Exploring Neural Text Simplification Models
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Abstract

We present the first attempt at using se-
quence to sequence neural networks to
model text simplification (TS). Unlike the
previously proposed automated TS sys-
tems, our neural text simplification (NTS)
systems are able to simultaneously per-
form lexical simplification and content re-
duction. An extensive human evaluation
of the output has shown that NTS systems
achieve almost perfect grammaticality and
meaning preservation of output sentences
and higher level of simplification than the
state-of-the-art automated TS systems.

1 Introduction

Neural sequence to sequence models have been
successfully used in many applications (Graves,
2012), from speech and signal processing to text
processing or dialogue systems (Serban et al.,
2015). Neural machine translation (Cho et al.,
2014; Bahdanau et al., 2014) is a particular type
of sequence to sequence model that recently at-
tracted a lot of attention from industry (Wu et al.,
2016) and academia, especially due to the capa-
bility to obtain state-of-the-art results for various
translation tasks (Bojar et al., 2016). Unlike classi-
cal statistical machine translation (SMT) systems
(Koehn, 2010), neural networks are being trained
end-to-end, without the need to have external de-
coders, language models or phrase tables. The ar-
chitectures are relatively simpler and more flexi-
ble, making possible the use of character models
(Luong and Manning, 2016) or even training mul-
tilingual systems in one go (Firat et al., 2016).
Automated text simplification (ATS) systems
are meant to transform original texts into differ-
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ent (simpler) variants which would be understood
by wider audiences and more successfully pro-
cessed by various NLP tools. In the last sev-
eral years, great attention has been given to ad-
dressing ATS as a monolingual machine transla-
tion problem translating from ‘original’ to ‘sim-
ple’ sentences. So far, attempts were made at stan-
dard phrase-based SMT (PBSMT) models (Spe-
cia, 2010; gtajner et al., 2015), PBSMT mod-
els with added phrasal deletion rules (Coster and
Kauchak, 2011) or reranking of the n-best out-
puts according to their dissimilarity to the output
(Wubben et al., 2012), tree-based translation mod-
els (Zhu et al., 2010; Paetzold and Specia, 2013),
and syntax-based MT with specially designed tun-
ing function (Xu et al., 2016). Recently, lexi-
cal simplification (L.S) was addressed by unsuper-
vised approaches leveraging word-embeddings,
with reported good success (Glavas and Stajner,
2015; Paetzold and Specia, 2016).

To the best of our knowledge, our work is the
first to address the applicability of neural sequence
to sequence models for ATS. We make use of
the recent advances in neural machine translation
(NMT) and adapt the existing architectures for our
specific task. We also perform an extensive human
evaluation to directly compare our systems with
the current state-of-the-art (supervised) MT-based
and unsupervised lexical simplification systems.

2 Neural Text Simplification (NTS)

We use the OpenNMT framework (Klein et al.,
2017) to train and build our architecture with
two LSTM layers (Hochreiter and Schmidhuber,
1997), hidden states of size 500 and 500 hidden
units, and a 0.3 dropout probability (Srivastava
et al., 2014). The vocabulary size is set to 50,000
and we train the model for 15 epochs with plain
SGD optimizer, and after epoch 8 we halve the
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learning rate. At the end of each epoch we save the
current state of the model and predict the perplex-
ity values of the models on the development set.
We employ early-stopping and select the model re-
sulted from the epoch with the best perplexity to
avoid over-fitting. The parameters are initialized
over uniform distribution with support [-0.1, 0.1].
Additionally, for the decoder we employ global at-
tention in combination with input feeding as de-
scribed by Luong et al. (2015). The architecture!
is depicted in Figure 1, with the input feeding ap-
proach represented only for the last hidden state of
the decoder.
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Figure 1: Architecture of the neural simplification
model with global attention and input feeding.

For the attention layer, we compute a context
vector ¢; by using the information provided from
the hidden states of the source sentence and by
computing a weighted average with the alignment
weights a;. The new hidden state is obtained us-
ing a concatenation of the previous hidden state
and the context vector:

Ht = tanh W[Ct; ht]

The global alignment weights a; are being com-
puted with a softmax function over the general
scoring method for attention:

exp h? Washs
S o exphl Waghg

Input feeding is a process that sends the pre-
vious hidden state obtained using the alignment

a(s) =

The architecture configurations, data, and the pre-
trained models are released in https://github.com/
senisioi/NeuralTextSimplification
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method, to the input at the next step, presumably
making the model keep track of anterior align-
ment decisions. Luong et al. (2015) showed this
approach can increase the evaluation scores for
neural machine translation, while in our case, for
monolingual data, we believe it can be helpful to
create better alignments. Our approach does not
involve the use of character-based models (Sen-
nrich et al., 2015; Luong and Manning, 2016) to
handle out of vocabulary words and entities. In-
stead, we make use of alignment probabilities be-
tween the predictions and the original sentences to
retrieve the original words.

2.1 Word2vec Embeddings

Furthermore, we are interested to explore whether
large scale pre-trained embeddings can improve
text simplification models. Kauchak (2013) indi-
cates that combining normal data with simplified
data can increase the performance of ATS systems.
Therefore, we construct a secondary model (NTS-
w2v) using a combination of pre-trained word2vec
from Google News corpus (Mikolov et al., 2013a)
of size 300 and locally trained embeddings of
size 200. To ensure good representations of low-
frequency words, we use word2vec (Rehiifek and
Sojka, 2010; Mikolov et al., 2013b) to train skip-
gram with hierarchical softmax and we set a win-
dow of 10 words.

Following Garten et al. (2015) who showed that
simple concatenation can improve the word rep-
resentations, we construct two different sets of
embeddings for the encoder and for the decoder.
The former are constructed using the word2vec
trained on the original English texts combined
with Google News and the later (decoder) embed-
dings are built from word2vec trained on the sim-
plified version of the training data combined with
Google News. To merge the local and global em-
beddings, we concatenate the representations for
each word in the vocabulary, thus obtaining a new
representation of size 500. If a word is missing in
the global embeddings, we replace it with a sam-
ple from a Gaussian distribution with mean 0 and
standard deviation of 0.9. The remaining param-
eters are left unchanged from the previous model
description.

2.2 Prediction Ranking

To ensure the best predictions and the best simpli-
fied sentences at each step, we use beam search
to sample multiple outputs from the two systems



described previously (NTS and NTS-w2v). Beam
search works by generating the first £ hypotheses
at each step ordered by the log-likelihood of the
target sentence given the input sentence. By de-
fault, we use a beam size of 5 and take the first hy-
pothesis, but we also observe that higher beam size
and lower-ranked hypotheses can generate good
simplification results. Therefore, we generate the
first two candidate hypotheses for each beam size
from 5 to 12. We then attempt to find the best
beam size and hypothesis based on two metrics:
the traditional MT-evaluation metric, BLEU (Pa-
pineni et al., 2002; Bird et al., 2009) with NIST
smoothing (Bird et al., 2009), and SARI (Xu et al.,
2016), a recent text-simplification metric.

2.3 Dataset

To train our models, we use the publicly avail-
able dataset provided by Hwang et al. (2015)
based on manual and automatic alignments be-
tween standard English Wikipedia and Simple En-
glish Wikipedia (EW-SEW). We discard the un-
categorized matches, and use only good matches
and partial matches which were above the 0.45
threshold (Hwang et al., 2015), totaling to 280K
aligned sentences (around 150K full matches and
130K partial matches). It is one of the largest
freely available resources for text simplification,
and unlike the previously used EW-SEW cor-
pus® (Kauchak, 2013), which only contains full
matches (167K pairs), the newer dataset also con-
tains partial matches. Therefore, it is not only
larger, but it also allows for learning sentence
shortening (dropping irrelevant parts) transforma-
tions (see Table 3, Appendix A).

original simplified

locations 158,394 127,349
persons 161,808 127,742
organizations 130,679 101,239
misc 95,168 71,138
vocabulary 187,137 144,132
tokens 7,400,499 5,634,834

Table 1: The number of tokens and entities in the
corpus.

We use the Stanford NER system (Finkel et al.,
2005) to get an approximate number of locations,
persons, organizations and miscellaneous entities

http://www.cs.pomona.edu/~dkauchak/
simplification/

in the corpus. A brief analysis of the vocabulary is
rendered in Table 1.

The dataset we use contains an abundant
amount of named entities and consequently a large
amount of low frequency words, but the majority
of entities are not part of the model’s 50,000 words
vocabulary due to their small frequency. These
words are replaced with "UNK’ symbols during
training. At prediction time, we replace the un-
known words with the highest probability score
from the attention layer. We believe it is impor-
tant to ensure that the models learn good word
representations, either during the model training
or through word2vec, in order to accurately create
alignments between source and target sentences.

Given that in TS there is not only one best
simplification, and that the quality of simplifi-
cations in Simple English Wikipedia has been
disputed before (Amancio and Specia, 2014; Xu
et al., 2015), for tuning and testing we use the
dataset previously released by Xu et al. (2016),
which contains 2000 sentences for tuning and 359
for testing, each with eight simplification variants
obtained by eight Amazon Mechanical Turkers.’
The tune subset is also used as reference corpus
in combination with BLEU and SARI to select
the best beam size and hypothesis for prediction
reranking.

3 Evaluation

For the first 70 original sentences of the Xu et al.’s
(2016) test set* we perform three types of human
evaluation to assess the output of our best sys-
tems and three ATS systems of different architec-
tures: (1) the PBSMT system with reranking of
n-best outputs (Wubben et al., 2012), which rep-
resent the best PBSMT approach to ATS, trained
and tuned over the same datasets as our systems;
(2) the state-of-the-art SBMT system (Xu et al.,
2016) with modified tuning function (using SARI)
and using PPDB paraphrase database (Ganitke-
vitch et al., 2013);> and (3) one of the state-of-the-
art unsupervised lexical simplification (LS) sys-
tems that leverages word-embeddings (Glavas and

?None of the 359 test sentences was present in the datasets
we used for training and tuning.
*nttps://github.com/cocoxu/

simplification/
SFor the first two systems, we use publicly
available  output at: https://github.com/

cocoxu/simplification/tree/master/data/
systemoutputs



Stajner, 2015).°

We evaluate the output of all systems using
three types of human evaluation.

Correctness and Number of Changes. First,
we count the total number of changes made by
each system (7otal), counting the change of a
whole phrase (e.g. “become defunct” — “was
dissolved”) as one change. Those changes that
preserve the original meaning and grammatical-
ity of the sentence (assessed by two native English
speakers) and, at the same time, make the sentence
easier to understand (assessed by two non-native
fluent English speakers) are marked as Correct. In
the case of content reduction, we instructed the
annotators to count the deletion of each array of
consecutive words as one change and consider the
meaning unchanged if the main information of the
sentence was retained and unchanged. The sen-
tences for which the two annotators did not agree
were given to a third annotator to obtain the ma-
jority vote.

Grammaticality and Meaning Preservation.
Second, three native English speakers rate the
grammaticality (G) and meaning preservation (M)
of each (whole) sentence with at least one change
on a 1-5 Likert scale (1 — very bad; 5 — very good).
The obtained inter-annotator agreement (quadratic
Cohens kappa) was 0.78 for G and 0.63 for M.

Simplicity of sentences. Third, the three non-
native fluent English speakers were shown origi-
nal (reference) sentences and target (output) sen-
tences, one pair at the time, and asked whether the
target sentence is: +2 — much simpler; +1 — some-
what simpler; 0 — equally difficult; -1 — somewhat
more difficult; -2 — much more difficult, than the
reference sentence. The obtained inter-annotator
agreement (quadratic Cohens kappa) was 0.66.

While the correctness of changes takes into ac-
count the influence of each individual change on
grammaticality, meaning and simplicity of a sen-
tence, the Scores (G and M) and Rank (S) take into
account the mutual influence of all changes within
a sentence.

4 Results and Discussion

The results of the human evaluation (Table 2) re-
vealed that all NTS models achieve higher per-
centage of correct changes and more simplified
output than any of the state-of-the-art ATS systems

SFor the LightL$ system (Glava§ and Stajner, 2015) we
use the output of the original system provided by the authors.
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with different architectures (PBSMT-R, SBMT,
and LightL.S). We also notice that the best models
according to BLEU are obtained with hypothesis
1 and the maximum beam size for both models,
while the SARI re-ranker prefers hypothesis 2 and
beam size 5 for the first NTS and the maximum
beam size for the custom word embeddings model.

The NTS with custom word2vec embeddings
ranked with the text simplification specific met-
ric (SARI) obtained the highest total number of
changes among the neural systems, one of the
highest percentage of correct changes, the second
highest simplicity score, and solid grammaticality
and meaning preservation scores. An example of
the output of different systems is presented in Ta-
ble 4 (Appendix A).

The use of different metrics for ranking the NTS
predictions optimizes the output towards different
evaluation objectives: SARI leads to the highest
number of total changes, BLEU to the highest per-
centage of correct changes, and the default beam
scores to the best grammaticality (G) and meaning
preservation (M). In addition, custom composed
global and local word embeddings in combination
with SARI metric improve the default translation
system, given the joint scores for each evaluation
criterion.

Here is important to note that for ATS sys-
tems, the precision of the system (correctness of
changes, grammaticality, meaning preservation,
and simplicity of the output) is more important
than the recall (the total number of changes made).
The low recall would just leave the sentences sim-
ilar to their originals thus not improving much the
understanding or reading speed of the target users,
or not improving much the NLP systems in which
they are used as a pre-processing step. A low pre-
cision, on the other hand, would make texts even
more difficult to read and understand, and would
worsen the performances of the NLP systems in
which ATS is used as a pre-processing step.

5 Conclusions

We presented a first attempt at modelling sentence
simplification with a neural sequence to sequence
model. Our extensive human evaluation showed
that our NTS systems, if the output is ranked with
the right metric, can significantly’ outperform
the best phrase-based and syntax-based MT ap-
proaches, and unsupervised lexical ATS approach,

"Wilcoxon’s signed rank test, p < 0.001.



Changes Scores | Rank
Approach Total Correct| G M g SARI BLEU
NTS default (beam 5, hypothesis 1) 36 72.2% |4.92 4.31|+0.46|30.65 84.51
NTS SARI (beam 5, hypothesis 2) 72 51.6% |4.19 3.62|+0.38|37.25 80.69
NTS BLEU (beam 12, hypothesis 1) 44 T73.7% |4.77 4.15|+0.92|30.77 84.70
NTS-w2v default (beam 5, hypothesis 1) 31 54.8% |4.79 4.17|+0.21|31.11 87.50
NTS-w2v SARI (beam 12, hypothesis 2) 110 68.1% |4.53 3.83|+40.63|36.10 79.38
NTS-w2v BLEU (beam 12, hypothesis 1) 61 76.9% |4.67 4.00|+0.40|30.67 85.03
PBSMT-R (Wubben et al., 2012) 171 41.0% [3.10 2.71|—0.55|34.07 67.79
SBMT (SARI+PPDB) (Xu et al., 2016) 143 34.3% |4.28 3.57|40.03|38.59 73.62
LightLS (Unsupervised) (Glavas and Stajner, 2015) | 132 26.6% [4.47 2.67|—0.01|34.96 83.54

Table 2: Human evaluation results (the highest scores by each evaluation criterion are shown in bold).

by grammaticality, meaning preservation and sim-
plicity of the output sentences, the percentage of
correct transformations, while at the same time
achieving more than 1.5 changes per sentence, on
average. Furthermore, we discovered that NTS
systems are capable of correctly performing sig-
nificant content reduction, thus being the only TS
models proposed so far which can jointly perform
lexical simplification and content reduction.
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A Appendix - Data Sample and System Output

Match | Transformation Sentence pair
Full syntactic simplification; reorder- | “During the 13th century, gingerbread was brought to Swe-
ing of sentence constituents den by German immigrants.” and “German immigrants
brought it to Sweden during the 13th century.”
Full lexical paraphrasing “During the 13th century, gingerbread was brought to Swe-

den by German immigrants.” and “German immigrants
brought it to Sweden during the 13th century.”

Partial | strong paraphrasing “Gingerbread foods vary, ranging from a soft, moist loaf
cake to something close to a ginger biscuit.” and “Ginger-
bread is a word which describes different sweet food prod-
ucts from soft cakes to a ginger biscuit.”

Partial | adding explanations “Humidity is the amount of water vapor in the air.” and
“Humidity (adjective: humid) refers to water vapor in the
air, but not to liquid droplets in fog, clouds, or rain.”
Partial | sentence compression; dropping | “Falaj irrigation is an ancient system dating back thousands
irrelevant information of years and is used widely in Oman, the UAE, China, Iran
and other countries.” and “The ancient falaj system of irri-
gation is still in use in some areas.”

Table 3: Examples of full and partial matches from the EW—SEW dataset (Hwang et al., 2015).

System Output

NTS-w2v default Perry Saturn (with terri) defeated Eddie Guerrero (with
chyna) to win the WWF European Championship (8:10);
Saturn pinned Guerrero after a diving elbow drop.

NTS-w2v SARI Perry Saturn pinned Guerrero to win the WWF Euro-
pean Championship.

NTS-w2v BLEU Perry Saturn pinned Guerrero after a diving drop drop.

NTS default He (with terri) defeated Eddie Guerrero (with chyna) to

win the WWF European Championship (8:10); Saturn
pinned Guerrero after a diving elbow drop.

NTS BLEU/SARI He defeated Eddie Guerrero (with Chyna) to win the WWF
European Championship (8:10); Saturn pinned Guerrero
after a diving elbow drop.

LightLS (Glavas and Stajner, 2015) | Perry Saturn (with terri) defeated Eddie Guerrero (with
chyna) to win the WWF European Championship (8:10);
Saturn pinned Guerrero after a swimming shoulder fall.
SBMT (Xu et al., 2016) Perry Saturn (with terri) beat Eddie Guerrero (with chyna)
to win the WWF European League (8:10); Saturn pinned
Guerrero after a diving elbow drop.

PBSMT-R (Wubben et al., 2012) Perry Saturn with terri and Eddie Guerrero , chyna , to win
the European Championship then-wwf 8:10); he pinned
Guerrero after a diving elbow drop.

Original Perry Saturn (with terri) defeated Eddie Guerrero (with
chyna) to win the WWF European Championship (8:10);
Saturn pinned Guerrero after a diving elbow drop.

Table 4: Output examples, differences to the original sentence are shown in bold.
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