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Abstract

This paper addresses the task of AMR-to-
text generation by leveraging synchronous
node replacement grammar. During train-
ing, graph-to-string rules are learned us-
ing a heuristic extraction algorithm. At
test time, a graph transducer is applied to
collapse input AMRs and generate output
sentences. Evaluated on a standard bench-
mark, our method gives the state-of-the-art
result.

1 Introduction

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a semantic formalism en-
coding the meaning of a sentence as a rooted,
directed graph. AMR uses a graph to represent
meaning, where nodes (such as “boy”, “want-01”)
represent concepts, and edges (such as “ARG0”,
“ARG1”) represent relations between concepts.
Encoding many semantic phenomena into a graph
structure, AMR is useful for NLP tasks such as
machine translation (Jones et al., 2012; Tamchyna
et al., 2015), question answering (Mitra and Baral,
2015), summarization (Takase et al., 2016) and
event detection (Li et al., 2015).

AMR-to-text generation is challenging as func-
tion words and syntactic structures are abstracted
away, making an AMR graph correspond to mul-
tiple realizations. Despite much literature so far
on text-to-AMR parsing (Flanigan et al., 2014;
Wang et al., 2015; Peng et al., 2015; Vanderwende
et al., 2015; Pust et al., 2015; Artzi et al., 2015;
Groschwitz et al., 2015; Goodman et al., 2016;
Zhou et al., 2016; Peng et al., 2017), there has been
little work on AMR-to-text generation (Flanigan
et al., 2016; Song et al., 2016; Pourdamghani et al.,
2016).
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Figure 1: Graph-to-string derivation.

Flanigan et al. (2016) transform a given AMR
graph into a spanning tree, before translating it
to a sentence using a tree-to-string transducer.
Their method leverages existing machine transla-
tion techniques, capturing hierarchical correspon-
dences between the spanning tree and the surface
string. However, it suffers from error propagation
since the output is constrained given a spanning
tree due to the projective correspondence between
them. Information loss in the graph-to-tree trans-
formation step cannot be recovered. Song et al.
(2016) directly generate sentences using graph-
fragment-to-string rules. They cast the task of
finding a sequence of disjoint rules to transduce
an AMR graph into a sentence as a traveling sales-
man problem, using local features and a language
model to rank candidate sentences. However, their
method does not learn hierarchical structural cor-
respondences between AMR graphs and strings.

We propose to leverage the advantages of hier-
archical rules without suffering from graph-to-tree
errors by directly learning graph-to-string rules.
As shown in Figure 1, we learn a synchronous
node replacement grammar (NRG) from a cor-
pus of aligned AMR and sentence pairs. At test
time, we apply a graph transducer to collapse input
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Figure 2: Example deduction procedure

ID. F E
(a) (b / boy) the boy

(b) (w / want-01
#X# wants:ARG0 (X / #X#))

(c)
(X / #X#

#X# to go:ARG1 (g / go-01
:ARG0 X))

(d) (w / want-01
the boy wants:ARG0 (b / boy))

Table 1: Example rule set

AMR graphs and generate output strings accord-
ing to the learned grammar. Our system makes
use of a log-linear model with real-valued fea-
tures, tuned using MERT (Och, 2003), and beam
search decoding. It gives a BLEU score of 25.62
on LDC2015E86, which is the state-of-the-art on
this dataset.

2 Synchronous Node Replacement
Grammar

2.1 Grammar Definition
A synchronous node replacement grammar (NRG)
is a rewriting formalism: G = 〈N,Σ,∆, P, S〉,
where N is a finite set of nonterminals, Σ and ∆
are finite sets of terminal symbols for the source
and target sides, respectively. S ∈ N is the start
symbol, and P is a finite set of productions. Each
instance of P takes the form Xi → (〈F,E〉,∼),
where Xi ∈ N is a nonterminal node, F is a
rooted, connected AMR fragment with edge labels
over Σ and node labels over N ∪ Σ, E is a corre-
sponding target string over N ∪∆ and ∼ denotes
the alignment of nonterminal symbols between F
and E. A classic NRG (Engelfriet and Rozenberg,
1997, Chapter 1) also defines C, which is an em-
bedding mechanism defining how F is connected
to the rest of the graph when replacing Xi with
F on the graph. Here we omit defining C and
allow arbitrary connections.1 Following Chiang

1This may over generate, but does not affect our case, as
in our bottom-up decoding procedure (section 3) when F is
replaced with Xi, nodes previously connected to F are re-
connected to Xi

Data: training corpus C
Result: rule instances R

1 R← [];
2 for (Sent,AMR,∼) in C do
3 Rcur ← FRAGMENTEXTRACT(Sent,AMR,∼);
4 for ri in Rcur do
5 R.APPEND(ri) ;
6 for rj in Rcur/{ri} do
7 if ri.CONTAINS(rj) then
8 rij ← ri.COLLAPSE(rj);
9 R.APPEND(rij) ;

10 end
11 end
12 end
13 end

Algorithm 1: Rule extraction

(2005), we use only one nonterminal X in addi-
tion to S, and use subscripts to distinguish differ-
ent non-terminal instances.

Figure 2 shows an example derivation process
for the sentence “the boy wants to go” given the
rule set in Table 1. Given the start symbol S,
which is first replaced with X1, rule (c) is applied
to generate “X2 to go” and its AMR counterpart.
Then rule (b) is used to generate “X3 wants” and
its AMR counterpart from X2. Finally, rule (a)
is used to generate “the boy” and its AMR coun-
terpart from X3. Our graph-to-string rules are
inspired by synchronous grammars for machine
translation (Wu, 1997; Yamada and Knight, 2002;
Gildea, 2003; Chiang, 2005; Huang et al., 2006;
Liu et al., 2006; Shen et al., 2008; Xie et al., 2011;
Meng et al., 2013).

2.2 Induced Rules
There are three types of rules in our system,
namely induced rules, concept rules and graph
glue rules. Here we first introduce induced rules,
which are obtained by a two-step procedure on a
training corpus. Shown in Algorithm 1, the first
step is to extract a set of initial rules from train-
ing 〈sentence, AMR, ∼〉2 pairs (Line 2) using the
phrase-to-graph-fragment extraction algorithm of
Peng et al. (2015) (Line 3). Here an initial rule

2∼ denotes alignment between words and AMR labels.
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contains only terminal symbols in both F and E.
As a next step, we match between pairs of initial
rules ri and rj , and generate rij by collapsing ri
with rj , if ri contains rj (Line 6-8). Here ri con-
tains rj , if rj .F is a subgraph of ri.F and rj .E
is a sub-phrase of ri.E. When collapsing ri with
rj , we replace the corresponding subgraph in ri.F
with a new non-terminal node, and the sub-phrase
in ri.E with the same non-terminal. For example,
we obtain rule (b) by collapsing (d) with (a) in Ta-
ble 1. All initial and generated rules are stored in
a rule list R (Lines 5 and 9), which will be further
normalized to obtain the final induced rule set.

2.3 Concept Rules and Glue Rules

In addition to induced rules, we adopt concept
rules (Song et al., 2016) and graph glue rules to en-
sure existence of derivations. For a concept rule, F
is a single node in the input AMR graph, and E is a
morphological string of the node concept. A con-
cept rule is used in case no induced rule can cover
the node. We refer to the verbalization list3 and
AMR guidelines4 for creating more complex con-
cept rules. For example, one concept rule created
from the verbalization list is “(k / keep-01 :ARG1
(p / peace)) ||| peacekeeping”.

Inspired by Chiang (2005), we define graph
glue rules to concatenate non-terminal nodes con-
nected with an edge, when no induced rules can be
applied. Three glue rules are defined for each type
of edge label. Taking the edge label “ARG0” as an
example, we create the following glue rules:

ID. F E
r1 (X1 / #X1# :ARG0 (X2 / #X2#)) #X1# #X2#
r2 (X1 / #X1# :ARG0 (X2 / #X2#)) #X2# #X1#
r3 (X1 / #X1# :ARG0 X1) #X1#

where for both r1 and r2, F contains two non-
terminal nodes with a directed edge connecting
them, and E is the concatenation the two non-
terminals in either the monotonic or the inverse
order. For r3, F contains one non-terminal node
with a self-pointing edge, and E is the non-
terminal. With concept rules and glue rules in our
final rule set, it is easily guaranteed that there are
legal derivations for any input AMR graph.

3 Model

We adopt a log-linear model for scoring search hy-
potheses. Given an input AMR graph, we find

3http://amr.isi.edu/download/lists/verbalization-list-
v1.06.txt

4https://github.com/amrisi/amr-guidelines

the highest scored derivation t∗ from all possible
derivations t:

t∗ = argmax
t

exp
∑

i

wifi(g, t), (1)

where g denotes the input AMR, fi(·, ·) and wi

represent a feature and the corresponding weight,
respectively. The feature set that we adopt in-
cludes phrase-to-graph and graph-to-phrase trans-
lation probabilities and their corresponding lexi-
calized translation probabilities (section 3.1), lan-
guage model score, word count, rule count, re-
ordering model score (section 3.2) and moving
distance (section 3.3). The language model score,
word count and phrase count features are adopted
from SMT (Koehn et al., 2003; Chiang, 2005).

We perform bottom-up search to transduce in-
put AMRs to surface strings. Each hypothesis con-
tains the current AMR graph, translations of col-
lapsed subgraphs, the feature vector and the cur-
rent model score. Beam search is adopted, where
hypotheses with the same number of collapsed
edges and nodes are put into the same beam.

3.1 Translation Probabilities
Production rules serve as a basis for scoring hy-
potheses. We associate each synchronous NRG
rule n → (〈F,E〉,∼) with a set of probabilities.
First, phrase-to-fragment translation probabilities
are defined based on maximum likelihood estima-
tion (MLE), as shown in Equation 2, where c〈F,E〉
is the fractional count of 〈F,E〉.

p(F |E) =
c〈F,E〉∑
F ′ c〈F ′,E〉

(2)

In addition, lexicalized translation probabilities
are defined as:

pw(F |E) =
∏

l∈F

∑

w∈E
p(l|w) (3)

Here l is a label (including both edge labels such
as “ARG0” and concept labels such as “want-01”)
in the AMR fragment F , and w is a word in
the phrase E. Equation 3 can be regarded as a
“soft” version of the lexicalized translation prob-
abilities adopted by SMT, which picks the align-
ment yielding the maximum lexicalized probabil-
ity for each translation rule. In addition to p(F |E)
and pw(F |E), we use features in the reverse direc-
tion, namely p(E|F ) and pw(E|F ), the definitions
of which are omitted as they are consistent with
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Equations 2 and 3, respectively. The probabilities
associated with concept rules and glue rules are
manually set to 0.0001.

3.2 Reordering Model
Although the word order is defined for induced
rules, it is not the case for glue rules. We learn a
reordering model that helps to decide whether the
translations of the nodes should be monotonic or
inverse given the directed connecting edge label.
The probabilistic model using smoothed counts is
defined as:

p(M |h, l, t) =

1.0 +
∑

h

∑
t c(h, l, t,M)

2.0 +
∑

o∈{M,I}
∑

h

∑
t c(h, l, t, o)

(4)

c(h, l, t,M) is the count of monotonic translations
of head h and tail t, connected by edge l.

3.3 Moving Distance
The moving distance feature captures the dis-
tances between the subgraph roots of two consec-
utive rule matches in the decoding process, which
controls a bias towards collapsing nearby sub-
graphs consecutively.

4 Experiments

4.1 Setup
We use LDC2015E86 as our experimental dataset,
which contains 16833 training, 1368 dev and 1371
test instances. Each instance contains a sentence,
an AMR graph and the alignment generated by
a heuristic aligner. Rules are extracted from the
training data, and model parameters are tuned on
the dev set. For tuning and testing, we filter out
sentences with more than 30 words, resulting in
1103 dev instances and 1055 test instances. We
train a 4-gram language model (LM) on gigaword
(LDC2011T07), and use BLEU (Papineni et al.,
2002) as the evaluation metric. MERT is used
(Och, 2003) to tune model parameters on k-best
outputs on the devset, where k is set 50.

We investigate the effectiveness of rules and
features by ablation tests: “NoInducedRule” does
not adopt induced rules, “NoConceptRule” does
not adopt concept rules, “NoMovingDistance”
does not adopt the moving distance feature,
and “NoReorderModel” disables the reordering
model. Given an AMR graph, if NoConceptRule
cannot produce a legal derivation, we concatenate

System Dev Test
TSP-gen 21.12 22.44
JAMR-gen 23.00 23.00
All 25.24 25.62
NoInducedRule 16.75 17.43
NoConceptRule 23.99 24.86
NoMovingDistance 23.48 24.06
NoReorderModel 25.09 25.43

Table 2: Main results.

existing translation fragments into a final transla-
tion, and if a subgraph can not be translated, the
empty string is used as the output. We also com-
pare our method with previous works, in particu-
lar JAMR-gen (Flanigan et al., 2016) and TSP-gen
(Song et al., 2016), on the same dataset.

4.2 Main results

The results are shown in Table 2. First, All out-
performs all baselines. NoInducedRule leads to
the greatest performance drop compared with All,
demonstrating that induced rules play a very im-
portant role in our system. On the other hand, No-
ConceptRule does not lead to much performance
drop. This observation is consistent with the ob-
servation of Song et al. (2016) for their TSP-based
system. NoMovingDistance leads to a significant
performance drop, empirically verifying the fact
that the translations of nearby subgraphs are also
close. Finally, NoReorderingModel does not af-
fect the performance significantly, which can be
because the most important reordering patterns are
already covered by the hierarchical induced rules.
Compared with TSP-gen and JAMR-gen, our fi-
nal model All improves the BLEU from 22.44
and 23.00 to 25.62, showing the advantage of our
model. To our knowledge, this is the best result
reported so far on the task.

4.3 Grammar analysis

We have shown the effectiveness of our syn-
chronous node replacement grammar (SNRG) on
the AMR-to-text generation task. Here we further
analyze our grammar as it is relatively less studied
than the hyperedge replacement grammar (HRG)
(Drewes et al., 1997).

Statistics on the whole rule set
We first categorize our rule set by the number of
terminals and nonterminals in the AMR fragment
F , and show the percentages of each type in Fig-
ure 3. Each rule contains at most 1 nonterminal,
as we collapse each initial rule only once. First
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Figure 3: Statistics on the right-hand side.

Glue Nonterminal Terminal
1-best 30.0% 30.1% 39.9%

Table 3: Rules used for decoding.

of all, the percentage of rules containing nonter-
minals are much more than those without nonter-
minals, as we collapse each pair of initial rules (in
Algorithm 1) and the results can be quadratic the
number of initial rules. In addition, most rules are
small containing 1 to 3 terminals, meaning that
they represent small pieces of meaning and are
easier to matched on a new AMR graph. Finally,
there are a few large rules, which represent com-
plex meaning.

Statistics on the rules used for decoding
In addition, we collect the rules that our well-tuned
system used for generating the 1-best output on
the testset, and categorize them into 3 types: (1)
glue rules, (2) nonterminal rules, which are not
glue rules but contain nonterminals on the right-
hand side and (3) terminal rules, whose right-hand
side only contain terminals. Over the rules used on
the 1-best result, more than 30% are non-terminal
rules, showing that the induced rules play an im-
portant role. On the other hand, 30% are glue
rules. The reason is that the data sparsity for graph
grammars is more severe than string-based gram-
mars (such as CFG), as the graph structures are
more complex than strings. Finally, terminal rules
take the largest percentage, while most are induced
rules, but not concept rules.

Rule examples
Finally, we show some rules in Table 4, where F
and E are the right-hand-side AMR fragment and
phrase, respectively. For the first rule, the root of
F is a verb (“give-01”) whose subject is a nonter-
minal and object is a AMR fragment “(p / person
:ARG0-of (u / use-01))”, which means “user”. So
it is easy to see that the corresponding phrase E
conveys the same meaning. For the second rule,
“(s3 / stay-01 :accompanier (i / i))” means “stay

F :

(g / give-01
:ARG0 (X1 / #X1#)
:ARG2 (p / person

:ARG0-of (u / use-01)))
E: #X1# has given users an

F :
(X1 / #X1#

:ARG2 (s3 / stay-01 :ARG1 X1
:accompanier (i / i)))

E: #X1# staying with me

Table 4: Example rules.

(u / understand-01
:ARG0 (y / you)
:ARG1 (t2 / thing

:ARG1-of (f2 / feel-01
:ARG0 (p2 / person

:example (p / person :wiki -
:name (t / name :op1 “TMT”)
:location (c / city :wiki “Fairfax, Virginia”

:name (f / name :op1 “Fairfax”))))))
:time (n / now))

Trans: now, you have to understand that people feel about
such as tmt fairfax
Ref: now you understand how people like tmt in fairfax
feel .

Table 5: Generation example.

with me”, which is also covered by its phrase.

4.4 Generation example
Finally, we show an example in Table 5, where the
top is the input AMR graph, and the bottom is the
generation result. Generally, most of the meaning
of the input AMR are correctly translated, such as
“:example”, which means “such as”, and “thing”,
which is an abstract concept and should not be
translated, while there are a few errors, such as
“that” in the result should be “what”, and there
should be an “in” between “tmt” and “fairfax”.

5 Conclusion

We showed that synchronous node replacement
grammar is useful for AMR-to-text generation by
developing a system that learns a synchronous
NRG in the training time, and applies a graph
transducer to collapse input AMR graphs and gen-
erate output strings according to the learned gram-
mar at test time. Our method performs better than
the previous systems, empirically proving the ad-
vantages of our graph-to-string rules.
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