work has also explored augmenting
transition systems to facilitate longer-range at-
tachments. Attardi (2006) extended the arc-
standard system for non-projective parsing, with
arc-inducing transitions that are very similar to
those in arc-swift. A notable difference is that
their transitions retain tokens between the head
and dependent. Fernández-González and Gómez-
Rodrı́guez (2012) augmented the arc-eager sys-
tem with transitions that operate on the buffer,
which shorten the transition sequence by reduc-
ing the number of Shift transitions needed. How-
ever, limited by the sparse feature-based classi-
fiers used, both of these parsers just mentioned
only allow direct attachments of distance up to 3
and 2, respectively. More recently, Sartorio et al.
(2013) extended arc-standard with transitions that
directly attach to left and right “spines” of the top
two nodes in the stack. While this work shares
very similar motivations as arc-swift, it requires
additional data structures to keep track of the left
and right spines of nodes. This transition system
also introduces spurious ambiguity where multiple
transition sequences could lead to the same cor-
rect parse, which necessitates easy-first training to
achieve a more noticeable improvement over arc-
standard. In contrast, arc-swift can be easily im-
plemented given the parser state alone, and does
not give rise to spurious ambiguity.

For a comprehensive study of transition sys-
tems for dependency parsing, we refer the reader
to (Bohnet et al., 2016), which proposed a gener-
alized framework that could derive all of the tra-
ditional transition systems we described by con-
figuring the size of the active token set and the
maximum arc length, among other control param-
eters. However, this framework does not cover

arc-swift in its original form, as the authors limit
each of their transitions to reduce at most one to-
ken from the active token set (the buffer). On the
other hand, the framework presented in (Gómez-
Rodrı́guez and Nivre, 2013) does not explicitly
make this constraint, and therefore generalizes to
arc-swift. However, we note that arc-swift still
falls out of the scope of existing discussions in that
work, by introducing multiple Reduces in a single
transition.

6 Conclusion

In this paper, we introduced arc-swift, a novel tran-
sition system for dependency parsing. We also
performed linguistic analyses on parser outputs
and showed arc-swift parsers reduce errors in con-
junction and adverbial attachments compared to
parsers using traditional transition systems.
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A Model and Training Details

Our model setup is similar to that of (Kiperwasser
and Goldberg, 2016) (See Figure 5). We employ
two blocks of bidirectional long short-term mem-
ory (BiLSTM) networks (Hochreiter and Schmid-
huber, 1997) that share very similar structures, one
for part-of-speech (POS) tagging, the other for
parsing. Both BiLSTMs have 400 hidden units
in each direction, and the output of both are con-
catenated and fed into a dense layer of rectified
linear units (ReLU) before 32-dimensional rep-
resentations are derived as classification features.
As the input to the tagger BiLSTM, we represent
words with 100-dimensional word embeddings,
initialized with GloVe vectors (Pennington et al.,
2014).8 The output distribution of the tagger clas-
sifier is used to compute a weighted sum of 32-
dimensional POS embeddings, which is then con-
catenated with the output of the tagger BiLSTM
(800-dimensional per token) as the input to the
parser BiLSTM. For the parser BiLSTM, we use
two separate sets of dense layers to derive a “head”
and a “dependent” representation for each token.
These representations are later merged according
to the parser state to make transition predictions.

For traditional transition systems, we follow
(Kiperwasser and Goldberg, 2016) by featurizing
the top 3 tokens on the stack and the leftmost token
in the buffer. To derive features for each token, we
take its head representation vhead and dependent
representation vdep, and perform the following bi-
affine combination

vfeat,i = [f(vhead, vdep)]i

= ReLU
(
v>headWivdep + b>i vhead

+ c>i vdep + di
) (1)

where Wi ∈ R32×32, bi, ci ∈ R32, and di is
a scalar for i = 1, . . . , 32. The resulting 32-
dimensional features are concatenated as the input

8We also kept the vectors of the top 400k words trained
on Wikipedia and English Gigaword for a broader coverage
of unseen words.
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Figure 5: Illustration of the model.

to a fixed-dimensional softmax classifier for tran-
sition decisions.

For arc-swift, we featurize for each arc-
inducing transition with the same composition
function in Equation (1) with vhead of the head to-
ken and vdep of the dependent token of the arc to
be induced. For Shift, we simply combine vhead
and vdep of the leftmost token in the buffer with
the biaffine combination, and obtain its score by
computing the inner-product of the feature and a
vector. At each step, the scores of all feasible tran-
sitions are normalized to a probability distribution
by a softmax function.

In all of our experiments, the parsers are trained
to maximize the log likelihood of the desired
transition sequence, along with the tagger being
trained to maximize the log likelihood of the cor-
rect POS tag for each token.

To train the parsers, we use the ADAM opti-
mizer (Kingma and Ba, 2014), with β2 = 0.9,
an initial learning rate of 0.001, and minibatches
of size 32 sentences. Parsers are trained for 10
passes through the dataset on PTB-SD. We also
find that annealing the learning rate by a factor of
0.5 for every pass after the 5th helped improve per-
formance. For EN-UD, we train for 30 passes, and
anneal the learning rate for every 3 passes after the
15th due to the smaller size of the dataset. For
all of the biaffine combination layers and dense
layers, we dropout their units with a small prob-
ability of 5%. Also during training time, we ran-
domly replace 10% of the input words by an arti-
ficial 〈UNK〉 token, which is then used to replace
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all unseen words in the development and test sets.
Finally, we repeat each experiment with 3 inde-
pendent random initializations, and use the aver-
age result for reporting and statistical significance
tests.

The code for the full specification of our models
and aforementioned training details are avail-
able at https://github.com/qipeng/
arc-swift.
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