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Abstract

Words can be represented by composing
the representations of subword units such
as word segments, characters, and/or char-
acter n-grams. While such representations
are effective and may capture the mor-
phological regularities of words, they have
not been systematically compared, and it
is not understood how they interact with
different morphological typologies. On a
language modeling task, we present ex-
periments that systematically vary (1) the
basic unit of representation, (2) the com-
position of these representations, and (3)
the morphological typology of the lan-
guage modeled. Our results extend previ-
ous findings that character representations
are effective across typologies, and we find
that a previously unstudied combination
of character trigram representations com-
posed with bi-LSTMs outperforms most
others. But we also find room for improve-
ment: none of the character-level models
match the predictive accuracy of a model
with access to true morphological analy-
ses, even when learned from an order of
magnitude more data.

1 Introduction

Continuous representations of words learned by
neural networks are central to many NLP tasks
(Cho et al., 2014; Chen and Manning, 2014; Dyer
et al.,, 2015). However, directly mapping a fi-
nite set of word types to a continuous representa-
tion has well-known limitations. First, it makes
a closed vocabulary assumption, enabling only
generic out-of-vocabulary handling. Second, it
cannot exploit systematic functional relationships
in learning. For example, cat and cats stand in the
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same relationship as dog and dogs. While this re-
lationship might be discovered for these specific
frequent words, it does not help us learn that the
same relationship also holds for the much rarer
words sloth and sloths.

These functional relationships reflect the fact
that words are composed from smaller units of
meaning, or morphemes. For instance, cats con-
sists of two morphemes, cat and -s, with the latter
shared by the words dogs and tarsiers. Modeling
this effect is crucial for languages with rich mor-
phology, where vocabulary sizes are larger, many
more words are rare, and many more such func-
tional relationships exist. Hence, some models
produce word representations as a function of sub-
word units obtained from morphological segmen-
tation or analysis (Luong et al., 2013; Botha and
Blunsom, 2014; Cotterell and Schiitze, 2015). A
downside of these models is that they depend on
morphological segmenters or analyzers.

Morphemes typically have similar orthographic
representations across words. For example, the
morpheme -s is realized as -es in finches. Since
this variation is limited, the general relationship
between morphology and orthography can be ex-
ploited by composing the representations of char-
acters (Ling et al., 2015; Kim et al., 2016), char-
acter n-grams (Sperr et al., 2013; Wieting et al.,
2016; Bojanowski et al., 2016; Botha and Blun-
som, 2014), bytes (Plank et al., 2016; Gillick
et al., 2016), or combinations thereof (Santos and
Zadrozny, 2014; Qiu et al., 2014). These mod-
els are compact, can represent rare and unknown
words, and do not require morphological analyz-
ers. They raise a provocative question: Does NLP
benefit from models of morphology, or can they be
replaced entirely by models of characters?

The relative merits of word, subword. and
character-level models are not fully understood
because each new model has been compared on
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different tasks and datasets, and often compared
against word-level models. A number of questions
remain open:

1. How do representations based on morphemes
compare with those based on characters?

2. What is the best way to compose subword
representations?

3. Do character-level models capture morphol-
ogy in terms of predictive utility?

4. How do different representations interact
with languages of different morphological ty-
pologies?

The last question is raised by Bender (2013):
languages are typologically diverse, and the
behavior of a model on one language may
not generalize to others. Character-level mod-
els implicitly assume concatenative morphology,
but many widely-spoken languages feature non-
concatenative morphology, and it is unclear how
such models will behave on these languages.

To answer these questions, we performed a sys-
tematic comparison across different models for the
simple and ubiquitous task of language model-
ing. We present experiments that vary (1) the type
of subword unit; (2) the composition function;
and (3) morphological typology. To understand
the extent to which character-level models capture
true morphological regularities, we present ora-
cle experiments using human morphological an-
notations instead of automatic morphological seg-
ments. Our results show that:

1. For most languages, character-level represen-
tations outperform the standard word repre-
sentations. Most interestingly, a previously
unstudied combination of character trigrams
composed with bi-LSTMs performs best on
the majority of languages.

2. Bi-LSTMs and CNNs are more effective
composition functions than addition.

3. Character-level models learn functional re-
lationships between orthographically similar
words, but don’t (yet) match the predictive
accuracy of models with access to true mor-
phological analyses.

4. Character-level models are effective across a
range of morphological typologies, but or-
thography influences their effectiveness.

word tries
morphemes try+s
morphs tri+es
morph. analysis try+VB+3rd+SG+Pres

Table 1: The morphemes, morphs, and morpho-
logical analysis of tries.

2 Morphological Typology

A morpheme is the smallest unit of meaning in
a word. Some morphemes express core meaning
(roots), while others express one or more depen-
dent features of the core meaning, such as per-
son, gender, or aspect. A morphological analysis
identifies the lemma and features of a word. A
morph is the surface realization of a morpheme
(Morley, 2000), which may vary from word to
word. These distinctions are shown in Table 1.

Morphological typology classifies languages
based on the processes by which morphemes are
composed to form words. While most languages
will exhibit a variety of such processes, for any
given language, some processes are much more
frequent than others, and we will broadly identify
our experimental languages with these processes.

When morphemes are combined sequentially,
the morphology is concatenative. = However,
morphemes can also be composed by non-
concatenative processes.  We consider four
broad categories of both concatenative and non-
concatenative processes in our experiments.

Fusional languages realize multiple features
in a single concatenated morpheme. For exam-
ple, English verbs can express number, person,
and tense in a single morpheme:

wanted (English)
want + ed
want + VB+1st+SG+Past

Agglutinative languages assign one feature
per morpheme. Morphemes are concatenated to
form a word and the morpheme boundaries are
clear. For example (Haspelmath, 2010):

okursam (Turkish)
oku+r+sa+m
“read”+AOR+COND+1SG

Root and Pattern Morphology forms words
by inserting consonants and vowels of dependent
morphemes into a consonantal root based on a
given pattern. For example, the Arabic root ktb
(“‘write”) produces (Roark and Sproat, 2007):

katab “wrote” (Arabic)
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takaatab “wrote to each other” (Arabic)
Reduplication is a process where a word form
is produced by repeating part or all of the root to
express new features. For example:
anak “child” (Indonesian)
anak-anak “children” (Indonesian)
buah “fruit” (Indonesian)
buah-buahan “various fruits” (Indonesian)

3 Representation Models

We compare ten different models, varying sub-
word units and composition functions that have
commonly been used in recent work, but evalu-
ated on various different tasks (Table 2). Given
word w, we compute its representation w as:

w = f(Wg, o(w)) (1)

where o is a deterministic function that returns a
sequence of subword units; W is a parameter ma-
trix of representations for the vocabulary of sub-
word units; and f is a composition function which
takes o(w) and Wy as input and returns w. All of
the representations that we consider take this form,
varying only in f and o.

3.1 Subword Units

We consider four variants of o in Equation 1,
each returning a different type of subword unit:
character, character trigram, or one of two types
of morph. Morphs are obtained from Morfes-
sor (Smit et al., 2014) or a word segmentation
based on Byte Pair Encoding (BPE; Gage (1994)),
which has been shown to be effective for handling
rare words in neural machine translation (Sennrich
et al., 2016). BPE works by iteratively replac-
ing frequent pairs of characters with a single un-
used character. For Morfessor, we use default
parameters while for BPE we set the number of
merge operations to 10,000.! When we segment
into character trigrams, we consider all trigrams in
the word, including those covering notional begin-
ning and end of word characters, as in Sperr et al.
(2013). Example output of ¢ is shown in Table 3.

3.2 Composition Functions

We use three variants of f in Eq. 1. The first con-
structs the representation w of word w by adding

'BPE takes a single parameter: the number of merge op-
erations. We tried different parameter values (1k, 10k, 100k)
and manually examined the resulting segmentation on the En-
glish dataset. Qualitatively, 10k gave the most plausible seg-
mentation and we used this setting across all languages.

the representations of its subwords si,...,8, =
o(w), where the representation of s; is vector s;.

W= i S; (2)
=1

The only subword unit that we don’t compose by
addition is characters, since this will produce the
same representation for many different words.
Our second composition function is a bidi-
rectional long-short-term memory (bi-LSTM),
which we adapt based on its use in the character-
level model of Ling et al. (2015) and its
widespread use in NLP generally. Given s; and
the previous LSTM hidden state h;_;, an LSTM
(Hochreiter and Schmidhuber, 1997) computes the
following outputs for the subword at position ¢:

hi = LSTM(Si,hi_l) (3)
iv1 = g(VT - hy) 4)

where §; 1 is the predicted target subword, g is the
softmax function and V is a weight matrix.

A bi-LSTM (Graves et al., 2005) combines the
final state of an LSTM over the input sequence
with one over the reversed input sequence. Given
the hidden state produced from the final input of
the forward LSTM, h/" and the hidden state pro-
duced from the final input of the backward LSTM
h%", we compute the word representation as:

wi =W, -hi” + W, -hi" +b (5

where W, Wy, and b are parameter matrices and
h/¥ and h%¥ are forward and backward LSTM
states, respectively.

The third composition function is a convolu-
tional neural network (CNN) with highway lay-
ers, as in Kim et al. (2016). Let ¢y, ..., c; be the
sequence of characters of word w. The character
embedding matrix is C € R%**, where the i-th
column corresponds to the embeddings of ¢;. We
first apply a narrow convolution between C and a
filter F € R?*™ of width n to obtain a feature map
f € RF"+1, In particular, the computation of the
j-th element of f is defined as

fj] = tanh((C[x,j : j+n—1],F) +b) (6)
where (A, B) = Tr(ABT”) is the Frobenius in-

ner product and b is a bias. The CNN model ap-
plies filters of varying width, representing features
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Models

Subword Unit(s)

Composition Function

Sperr et al. (2013)

Luong et al. (2013)

Botha and Blunsom (2014)
Qiu et al. (2014)

Santos and Zadrozny (2014)
Cotterell and Schiitze (2015)
Sennrich et al. (2016)

Kim et al. (2016)

Ling et al. (2015)

Wieting et al. (2016)
Bojanowski et al. (2016)
Vylomova et al. (2016)
Miyamoto and Cho (2016)
Rei et al. (2016)

words, character n-grams
morphs (Morfessor)

addition
recursive NN

Lee et al. (2016)
Kann and Schiitze (2016)
Heigold et al. (2017)

words, morphs (Morfessor) addition

words, morphs (Morfessor) addition

words, characters CNN

words, morphological analyses addition
morphs (BPE) none

characters CNN
characters bi-LSTM
character n-grams addition
character n-grams addition
characters, morphs (Morfessor) bi-LSTM, CNN
words, characters bi-LSTM
words, characters bi-LSTM
characters CNN
characters, morphological analyses none

words, characters bi-LSTM, CNN

Table 2: Summary of previous work on representing words through compositions of subword units.

Unit Output of o(wants)
Morfessor “want, s$

BPE “w, ants$

char-trigram  “wa, wan, ant, nts ts$
character ~w,a,nt, s, $

analysis want+VB, +3rd, +SG, +Pres

Table 3: Input representations for wants.

of character n-grams. We then calculate the max-
over-time of each feature map.

Yj = mef[j] (7)

and concatenate them to derive the word represen-
tation w; = [y1,. .., Ym), Where m is the number
of filters applied. Highway layers allow some di-
mensions of w; to be carried or transformed. Since
it can learn character n-grams directly, we only use
the CNN with character input.

3.3 Language Model

We use language models (LM) because they are
simple and fundamental to many NLP applica-

tions. Given a sequence of text s = wy, ..., wr,
our LM computes the probability of s as:
T
P(wy,...,wr) = [[ Plyelwr,...,wi1) (®)
t=1

o(the) c(dogs) o(are)  subword units
| | | -
f() f() f() func!()ion
@0®] [000] [00®] it
000 |eCe C@0| |@@0|
0]0]@) 00 1000 @] J©)
[C®C] [@0®] [@O0] softmax
dogs are playing

P(playing]|are,dogs, the,...)

Figure 1: Our LSTM-LM architecture.

where y; = w; if wy is in the output vocabulary
and y; = UNK otherwise.

Our language model is an LSTM variant of
recurrent neural network language (RNN) LM
(Mikolov et al., 2010). At time step ¢, it receives
input wy and predicts y:4+1. Using Eq. 1, it first
computes representation w; of w;. Given this rep-
resentation and previous state h;_1, it produces a
new state h; and predicts y;41:

h, = LSTM (w;, hy_y) ©)
Jir1 = g(V' - hy) (10)

where g is a softmax function over the vocabulary
yielding the probability in Equation 8. Note that
this design means that we can predict only words
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Typology Languages | #tokens | #types
Czech 1.2M | 125.4K
Fusional English 1.2M | 81.1K
Russian 0.8M | 103.5K
Finnish 1.2M | 188.4K
Agglutinative | Japanese 1.2M | 59.2K
Turkish 0.6M | 126.2K
Arabic 1.4M | 137.5K
Root&Pattern | Y ebrew 1IM | 104.9K
Reduplication Indones'ian 1.2M | 76.5K
Malaysian 1.2M | 77.7K

Table 4: Statistics of our datasets.

from a finite output vocabulary, so our models dif-
fer only in their representation of context words.
This design makes it possible to compare language
models using perplexity, since they have the same
event space, though open vocabulary word predic-
tion is an interesting direction for future work.

The complete architecture of our system is
shown in Figure 1, showing segmentation function
o and composition function f from Equation 1.

4 Experiments

We perform experiments on ten languages (Ta-
ble 4). We use datasets from Ling et al. (2015)
for English and Turkish. For Czech and Russian
we use Universal Dependencies (UD) v1.3 (Nivre
et al., 2015). For other languages, we use prepro-
cessed Wikipedia data (Al-Rfou et al., 2013).2 For
each dataset, we use approximately 1.2M tokens
to train, and approximately 150K tokens each for
development and testing. Preprocessing involves
lowercasing (except for character models) and re-
moving hyperlinks.

To ensure that we compared models and not im-
plementations, we reimplemented all models in a
single framework using Tensorflow (Abadi et al.,
2015).> We use a common setup for all experi-
ments based on that of Ling et al. (2015), Kim
et al. (2016), and Miyamoto and Cho (2016). In
preliminary experiments, we confirmed that our
models produced similar patterns of perplexities
for the reimplemented word and character LSTM

>The Arabic and Hebrew dataset are unvocalized.
Japanese mixes Kanji, Katakana, Hiragana, and Latin charac-
ters (for foreign words). Hence, a Japanese character can cor-
respond to a character, syllable, or word. The preprocessed
dataset is already word-segmented.

30ur implementation of these models can be found at
https://github.com/claravania/subword-Istm-lm

models of Ling et al. (2015). Even following de-
tailed discussion with Ling (p.c.), we were unable
to reproduce their perplexities exactly—our En-
glish reimplementation gives lower perplexities;
our Turkish higher—but we do reproduce their
general result that character bi-LSTMs outperform
word models. We suspect that different prepro-
cessing and the stochastic learning explains dif-
ferences in perplexities. Our final model with bi-
LSTMs composition follows Miyamoto and Cho
(2016) as it gives us the same perplexity results
for our preliminary experiments on the Penn Tree-
bank dataset (Marcus et al., 1993), preprocessed
by Mikolov et al. (2010).

4.1 Training and Evaluation

Our LSTM-LM uses two hidden layers with 200
hidden units and representation vectors for words,
characters, and morphs all have dimension 200.
All parameters are initialized uniformly at random
from -0.1 to 0.1, trained by stochastic gradient de-
scent with mini-batch size of 32, time steps of
20, for 50 epochs. To avoid overfitting, we ap-
ply dropout with probability 0.5 on the input-to-
hidden layer and all of the LSTM cells (includ-
ing those in the bi-LSTM, if used). For all models
which do not use bi-LSTM composition, we start
with a learning rate of 1.0 and decrease it by half if
the validation perplexity does not decrease by 0.1
after 3 epochs. For models with bi-LSTMs com-
position, we use a constant learning rate of 0.2 and
stop training when validation perplexity does not
improve after 3 epochs. For the character CNN
model, we use the same settings as the small model
of Kim et al. (2016).

To make our results comparable to Ling et al.
(2015), for each language we limit the output vo-
cabulary to the most frequent 5,000 training words
plus an unknown word token. To learn to predict
unknown words, we follow Ling et al. (2015): in
training, words that occur only once are stochasti-
cally replaced with the unknown token with prob-
ability 0.5. To evaluate the models, we compute
perplexity on the test data.

5 Results and Analysis

Table 5 presents our main results. In six of ten
languages, character-trigram representations com-
posed with bi-LSTMs achieve the lowest perplex-
ities. As far as we know, this particular model
has not been tested before, though it is similar
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Language | word character char trigrams BPE Morfessor %imp
bi-lstm | CNN add | bi-lstm add | bi-lstm add | bi-Istm
Czech 41.46 | 34.25 | 36.60 | 42.73 | 33.59 | 49.96 | 33.74 | 47.74 | 36.87 | 18.98
English 46.40 | 43.53 | 44.67 | 4541 | 4297 | 4751 | 4330 | 49.72 | 49.72 | 17.39
Russian 3493 | 28.44 | 2947 | 35.15| 27.72 | 40.10 | 28.52 | 39.60 | 31.31 | 20.64
Finnish 2421 | 20.05 | 20.29 | 24.89 | 18.62 | 26.77 | 19.08 | 27.79 | 22.45 | 23.09
Japanese 98.14 | 98.14 | 91.63 | 101.99 | 101.09 | 126.53 | 96.80 | 111.97 | 99.23 | 6.63
Turkish 66.97 | 54.46 | 55.07 | 50.07 | 5423 | 5949 | 5732 | 6220 | 62.70 | 25.24
Arabic 48.20 | 42.02 | 43.17 | 50.85 | 39.87 | 50.85 | 42.79 | 52.88 | 4546 | 17.28
Hebrew 38.23 | 31.63 | 33.19 | 39.67 | 30.40 | 44.15 | 3291 | 4494 | 3428 | 20.48
Indonesian | 46.07 | 45.47 | 46.60 | 5851 | 4596 | 59.17 | 43.37 | 59.33 | 4486 | 5.86
Malay 54.67 | 53.01 | 50.56 | 68.51 | 50.74 | 68.99 | 51.21 | 68.20 | 52.50 | 7.52

Table 5: Language model perplexities on test. The best model for each language is highlighted in bold
and the improvement of this model over the word-level model is shown in the final column.

to (but more general than) the model of Sperr
et al. (2013). We can see that the performance
of character, character trigrams, and BPE are very
competitive. Composition by bi-LSTMs or CNN
is more effective than addition, except for Turk-
ish. We also observe that BPE always outperforms
Morfessor, even for the agglutinative languages.
We now turn to a more detailed analysis by mor-
phological typology.

Fusional languages. For these languages,
character trigrams composed with bi-LSTMs
outperformed all other models, particularly for
Czech and Russian (up to 20%), which is unsur-
prising since both are morphologically richer than
English.

Agglutinative languages. We observe differ-
ent results for each language. For Finnish, char-
acter trigrams composed with bi-LSTMs achieves
the best perplexity. Surprisingly, for Turkish char-
acter trigrams composed via addition is best and
addition also performs quite well for other rep-
resentations, potentially useful since the addition
function is simpler and faster than bi-LSTMs. We
suspect that this is due to the fact that Turk-
ish morphemes are reasonably short, hence well-
approximated by character trigrams. For Japanese,
we improvements from character models are more
modest than in other languages.

Root and Pattern. For these languages, char-
acter trigrams composed with bi-LSTMs also
achieve the best perplexity. =~ We had won-
dered whether CNNs would be more effective
for root-and-pattern morphology, but since these
data are unvocalized, it is more likely that non-
concatenative effects are minimized, though we do

still find morphological variants with consonan-
tal inflections that behave more like concatenation.
For example, maktab (root:ktb) is written as mktb.
We suspect this makes character trigrams quite ef-
fective since they match the tri-consonantal root
patterns among words which share the same root.

Reduplication. For Indonesian, BPE morphs
composed with bi-LSTMs model obtain the best
perplexity. For Malay, the character CNN out-
performs other models. However, these improve-
ments are small compared to other languages.
This likely reflects that Indonesian and Malay are
only moderately inflected, where inflection in-
volves both concatenative and non-concatenative
processes.

5.1 Effects of Morphological Analysis

In the experiments above, we used unsupervised
morphological segmentation as a proxy for mor-
phological analysis (Table 3). However, as dis-
cussed in Section 2, this is quite approximate, so
it is natural to wonder what would happen if we
had the true morphological analysis. If character-
level models are powerful enough to capture the
effects of morphology, then they should have the
predictive accuracy of a model with access to this
analysis. To find out, we conducted an oracle
experiment using the human-annotated morpho-
logical analyses provided in the UD datasets for
Czech and Russian, the only languages in our set
for which these analyses were available. In these
experiments we treat the lemma and each morpho-
logical feature as a subword unit.

The results (Table 6) show that bi-LSTM com-
position of these representations outperforms all
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Languages | Addition | bi-LSTM
Czech 51.8 30.07
Russian 41.82 26.44

Table 6: Perplexity results using hand-annotated
morphological analyses (cf. Table 5).

other models for both languages. These results
demonstrate that neither character representations
nor unsupervised segmentation is a perfect re-
placement for manual morphological analysis, at
least in terms of predictive accuracy. In light of
character-level results, they imply that current un-
supervised morphological analyzers are poor sub-
stitutes for real morphological analysis.

However, we can obtain much more unanno-
tated than annotated data, and we might guess
that the character-level models would outperform
those based on morphological analyses if trained
on larger data. To test this, we ran experiments
that varied the training data size on three represen-
tation models: word, character-trigram bi-LSTM,
and character CNN. Since we want to see how
much training data is needed to reach perplexity
obtained using annotated data, we use the same
output vocabulary derived from the original train-
ing. While this makes it possible to compare per-
plexities across models, it is unfavorable to the
models trained on larger data, which may focus on
other words. This is a limitation of our experimen-
tal setup, but does allow us to draw some tentative
conclusions. As shown in Table 7, a character-
level model trained on an order of magnitude more
data still does not match the predictive accuracy of
a model with access to morphological analysis.

5.2 Automatic Morphological Analysis

The oracle experiments show promising results if
we have annotated data. But these annotations are
expensive, so we also investigated the use of auto-
matic morphological analysis. We obtained analy-
ses for Arabic with the MADAMIRA (Pasha et al.,
2014).* As in the experiment using annotations,
we treated each morphological feature as a sub-
word unit. The resulting perplexities of 71.94 and
42.85 for addition and bi-LSTMs, respectively, are
worse than those obtained with character trigrams
(39.87), though it approaches the best perplexities.

“We only experimented with Arabic since MADAMIRA
disambiguates words in contexts; most other analyzers we
found did not do this, and would require additional work to
add disambiguation.

char trigram | char

#tokens | word bi-LSTM CNN
1M 39.69 32.34 35.15
2M 37.59 36.44 35.58
3M 36.71 35.60 35.75
4M 35.89 32.68 35.93
M 35.20 34.80 37.02
10M 35.60 35.82 39.09

Table 7: Perplexity results on the Czech develop-
ment data, varying training data size. Perplexity
using ~1M tokens annotated data is 28.83.

5.3 Targeted Perplexity Results

A difficulty in interpreting the results of Table 5
with respect to specific morphological processes
is that perplexity is measured for all words. But
these processes do not apply to all words, so it
may be that the effects of specific morphological
processes are washed out. To get a clearer picture,
we measured perplexity for only specific subsets
of words in our test data: specifically, given tar-
get word w;, we measure perplexity of word w;1.
In other words, we analyze the perplexities when
the inflected words of interest are in the most re-
cent history, exploiting the recency bias of our
LSTM-LM. This is the perplexity most likely to
be strongly affected by different representations,
since we do not vary representations of the pre-
dicted word itself.

We look at several cases: nouns and verbs in
Czech and Russian, where word classes can be
identified from annotations, and reduplication in
Indonesian, which we can identify mostly auto-
matically. For each analysis, we also distinguish
between frequent cases, where the inflected word
occurs more than ten times in the training data, and
rare cases, where it occurs fewer than ten times.
We compare only bi-LSTM models.

For Czech and Russian, we again use the UD
annotation to identify words of interest. The re-
sults (Table 8), show that manual morphologi-
cal analysis uniformly outperforms other subword
models, with an especially strong effect for Czech
nouns, suggesting that other models do not cap-
ture useful predictive properties of a morpholog-
ical analysis. We do however note that character
trigrams achieve low perplexities in most cases,
similar to overall results (Table 5). We also ob-
serve that the subword models are more effective
for rare words.
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Language | type-level (%) | token-level (%)
Indonesian 1.10 2.60
Malay 1.29 2.89

Inflection | Model all frequent | rare
Czech word 61.21 56.84 72.96
nouns characters 51.01 47.94 59.01
char-trigrams 50.34 48.05 56.13
BPE 53.38 49.96 62.81
morph. analysis | 40.86 40.08 42.64
Czech word 81.37 74.29 99.40
verbs characters 70.75 68.07 77.11
char-trigrams 65.77 63.71 70.58
BPE 74.18 72.45 78.25
morph. analysis | 59.48 58.56 61.78
Russian word 45.11 41.88 48.26
nouns characters 37.90 37.52 38.25
char-trigrams 36.32 34.19 38.40
BPE 43.57 43.67 43.47
morph. analysis | 31.38 31.30 31.50
Russian word 56.45 47.65 69.46
verbs characters 45.00 40.86 50.60
char-trigrams 42.55 39.05 47.17
BPE 54.58 47.81 64.12
morph. analysis | 41.31 39.8 43.18

Table 8: Average perplexities of words that occur
after nouns and verbs. Frequent words occur more
than ten times in the training data; rare words oc-
cur fewer times than this. The best perplexity is in
bold while the second best is underlined.

For Indonesian, we exploit the fact that the hy-
phen symbol ‘-’ typically separates the first and
second occurrence of a reduplicated morpheme, as
in the examples of Section 2. We use the presence
of word tokens containing hyphens to estimate the
percentage of those exhibiting reduplication. As
shown in Table 9, the numbers are quite low.

Table 10 shows results for reduplication. In
contrast with the overall results, the BPE bi-LSTM
model has the worst perplexities, while character
bi-LSTM has the best, suggesting that these mod-
els are more effective for reduplication.

Looking more closely at BPE segmentation of
reduplicated words, we found that only 6 of 252
reduplicated words have a correct word segmenta-
tion, with the reduplicated morpheme often com-
bining differently with the notional start-of-word
or hyphen character. One the other hand BPE cor-
rectly learns 8 out of 9 Indonesian prefixes and 4
out of 7 Indonesian suffixes.’ This analysis sup-
ports our intuition that the improvement from BPE
might come from its modeling of concatenative
morphology.

5.4 Qualitative Analysis

Table 11 presents nearest neighbors under co-
sine similarity for in-vocabulary, rare, and out-of-

SWe use Indonesian affixes listed in Larasati et al. (2011)

Table 9: Percentage of full reduplication on the
type and token level.

Model all frequent | rare

word 101.71 91.71 | 156.98
characters | 99.21 91.35 | 137.42
BPE 117.2 | 108.86 | 156.81

Table 10: Average perplexities of words that occur
after reduplicated words in the test set.

vocabulary (OOV) words.® For frequent words,
standard word embeddings are clearly superior for
lexical meaning. Character and morph representa-
tions tend to find words that are orthographically
similar, suggesting that they are better at model-
ing dependent than root morphemes. The same
pattern holds for rare and OOV words. We sus-
pect that the subword models outperform words
on language modeling because they exploit affixes
to signal word class. We also noticed similar pat-
terns in Japanese.

We analyze reduplication by querying redupli-
cated words to find their nearest neighbors using
the BPE bi-LSTM model. If the model were sensi-
tive to reduplication, we would expect to see mor-
phological variants of the query word among its
nearest neighbors. However, from Table 12, this
is not so. With the partially reduplicated query
berlembah-lembah, we do not find the lemma lem-
bah.

6 Conclusion

We presented a systematic comparison of word
representation models with different levels of mor-
phological awareness, across languages with dif-
ferent morphological typologies. Our results con-
firm previous findings that character-level models
are effective for many languages, but these mod-
els do not match the predictive accuracy of model
with explicit knowledge of morphology, even af-
ter we increase the training data size by ten times.
Moreover, our qualitative analysis suggests that
they learn orthographic similarity of affixes, and
lose the meaning of root morphemes.

Although morphological analyses are available

®https://radimrehurek.com/gensim/
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Model Frequent Words Rare Words OOV words
man including relatively unconditional hydroplane uploading foodism
person like extremely nazi molybdenum - -
word anyone featuring making fairly your - -
children include very joints imperial - -
men includes quite supreme intervene - -
BPE ii called newly unintentional emphasize upbeat vigilantism
LSTM hill involve never ungenerous heartbeat uprising pyrethrum
text like essentially unanimous hybridized handling pausanias
netherlands creating least unpalatable unplatable hand-colored footway
char- mak include resolutely unconstitutional | selenocysteine drifted tuaregs
trigrams vill includes regeneratively | constitutional guerrillas affected quft
LSTM cow undermining | reproductively | unimolecular scrofula conflicted | subjectivism
maga under commonly medicinal seleucia convicted tune-up
char- mayr .inclusipn relgtes undamaged hydroly;ed musagte formulas
LSTM many insularity replicate unmyelinated hydraulics mutualism formally
mary includes relativity unconditionally hysterotomy mutualists fecal
may include gravestones uncoordinated hydraulic meursault foreland
char- mtn include legislatively | unconventional | hydroxyproline | unloading fordism
CNN mann includes lovely unintentional hydrate loading dadaism
jan excluding creatively unconstitutional hydrangea upgrading popism
nun included negatively untraditional hyena upholding endemism
Table 11: Nearest neighbours of semantically and syntactically similar words.
Query Top nearest neighbours
kota-kota wilayah-wilayah (areas), pulau-pulau (islands), negara-negara (countries),
(cities) bahasa-bahasa (languages), koloni-koloni (colonies)
berlembah-lembah | berargumentasi (argue), bercakap-cakap (converse), berkemauan (will),
(have many valleys) | berimplikasi (imply), berketebalan (have a thickness)

Table 12: Nearest neighbours of Indonesian reduplicated words in the BPE bi-LSTM model.

in limited quantities, our results suggest that there
might be utility in semi-supervised learning from
partially annotated data. Across languages with
different typologies, our experiments show that the
subword unit models are most effective on agglu-
tinative languages. However, these results do not
generalize to all languages, since factors such as
morphology and orthography affect the utility of
these representations. We plan to explore these ef-
fects in future work.
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