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Abstract

We present a new framework for evaluat-
ing extractive summarizers, which is based
on a principled representation as optimiza-
tion problem. We prove that every ex-
tractive summarizer can be decomposed
into an objective function and an opti-
mization technique. We perform a com-
parative analysis and evaluation of sev-
eral objective functions embedded in well-
known summarizers regarding their corre-
lation with human judgments. Our com-
parison of these correlations across two
datasets yields surprising insights into the
role and performance of objective func-
tions in the different summarizers.

1 Introduction

The task of extractive summarization (ES) can nat-
urally be cast as a discrete optimization problem
where the text source is considered as a set of sen-
tences and the summary is created by selecting an
optimal subset of the sentences under a length con-
straint (McDonald, 2007; Lin and Bilmes, 2011).

In this work, we go one step further and mathe-
matically prove that ES is equivalent to the prob-
lem of choosing (i) an objective function 6 for
scoring system summaries, and (ii) an optimizer
0. We use (6, O) to denote the resulting decompo-
sition of any extractive summarizer. Our proposed
decomposition enables a principled analysis and
evaluation of existing summarizers, and addresses
a major issue in the current evaluation of ES.

This issue concerns the traditional “intrinsic”
evaluation comparing system summaries against
human reference summaries. This kind of evalu-
ation is actually an end-to-end evaluation of sum-
marization systems which is performed after 6 has
been optimized by O. This is highly problematic
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from an evaluation point of view, because first,
0 is typically not optimized exactly, and second,
there might be side-effects caused by the particu-
lar optimization technique O, e.g., a sentence ex-
tracted to maximize 6 might be suitable because of
other properties not included in 6. Moreover, the
commonly used evaluation metric ROUGE yields
a noisy surrogate evaluation (despite its good cor-
relation with human judgments) compared to the
much more meaningful evaluation based on hu-
man judgments. As a result, the current end-to-
end evaluation does not provide any insights into
the task of automatic summarization.

The (0, O) decomposition we propose addresses
this issue: it enables a well-defined and principled
evaluation of extractive summarizers on the level
of their components 6 and O. In this work, we fo-
cus on the analysis and evaluation of 6, because
f is a model of the quality indicators of a sum-
mary, and thus crucial in order to understand the
properties of “good” summaries. Specifically, we
compare 6 functions of different summarizers by
measuring the correlation of their 6 functions with
human judgments.

Our goal is to provide an evaluation framework
which the research community could build upon
in future research to identify the best possible 6
and use it in optimization-based systems. We be-
lieve that the identification of such a @ is the cen-
tral question of summarization, because this op-
timal 6 would represent an optimal definition of
summary quality both from an algorithmic point
of view and from the human perspective.

In summary, our contribution is twofold: (i) We
present a novel and principled evaluation frame-
work for ES which allows evaluating the objec-
tive function and the optimization technique sep-
arately and independently. (ii) We compare well-
known summarization systems regarding their im-
plicit choices of § by measuring the correlation
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of their # functions with human judgments on
two datasets from the Text Analysis Conference
(TAC). Our comparative evaluation yields surpris-
ing results and shows that extractive summariza-
tion is not solved yet.

The code used in our experiments, includ-
ing a general evaluation tool is available at
github.com/UKPLab/acl2017-theta_
evaluation_summarization.

2 Evaluation Framework

2.1

Let D = {s;} be a document collection consid-
ered as a set of sentences. A summary S is then a
subset of D, or we can say that .S is an element of
P (D), the power set of D.

Objective function We define an objective func-
tion to be a function that takes a summary of the
document collection D and outputs a score:

(6, O) decomposition

0 : P(D)

S

— R

— 0p(S) M

Optimizer Then the task of ES is to select the
set of sentences S* with maximal 6(S*) under a
length constraint:

S* = argmax 6(S)

S
len(S) = Zlen(s) <c

sES

2)

We use O to denote the technique which solves
this optimization problem. O is an operator which
takes an objective function € from the set of all
objective functions © and a document collection
D from the set of all document collections D, and
outputs a summary S*:

O OxD — S

6,D) — S ©)

Decomposition Theorem Now we show that the
problem of ES is equivalent to the problem of
choosing a decomposition (6, O).

We formalize an extractive summarizer o as a
set function which takes a document collection
D € D and outputs a summary Sp, € P(D).
With this formalism, it is clear that every (¢, O) tu-
ple forms a summarizer because O(6, -) produces
a summary from a document collection.

But the other direction is also true: for every ex-
tractive summarizer there exists at least one tuple
(6, O) which perfectly describes the summarizer:
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Theorem 1 Vo, 3(6, O) such that:
VD € D,o(D) =0(0,D)

This theorem is quite intuitive, especially since
it is common to use a similar decomposition in
optimization-based summarization systems. In the
next section we illustrate the theorem by way of
several examples, and provide a rigorous proof of
the existence in the supplemental material.

2.2 Examples of §

We analyze a range of different summarizers re-
garding their (mostly implicit) 6.

ICSI (Gillick and Favre, 2009) is a global linear
optimization that extracts a summary by solving a
maximum coverage problem considering the most
frequent bigrams in the source documents. ICSI
has been among the best systems in a classical
ROUGE evaluation (Hong et al., 2014). For ICSI,
the identification of @ is trivial because it was for-
mulated as an optimization task. If ¢; is the -th
bigram selected in the summary and w; its weight
computed from D, then:

O1cs1(S) = Z Ci * W4
cGES

LexRank (Erkan and Radev, 2004) is a well-
known graph-based approach. A similarity graph
G(V, E) is constructed where V' is the set of sen-
tences and an edge e;; is drawn between sentences
v; and v; if and only if the cosine similarity be-
tween them is above a given threshold. Sentences
are scored according to their PageRank score in G.
We observe that 07, rank 1S given by:

eLexRank(S> = Z PRG(S)

seS

4

&)

where PR is the PageRank score of sentence s.
KL-Greedy (Haghighi and Vanderwende, 2009)
minimizes the Kullback Leibler (KL) divergence
between the word distributions in the summary
and D (i.e 05 = —KL). Recently, Peyrard and
Eckle-Kohler (2016) optimized KL and Jensen
Shannon (JS) divergence with a genetic algorithm.
In this work, we use KL and JS for both unigram
and bigram distributions.

LSA (Steinberger and Jezek, 2004) is an approach
involving a dimensionality reduction of the term-
document matrix via Singular Value Decomposi-
tion (SVD). The sentences extracted should cover
the most important latent topics:

Orsa= Y A

tesS

(6)



where ¢ is a latent topic identified by SVD on the
term-document matrix and \; the associated sin-
gular value.

Edmundson (Edmundson, 1969) is an older
heuristic method which scores sentences accord-
ing to cue-phrases, overlap with title, term fre-
quency and sentence position. 6 ggmundson 1S SiM-
ply a weighted sum of these heuristics.

TF+IDF (Luhn, 1958) scores sentences with the
TF*IDF of their terms. The best sentences are then
greedily extracted. We use both the unigram and
bigram versions in our experiments.

3 Experiments

Now we compare the summarizers analyzed above
by measuring the correlation of their # functions
with human judgments.

Datasets We use two multi-document summa-
rization datasets from the Text Analysis Confer-
ence (TAC) shared task: TAC-2008 and TAC-
2009." TAC-2008 and TAC-2009 contain 48 and
44 topics, respectively. Each topic consists of 10
news articles to be summarized in a maximum of
100 words. We use only the so-called initial sum-
maries (A summaries), but not the update part.

For each topic, there are 4 human reference
summaries along with a manually created Pyramid
set. In both editions, all system summaries and
the 4 reference summaries were manually evalu-
ated by NIST assessors for readability, content se-
lection (with Pyramid) and overall responsiveness.
At the time of the shared tasks, 57 systems were
submitted to TAC-2008 and 55 to TAC-2009. For
our experiments, we use the Pyramid and the re-
sponsiveness annotations.

System Comparison For each 6, we compute
the scores of all system and all manual summaries
for any given topic. These scores are compared
with the human scores. We include the manual
summaries in our computation because this yields
a more diverse set of summaries with a wider
range of scores. Since an ideal summarizer would
create summaries as well as humans, an ideal 0
would also be able to correctly score human sum-
maries with high scores.

For comparison, we also report the correlation
between pyramid and responsiveness.

Correlations are measured with 3 metrics: Pear-

'nttp://tac.nist.gov/2009/
Summarization/, http://tac.nist.gov/2008/
Summarization/
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son’s 1, Spearman’s p and Normalized Discounted
Cumulative Gain (Ndcg). Pearson’s r is a value
correlation metric which depicts linear relation-
ships between the scores produced by 6 and the
human judgments. Spearman’s p is a rank correla-
tion metric which compares the ordering of sys-
tems induced by 6 and the ordering of systems
induced by human judgments. Ndcg is a metric
that compares ranked lists and puts more emphasis
on the top elements by logarithmic decay weight-
ing. Intuitively, it captures how well 6 can rec-
ognize the best summaries. The optimization sce-
nario benefits from high Ndcg scores because only
summaries with high 6 scores are extracted.

Previous work on correlation analysis averaged
scores over topics for each system and then com-
puted the correlation between averaged scores
(Louis and Nenkova, 2013; Nenkova et al., 2007).
An alternative and more natural option which we
use here is to compute the correlation for each
topic and average these correlations over topics
(CORRELATION-AVERAGE). Since we want to
estimate how well # functions measure the quality
of summaries, we find the summary level averag-
ing more meaningful.

Analysis The results of our correlation analysis
are presented in Table 1.

In our (6,0) formulation, the end-to-end ap-
proach maps a set of documents to exactly one
summary selected by the system. We call the (clas-
sical and well known) evaluation of this single
summary end-to-end evaluation because it mea-
sures the end product of the system. This is in con-
trast to our proposed evaluation of the assumption
made by individual summarizers shown in Table 1.
A system summary was extracted by a given sys-
tem because it was high scoring using its 6, but we
ask the question whether optimizing this § made
sense in the first place.

We first observe that scores are relatively low.
Summarization is not a solved problem and the
systems we investigated can not identify correctly
what makes a good summary. This is in contrast
to the picture in the classical end-to-end evaluation
with ROUGE where state-of-the-art systems score
relatively high. Some Ndcg scores are higher (for
TAC-2008) which explains why these systems can
extract relatively good summaries in the end-to-
end evaluation. In this classical evaluation, only
the single best summary is evaluated, which means
that a system does not need to be able to rank all



TAC-2008 TAC-2009
responsiveness Pyramid responsiveness Pyramid

0 r P Ndcg r p Ndcg r P Ndcg r p Ndcg
TF«IDF-1 | .1777 2257 5031 | .1850 .2386 .3575 | .1996 .2282 3826 | .2514 .2890 .2280
TF«IDF-2 | .0489 .1548 .5952 | .0507 .1833 4811 | .0061 .1736 .4984 | .1073 .2383 .3844
ICSI .1069 1885 .6153 | .1147 2294 5228 | .1050 .1821 .5707 | .1379 .2466 .5016
JS-1 2504 2762 4411 | 2798 3205 2804 | 2021 2282 3896 | .2616 .3042 2272
JS-2 .0383 1698 .5873 | .0410 .2038 .4804 | .0284 .1475 .5646 | .0021 .2084 4734
LexRank | .1995 .1821 .6618 | .2498 .2168 .5935 | .2831 .2585 .6028 | .3714 3421 5764
LSA .0437 1137  .6772 | .1144 1131 .5997 | .2965 2127 .6641 | 3677 .2935 .6467
Edmunds. | 2223 .2686 .6372 | .2665 .3164 .5521 | .2598 .2604 5852 | .3647 .3720 .5594
KL-1 1796 2249 4899 | 2016 .2690 3439 | .1827 2275 4047 | 2423 2981 .2466
KL-2 .0023  .1661 .6165 | .0023 .1928 5135 | .0437 .1435 .6171 | .0211 .2060 .5462
Pyramid | .7031 .6606 .8528 | — — — | 7174 6414 8520 | — — —

Table 1: Correlation of # functions with human judgments across various systems.

possible summaries correctly.

We see that systems with high end-to-end
ROUGE scores (according to Hong et al. (2014))
do not necessarily have a good model of summary
quality. Indeed, the best performing 6 functions
are not part of the systems performing best with
ROUGE. For example, ICSI is the best system ac-
cording to ROUGE, but it is not clear that it has
the best model of summary quality. In TAC-2009,
LexRank, LSA and the heuristic Edmundson have
better correlations with human judgments. The
difference with end-to-end evaluation might stem
from the fact that ICSI solves the optimization
problem exactly, while LexRank and Edmundson
use greedy optimizers. There might also be some
side-effects from which ICSI profits: extracting
sentences to improve 6 might lead to accidentally
selecting suitable sentences, because 6 can merely
correlate well with properties of good summaries,
while not modeling these properties itself.

It is worth noting that systems perform differ-
ently on TAC2009 and TAC2008. There are sev-
eral differences between TAC2008 and TAC2009
like redundancy level or guidelines for annota-
tions; for example, responsiveness is scored out
of 5 in 2008 and out of 10 in 2009. The LSA sum-
marizer ranks among the best systems in TAC2009
with pearson’s r but is closer to the worst sys-
tems in TAC2008. While this is difficult to ex-
plain we hypothesize that the model of summary
quality from LSA is sensitive to the slight vari-
ations and therefore not robust. In general, any
system which claims to have a better 6 than previ-
ous works should indeed report results on several
datasets to ensure robustness and generality.

Interestingly, we observe that the correlation be-
tween Pyramid and responsiveness is better than in
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any system, but still not particularly high. Respon-
siveness is an overall annotation while Pyramid is
a manual measure of content only. These results
confirm the intuition that humans take into account
much more aspects when evaluating summaries.

4 Related Work and Discussion

While correlation analyses on human judgment
data have been performed in the context of validat-
ing automatic summary evaluation metrics (Louis
and Nenkova, 2013; Nenkova et al., 2007; Lin,
2004), there is no prior work which uses these data
for a principled comparison of summarizers.

Much previous work focused on efficient opti-
mizers O, such as ILP, which impose constraints
on the 0 function. Linear (Gillick and Favre, 2009)
and submodular (Lin and Bilmes, 2011) 6 func-
tions are widespread in the summarization com-
munity because they can be optimized efficiently
and effectively via ILP (Schrijver, 1986) and the
greedy algorithm for submodularity (Fujishige,
2005). A greedy approach is often used when 6
does not have convenient properties that can be
leveraged by a classical optimizer (Haghighi and
Vanderwende, 2009).

Such interdependencies of O and 6 limit the ex-
pressiveness of §. However, realistic € functions
are unlikely to be linear or submodular, and in
the well-studied field of optimization there exist
arange of different techniques developed to tackle
difficult combinatorial problems (Schrijver, 2003;
Blum and Roli, 2003).

A recent example of such a technique adapted to
extractive summarization are meta-heuristics used
to optimize non-linear, non-submodular objec-
tive functions (Peyrard and Eckle-Kohler, 2016).



Other methods like Markov Chain Monte Carlo
(Metropolis et al., 1953) or Monte-Carlo Tree
Search (Suttner and Ertel, 1991; Silver et al.,
2016) could also be adapted to summarization and
thus become realistic choices for O. General pur-
pose optimization techniques are especially ap-
pealing, because they offer a decoupling of # and
O and allow investigating complex 6 functions
without making any assumption on their mathe-
matical properties. In particular, this supports fu-
ture work on identifying an “optimal” § as a model
of relevant quality aspects of a summary.

5 Conclusion

We presented a novel evaluation framework for ES
which is based on the proof that ES is equivalent
to the problem of choosing an objective function
0 and an optimizer O. This principled and well-
defined framework allows evaluating # and O of
any extractive summarizer — separately and inde-
pendently. We believe that our framework can
serve as a basis for future work on identifying an
“optimal” 6 function, which would provide an an-
swer to the central question of what are the prop-
erties of a “good” summary.
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