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Abstract

We present a novel cross-lingual transfer
method for paradigm completion, the task
of mapping a lemma to its inflected forms,
using a neural encoder-decoder model, the
state of the art for the monolingual task.
We use labeled data from a high-resource
language to increase performance on a low-
resource language. In experiments on 21
language pairs from four different language
families, we obtain up to 58% higher ac-
curacy than without transfer and show that
even zero-shot and one-shot learning are
possible. We further find that the degree
of language relatedness strongly influences
the ability to transfer morphological knowl-
edge.

1 Introduction

Low-resource natural language processing (NLP)
remains an open problem for many tasks of interest.
Furthermore, for most languages in the world, high-
cost linguistic annotation and resource creation are
unlikely to be undertaken in the near future. In the
case of morphology, out of the 7000 currently spo-
ken (Lewis, 2009) languages, only about 200 have
computer-readable annotations (Sylak-Glassman
et al., 2015) – although morphology is easy to an-
notate compared to syntax and semantics. Transfer
learning is one solution to this problem: it exploits
annotations in a high-resource language to train a
system for a low-resource language. In this work,
we present a method for cross-lingual transfer of
inflectional morphology using an encoder-decoder
recurrent neural network (RNN). This allows for
the development of tools for computational mor-
phology with limited annotated data.

In many languages, individual lexical entries
may be realized as distinct inflections of a single

Present Past
Indicative Indicative

Sg Pl Sg Pl

1 sueño soñamos soñé soñamos
2 sueñas soñáis soñaste soñasteis
3 sueña sueñan soñó soñaron

Table 1: Partial inflection table for the Spanish verb
soñar.

lemma depending on the syntactic context. For ex-
ample, the 3SgPresInd of the English verbal lemma
to bring is brings. In morphologically rich lan-
guages, a lemma can have hundreds of individ-
ual forms. Thus, both generation and analysis
of such morphological inflections are active areas
of research in NLP and morphological process-
ing has been shown to be a boon to several other
down-stream applications, e.g., machine transla-
tion (Dyer et al., 2008), speech recognition (Creutz
et al., 2007), parsing (Seeker and Çetinoğlu, 2015),
keyword spotting (Narasimhan et al., 2014) and
word embeddings (Cotterell et al., 2016b), inter
alia. In this work, we focus on paradigm comple-
tion, a form of morphological generation that maps
a given lemma to a target inflection, e.g., (bring,
Past) 7→ brought (with Past being the target tag).

RNN sequence-to-sequence models (Sutskever
et al., 2014; Bahdanau et al., 2015) are the state
of the art for paradigm completion (Faruqui et al.,
2016; Kann and Schütze, 2016a; Cotterell et al.,
2016a). However, these models require a large
amount of data to achieve competitive perfor-
mance; this makes them unsuitable for out-of-the-
box application to paradigm completion in the
low-resource scenario. To mitigate this, we con-
sider transfer learning: we train an end-to-end neu-
ral system jointly with limited data from a low-
resource language and a larger amount of data from
a high-resource language. This technique allows
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the model to apply knowledge distilled from the
high-resource training data to the low-resource lan-
guage as needed.

We conduct experiments on 21 language pairs
from four language families, emulating a low-
resource setting. Our results demonstrate success-
ful transfer of morphological knowledge. We show
improvements in accuracy and edit distance of up
to 58% (accuracy) and 4.62 (edit distance) over the
same model with only in-domain language data on
the paradigm completion task. We further obtain
up to 44% (resp. 14%) improvement in accuracy
for the one-shot (resp. zero-shot) setting, i.e., one
(resp. zero) in-domain language sample per target
tag. We also show that the effectiveness of morpho-
logical transfer depends on language relatedness,
measured by lexical similarity.

2 Inflectional Morphology and Paradigm
Completion

Many languages exhibit inflectional morphology,
i.e., the form of an individual lexical entry mutates
to show properties such as person, number or case.
The citation form of a lexical entry is referred to as
the lemma and the collection of its possible inflec-
tions as its paradigm. Tab. 1 shows an example of
a partial paradigm; we display several forms for the
Spanish verbal lemma soñar. We may index the
entries of a paradigm by a morphological tag, e.g.,
the 2SgPresInd form sueñas in Tab. 1. In generation,
the speaker must select an entry of the paradigm
given the form’s context. In general, the presence
of rich inflectional morphology is problematic for
NLP systems as it greatly increases the token-type
ratio and, thus, word form sparsity.

An important task in inflectional morphology is
paradigm completion (Durrett and DeNero, 2013;
Ahlberg et al., 2014; Nicolai et al., 2015; Cotterell
et al., 2015; Faruqui et al., 2016). Its goal is to
map a lemma to all individual inflections, e.g.,
(soñar, 1SgPresInd) 7→ sueño. There are good solu-
tions for paradigm completion when a large amount
of annotated training data is available (Cotterell
et al., 2016a).1 In this work, we address the low-
resource setting, a yet unsolved challenge.

1The SIGMORPHON 2016 shared task (Cotterell et al.,
2016a) on morphological reinflection, a harder generalization
of paradigm completion, found that ≥ 98% accuracy can be
achieved in many languages with neural sequence-to-sequence
models, improving the state of the art by 10%.

2.1 Transferring Inflectional Morphology

In comparison to other NLP annotations, e.g., part-
of-speech (POS) and named entities, morphologi-
cal inflection is especially challenging for transfer
learning: we can define a universal set of POS tags
(Petrov et al., 2012) or of entity types (e.g., coarse-
grained types like person and location or fine-
grained types (Yaghoobzadeh and Schütze, 2015)),
but inflection is much more language-specific. It
is infeasible to transfer morphological knowledge
from Chinese to Portuguese as Chinese does not
use inflected word forms. Transferring named
entity recognition, however, among Chinese and
European languages works well (Wang and Man-
ning, 2014a). But even transferring inflectional
paradigms from morphologically rich Arabic to
Portuguese seems difficult as the inflections often
mark dissimilar subcategories. In contrast, trans-
ferring morphological knowledge from Spanish to
Portuguese, two languages with similar conjuga-
tions and 89% lexical similarity, appears promis-
ing. Thus, we conjecture that transfer of inflec-
tional morphology is only viable among related
languages.

2.2 Formalization of the Task

We now offer a formal treatment of the cross-
lingual paradigm completion task and develop our
notation. Let Σ` be a discrete alphabet for lan-
guage ` and let T` be a set of morphological tags
for `. Given a lemma w` in `, the morphological
paradigm (inflectional table) π can be formalized
as a set of pairs

π(w`) =
{(
fk[w`], tk

)}
k∈T (w`)

(1)

where fk[w`] ∈ Σ+
` is an inflected form, tk ∈ T` is

its morphological tag and T (w`) is the set of slots
in the paradigm; e.g., a Spanish paradigm is:

π(soñar)=
{(

sueño, 1SgPresInd
)
, . . . ,

(
soñaran, 3PlPastSbj

)}

Paradigm completion consists of predicting miss-
ing slots in the paradigm π(w`) of a given lemma
w`.

In cross-lingual paradigm completion, we con-
sider a high-resource source language `s (lots of
training data available) and a low-resource target
language `t (little training data available). We
denote the source training examples as Ds (with
|Ds| = ns) and the target training examples as
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Dt (with |Dt| = nt). The goal of cross-lingual
paradigm completion is to populate paradigms in
the low-resource target language with the help of
data from the high-resource source language, using
only few in-domain examples.

3 Cross-Lingual Transfer as Multi-Task
Learning

We describe our probability model for morpho-
logical transfer using terminology from multi-task
learning (Caruana, 1997; Collobert et al., 2011).
We consider two tasks, training a paradigm com-
pletor (i) for a high-resource language and (ii) for
a low-resource language. We want to train jointly,
so we reap the benefits of having related languages.
Thus, we define the log-likelihood as

L(θ)=
∑

(k,w`t
)∈Dt

log pθ (fk[w`t ] | w`t , tk, λ`t) (2)

+
∑

(k,w`s )∈Ds

log pθ(fk[w`s ] | w`s , tk, λ`s)

where we tie parameters θ for the two languages
together to allow the transfer of morphological
knowledge between languages. The λs are special
language tags, cf. Sec. 3.2. Each probability dis-
tribution pθ defines a distribution over all possible
realizations of an inflected form, i.e., a distribution
over Σ∗. For example, consider the related Ro-
mance languages Spanish and French; focusing on
one term from each of the summands in Eq. (2)
(the past participle of the translation of to visit in
each language), we arrive at

Lvisit(θ) = log pθ(visitado | visitar, PastPart, ES)

+ log pθ(visité | visiter, PastPart, FR) (3)

Our cross-lingual setting forces both transductions
to share part of the parameter vector θ, to represent
morphological regularities between the two lan-
guages in a common embedding space and, thus, to
enable morphological transfer. This is no different
from monolingual multi-task settings, e.g., jointly
training a parser and tagger for transfer of syntax.

Based on recent advances in neural transducers,
we parameterize each distribution as an encoder-
decoder RNN, as in (Kann and Schütze, 2016b). In
their setup, the RNN encodes the input and predicts
the forms in a single language. In contrast, we force
the network to predict two or more languages.

3.1 Encoder-Decoder RNN

We parameterize the distribution pθ as an encoder-
decoder gated RNN (GRU) with attention (Bah-
danau et al., 2015), the state-of-the-art solution for
the monolingual case (Kann and Schütze, 2016b).
A bidirectional gated RNN encodes the input se-
quence (Cho et al., 2014) – the concatenation of
(i) the language tag, (ii) the morphological tag of
the form to be generated and (iii) the characters of
the input word – represented by embeddings. The
input to the decoder consists of concatenations of−→
hi and

←−
hi , the forward and backward hidden states

of the encoder. The decoder, a unidirectional RNN,
uses attention: it computes a weight αi for each
hi. Each weight reflects the importance given to
that input position. Using the attention weights, the
probability of the output sequence given the input
sequence is:

p(y | x1, . . . , x|X|) =

|Y |∏

t=1

g(yt−1, st, ct) (4)

where y = (y1, . . . , y|Y |) is the output sequence (a
sequence of |Y | characters), x = (x1, . . . x|X|) is
the input sequence (a sequence of |X| characters),
g is a non-linear function, st is the hidden state of
the decoder and ct is the sum of the encoder states
hi, weighted by attention weights αi(st−1) which
depend on the decoder state:

ct =

|X|∑

i=1

αi(st−1)hi (5)

Fig. 1 shows the encoder-decoder. See Bahdanau
et al. (2015) for further details.

3.2 Input Format

Each source form is represented as a sequence of
characters; each character is represented as an em-
bedding. In the same way, each source tag is repre-
sented as a sequence of subtags, and each subtag
is represented as an embedding. More formally,
we define the alphabet Σ = ∪`∈LΣ` as the set of
characters in the languages in L, with L being the
set of languages in the given experiment. Next, we
define S as the set of subtags that occur as part of
the set of morphological tags T = ∪`∈LT`; e.g., if
1SgPresInd ∈ T , then 1, Sg, Pres, Ind ∈ S . Note that
the set of subtags S is defined as attributes from the
UNIMORPH schema (Sylak-Glassman, 2016) and,
thus, is universal across languages; the schema is
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Figure 1: Encoder-decoder RNN for paradigm com-
pletion. The lemma soñar is mapped to a target
form (e.g., sueña). For brevity, language and target
tags are omitted from the input. Thickness of red
arrows symbolizes the degree to which the model
attends to the corresponding hidden state of the
encoder.

derived from research in linguistic typology.2 The
format of the input to our system is S+Σ+. The
output format is Σ+. Both input and output are
padded with distinguished BOW and EOW symbols.

What we have described is the representation
of Kann and Schütze (2016b). In addition, we
preprend a symbol λ ∈ L to the input string (e.g.,
λ = Es, also represented by an embedding), so
the RNN can handle multiple languages simulta-
neously and generalize over them. Thus, our final
input is of the form λS+Σ+.

4 Languages and Language Families

To verify the applicability of our method to a wide
range of languages, we perform experiments on
example languages from several different families.

Romance languages, a subfamily of Indo-
European, are widely spoken, e.g., in Europe and
Latin America. Derived from the common ances-
tor Vulgar Latin (Harris and Vincent, 2003), they
share large parts of their lexicon and inflectional
morphology; we expect knowledge among them to
be easily transferable.

2Note that while the subtag set is universal, which subtags
a language actually uses is language-specific; e.g., Spanish
does not mark animacy as Russian does. We contrast this with
the universal POS set (Petrov et al., 2012), where it is more
likely that we see all 17 tags in most languages.

PT CA IT FR

similarity to ES 89% 85% 82% 75%

Table 2: Lexical similarities for Romance (Lewis,
2009).

We experiment on Catalan, French, Italian, Por-
tuguese and Spanish. Tab. 2 shows that Spanish –
which takes the role of the low-resource language
in our experiments – is closely related with the
other four, with Portuguese being most similar. We
hypothesize that the transferability of morpholog-
ical knowledge between source and target corre-
sponds to the degree of lexical similarity; thus, we
expect Portuguese and Catalan to be more benefi-
cial for Spanish than Italian and French.

The Indo-European Slavic language family
has its origin in eastern-central Europe (Corbett
and Comrie, 2003). We experiment on Bulgar-
ian, Macedonian, Russian and Ukrainian (Cyrillic
script) and on Czech, Polish and Slovene (Latin
script). Macedonian and Ukranian are low-resource
languages, so we assign them the low-resource role.
For Romance and for Uralic, we experiment with
groups containing three or four source languages.
To arrive at a comparable experimental setup for
Slavic, we run two experiments, each with three
source and one target language: (i) from Russian,
Bulgarian and Czech to Macedonian; and (ii) from
Russian, Polish and Slovene to Ukrainian.

We hope that the paradigm completor learns sim-
ilar embeddings for, say, the characters “e” in Pol-
ish and “ε” in Ukrainian. Thus, the use of two
scripts in Slavic allows us to explore transfer across
different alphabets.

We further consider a non-Indo-European lan-
guage family, the Uralic languages. We exper-
iment on the three most commonly spoken lan-
guages – Finnish, Estonian and Hungarian (Abon-
dolo, 2015) – as well as Northern Sami, a language
used in Northern Scandinavia. While Finnish and
Estonian are closely related (both are members of
the Finnic subfamily), Hungarian is a more dis-
tant cousin. Estonian and Northern Sami are low-
resource languages, so we assign them the low-
resource role, resulting in two groups of exper-
iments: (i) Finnish, Hungarian and Estonian to
Northern Sami; (ii) Finnish, Hungarian and North-
ern Sami to Estonian.

Arabic (baseline) is a Semitic language (part
of the Afro-Asiatic family (Hetzron, 2013)) that is
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spoken in North Africa, the Arabian Peninsula and
other parts of the Middle East. It is unrelated to all
other languages used in this work. Both in terms
of form (new words are mainly built using a tem-
platic system) and categories (it has tags such as
construct state), Arabic is very different. Thus, we
do not expect it to support morphological knowl-
edge transfer and use it as a baseline for all target
languages.

5 Experiments

We run four experiments on 21 distinct pairings of
languages to show the feasibility of morphological
transfer and analyze our method. We first discuss
details common to all experiments.

We keep hyperparameters during all experi-
ments (and for all languages) fixed to the following
values. Encoder and decoder RNNs each have 100
hidden units and the size of all subtag, character
and language embeddings is 300. For training we
use ADADELTA (Zeiler, 2012) with minibatch size
20. All models are trained for 300 epochs. Fol-
lowing Le et al. (2015), we initialize all weights in
the encoder, decoder and the embeddings except
for the GRU weights in the decoder to the identity
matrix. Biases are initialized to zero.

Evaluation metrics: (i) 1-best accuracy: the
percentage of predictions that match the true an-
swer exactly; (ii) average edit distance between
prediction and true answer. The two metrics differ
in that accuracy gives no partial credit and incorrect
answers may be drastically different from the anno-
tated form without incurring additional penalty. In
contrast, edit distance gives partial credit for forms
that are closer to the true answer.

5.1 Exp. 1: Transfer Learning for Paradigm
Completion

In this experiment, we investigate to what extent
our model transfers morphological knowledge from
a high-resource source language to a low-resource
target language. We experimentally answer three
questions. (i) Is transfer learning possible for mor-
phology? (ii) How much annotated data do we
need in the low-resource target language? (iii)
How closely related must the two languages be
to achieve good results?

Data. Based on complete inflection tables
from unimorph.org (Kirov et al., 2016), we cre-
ate datasets as follows. Each training set con-
sists of 12,000 samples in the high-resource source

50·20 50·21 50·22 50·23 50·24 50·25 50·26 50·27

Number of Samples

0.0

0.2

0.4

0.6

0.8

1.0

A
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ac
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Languages
Pt
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It
Fr
Ar
Es

Figure 2: Learning curves showing the accuracy
on Spanish test when training on language λ ∈
{PT, CA, IT, FR, AR, ES}. Except for λ=ES, each
model is trained on 12,000 samples from λ and
“Number of Samples” (x-axis) of Spanish.

language and nt∈{50, 200} samples in the low-
resource target language. We create target lan-
guage dev and test sets of sizes 1600 and 10,000,
respectively.3 For Romance and Arabic, we cre-
ate learning curves for nt∈{100, 400, 800, 1600,
3200, 6400, 12000}. Due to the data available to
us, we use only verbs for the Romance and Uralic
language families, but nouns, verbs and adjectives
for the Slavic language family and Arabic. Lem-
mata and inflections are randomly selected from all
available paradigms.

Results and Discussion. Tab. 3 shows the ef-
fectiveness of transfer learning. There are two
baselines. (i) “0”: no transfer, i.e., we consider
only in-domain data; (ii) “AR”: Arabic, which is
unrelated to all target languages.

With the exception of the 200 sample case of
ET→SME, cross-lingual transfer is always better
than the two baselines; the maximum improvement
is 0.58 (0.58 vs. 0.00) in accuracy for the 50 sam-
ple case of CA→ES. More closely related source
languages improve performance more than distant
ones. French, the Romance language least simi-
lar to Spanish, performs worst for →ES. For the
target language Macedonian, Bulgarian provides
most benefit. This can again be explained by simi-
larity: Bulgarian is closer to Macedonian than the
other languages in this group. The best result for
Ukrainian is RU→UK. Unlike Polish and Slowe-
nian, Russian is the only language in this group
that uses the same script as Ukrainian, showing

3For Estonian, we use 7094 (not 12,000) train and 5000
(not 10,000) test samples as more data is unavailable.
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Romance Slavic I Slavic II Uralic I Uralic II
source 0 AR PT CA IT FR 0 AR RU BG CS 0 AR RU PL SL 0 AR FI HU ET 0 AR FI HU SME
target →ES →MK →UK →SME →ET

5
0 acc ↑ 0.00 0.04 0.48 0.58 0.46 0.29 0.00 0.00 0.23 0.47 0.13 0.01 0.01 0.47 0.16 0.07 0.00 0.01 0.07 0.05 0.03 0.02 0.01 0.35 0.21 0.17

ED ↓ 5.42 4.06 0.85 0.80 1.15 1.82 5.71 5.59 1.61 0.87 2.32 5.23 4.80 0.77 2.14 3.12 6.21 5.47 2.88 3.46 3.71 4.50 4.51 1.55 2.19 2.60

2
0
0 acc ↑ 0.38 0.54 0.62 0.78 0.74 0.60 0.21 0.40 0.62 0.77 0.57 0.16 0.21 0.64 0.55 0.50 0.13 0.24 0.26 0.28 0.13 0.34 0.53 0.74 0.71 0.66

ED ↓ 1.37 0.87 0.57 0.39 0.44 0.82 1.93 1.12 0.68 0.36 0.72 2.09 1.60 0.49 0.73 0.82 2.94 1.89 1.78 1.61 2.46 1.47 0.98 0.41 0.48 0.62

Table 3: Accuracy (acc; the higher the better; indicated by ↑) and edit distance (ED; the lower the better;
indicated by ↓) of cross-lingual transfer learning for paradigm completion. The target language is indicated
by “→”, e.g., it is Spanish for “→ES”. Sources are indicated in the row “source”; “0” is the monolingual
case. Except for Estonian, we train on ns = 12,000 source samples and nt ∈ {50, 200} target samples
(as indicated by the row). There are two baselines in the table. (i) “0”: no transfer, i.e., we consider only
in-domain data; (ii) “AR”: the Semitic language Arabic is unrelated to all target languages and functions
as a dummy language that is unlikely to provide relevant information. All languages are denoted using the
official codes (SME=Northern Sami).

the importance of the alphabet for transfer. Still,
the results also demonstrate that transfer works
across alphabets (although not as well); this sug-
gests that similar embeddings for similar characters
have been learned. Finnish is the language that is
closest to Estonian and it again performs best as a
source language for Estonian. For Northern Sami,
transfer works least well, probably because the dis-
tance between sources and target is largest in this
case. The distance of the Sami languages from
the Finnic (Estonian, Finnish) and Ugric (Hungar-
ian) languages is much larger than the distances
within Romance and within Slavic. However, even
for Northern Sami, the worst performing language,
adding an additional language is still always bene-
ficial compared to the monolingual baseline.

Learning curves for Romance and Arabic fur-
ther support our finding that language similarity is
important. In Fig. 2, knowledge is transferred to
Spanish, and a baseline – a model trained only on
Spanish data – shows the accuracy obtained with-
out any transfer learning. Here, Catalan and Italian
help the most, followed by Portuguese, French and,
finally, Arabic. This corresponds to the order of
lexical similarity with Spanish, except for the per-
formance of Portuguese (cf. Tab. 2). A possible
explanation is the potentially confusing overlap
of lemmata between the two languages – cf. dis-
cussion in the next subsection. That the transfer
learning setup improves performance for the unre-
lated language Arabic as source is at first surprising.
However, adding new samples to a small training
set helps prevent overfitting (e.g., rote memoriza-
tion) even if the source is a morphologically unre-
lated language; effectively acting as a regularizer.

Following (Kann and Schütze, 2016b) we did
not use standard regularizers. To verify that the

effect of Arabic is mainly a regularization effect,
we ran a small monolingual experiment on ES (200
setting) with dropout 0.5 (Srivastava et al., 2014).
The resulting accuracy is 0.57, very similar to the
comparable Arabic number of 0.54 in the table.
The accuracy for dropout and 50 ES samples stays
at 0.00, showing that in extreme low-resource set-
tings an unrelated language might be preferable to
a standard regularizer.

Error Analysis for Romance. Even for only 50
Spanish instances, many inflections are correctly
produced in transfer. For, e.g., (criar, 3PlFutSbj)
7→ criaren, model outputs are: fr: criaren, ca:
criaren, es: crntaron, it: criaren, ar: ecriren, pt:
criaren (all correct except for the two baselines).
Many errors involve accents, e.g., (contrastar, 2Pl-
FutInd) 7→ contrastaréis; model outputs are: fr: con-
trastareis, ca: contrastareis, es: conterarı́an, it:
contrastareis, ar: contastarı́as, pt: contrastareis.
Some inflected forms are produced incorrectly by
all systems, mainly because they apply the inflec-
tional rules of the source language directly to the
target. Finally, the output of the model trained on
Portuguese contains a class of errors that are unlike
those of other systems. Example: (contraatacar,
1SgCond) 7→ contraatacarı́a with the following so-
lutions: fr: contratacarı́am, ca: contraatacarı́a, es:
concarnar, it: contratacé, ar: cuntatarı́a and pt:
contra-atacarı́a. The Portuguese model inserts “-”
because Portuguese train data contains contraat-
acar and “-” appears in its inflected form. Thus,
it seems that shared lemmata between the high-
resource source language and the low-resource tar-
get language hurt our model’s performance.4 An

4To investigate this in more detail we retrain the Portuguese
model with 50 Spanish samples, but exclude all lemmata
that appear in Spanish train/dev/test, resulting in only 3695
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PT CA IT CA&PT CA&IT

→ES
50

acc ↑ 0.48 0.58 0.46 0.56 0.58
ED ↓ 0.85 0.80 1.15 0.67 0.82

20
0 acc ↑ 0.62 0.78 0.74 0.77 0.79

ED ↓ 0.47 0.39 0.44 0.34 0.31

Table 4: Results for transfer from pairs of source
languages to ES. Results from single languages are
repeated for comparison.

example for the generally improved performance
across languages for 200 Spanish training samples
is (contrastar, 2PlIndFut) 7→ contrastaréis: all mod-
els now produce the correct form.

5.2 Exp. 2: Multiple Source Languages

We now want to investigate the effect of multiple
source languages.

Data. Our experimental setup is similar to §5.1:
we use the same dev, test and low-resource train
sets as before. However, we limit this experiment
to the Romance language family and the high-
resource train data consists of samples from two
different source languages at once. Choosing those
which have the highest accuracies on their own, we
experiment with the following pairs: CA&PT, as
well as CA&IT. In order to keep all experiments
easily comparable, we use half of each source lan-
guage’s data, again ending up with a total of 12,000
high-resource samples.

Results and Discussion. Results are shown in
Tab. 4. Training on two source languages improves
over training on a single one. Increases in accuracy
are minor, but edit distance is reduced by up to
0.13 (50 low-resource samples) and 0.08 (200 low-
resource samples). That using data from multiple
languages is beneficial might be due to a weaker
tendency of the final model to adapt wrong rules
from the source language, since different alterna-
tives are presented during training.

5.3 Exp. 3: Zero-Shot/One-Shot Transfer

In §5.1, we investigated the relationship between in-
domain (target) training set size and performance.
Here, we look at the extreme case of training set
sizes 1 (one-shot) and 0 (zero-shot) for a tag. We
train our model on a single sample for half of the
tags appearing in the low-resource language, i.e.,

training samples. Accuracy on test increases by 0.09 despite
the reduced size of the training set.

0 PT CA IT FR AR

→ES

on
e

sh
ot acc ↑ 0.00 0.44 0.39 0.23 0.13 0.00

ED ↓ 6.26 1.01 1.27 1.83 2.87 7.00

ze
ro

sh
ot acc ↑ 0.00 0.14 0.08 0.01 0.02 0.00

ED ↓ 7.18 1.95 1.99 3.12 4.27 7.50

Table 5: Results for one-shot and zero-shot transfer
learning. Formatting is the same as for Tab. 3. We
still use ns = 12000 source samples. In the one-
shot (resp. zero-shot) case, we observe exactly one
form (resp. zero forms) for each tag in the target
language at training time.

if T` is the set of morphological tags for the target
language, train set size is |T`|/2. As before, we add
12,000 source samples.

We report one-shot accuracy (resp. zero-shot ac-
curacy), i.e., the accuracy for samples with a tag
that has been seen once (resp. never) during train-
ing. Note that the model has seen the individual
subtags each tag is composed of.5

Data. Now, we use the same dev, test and high-
resource train sets as in §5.1. However, the low-
resource data is created in the way specified above.
To remove a potentially confounding variable, we
impose the condition that no two training samples
belong to the same lemma.

Results and Discussion. Tab. 5 shows that the
Spanish and Arabic systems do not learn anything
useful for either half of the tags. This is not sur-
prising as there is not enough Spanish data for
the system to generalize well and Arabic does not
contribute exploitable information. The systems
trained on French and Italian, in contrast, get a non-
zero accuracy for the zero-shot case as well as 0.13
and 0.23, respectively, in the one-shot case. This
shows that a single training example is sometimes
sufficient for successful generation although gener-
alization to tags never observed is rarely possible.
Catalan and Portuguese show the best performance
in both settings; this is intuitive since they are the
languages closest to the target (cf. Tab. 2). In fact,
adding Portuguese to the training data yields an ab-
solute increase in accuracy of 0.44 (0.44 vs. 0.00)
for one-shot and 0.14 (0.14 vs. 0.00) for zero-shot
with corresponding improvements in edit distance.

Overall, this experiment shows that with transfer
learning from a closely related language the per-

5It is very unlikely that due to random selection a subtag
will not be in train; this case did not occur in our experiments.
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formance of zero-shot morphological generation
improves over the monolingual approach, and, in
the one-shot setting, it is possible to generate the
right form nearly half the time.

5.4 Exp. 4: True Transfer vs. Other Effects

We would like to separate the effects of regulariza-
tion that we saw for Arabic from true transfer.

To this end, we generate a random cipher (i.e.,
a function γ : Σ ∪ S 7→ Σ ∪ S) and apply it
to all word forms and morphological tags of the
high-resource train set; target language data are not
changed. Ciphering makes it harder to learn true
“linguistic” transfer of morphology. Consider the
simplest case of transfer: an identical mapping in
two languages, e.g., (visitar, 1SgPresInd) 7→ visito
in both Portuguese and Spanish. If we transform
Portuguese using the cipher γ(iostv...) = kltqa...,
then visito becomes aktkql in Portuguese and its tag
becomes similarly unrecognizable as being iden-
tical to the Spanish tag 1SgPresInd. Our intuition
is that ciphering will disrupt transfer of morphol-
ogy.6 On the other hand, the regularization effect
we observed with Arabic should still be effective.

Data. We use the Portuguese-Spanish and
Arabic-Spanish data from §5.1. We generate a ran-
dom cipher and apply it to morphological tags and
word forms for Portuguese and Arabic. The lan-
guage tags are kept unchanged. Spanish is also not
changed. For comparability with Tab. 3, we use the
same dev and test sets as before.

Results and Discussion. Tab. 6 shows that per-
formance of PT→ES drops a lot: from 0.48 to 0.09
for 50 samples and from 0.62 to 0.54 for 200 sam-
ples. This is because there are no overt similarities
between the two languages left after applying the
cipher, e.g., the two previously identical forms vis-
ito are now different.

The impact of ciphering on AR→ES varies:
slightly improved in one case (0.54 vs. 0.56),
slightly worse in three cases. We also apply the
cipher to the tags and Arabic and Spanish share sub-
tags, e.g., Sg. Just the knowledge that something
is a subtag is helpful because subtags must not be
generated as part of the output. We can explain the
tendency of ciphering to decrease performance on
AR→ES by the “masking” of common subtags.

6Note that ciphered input is much harder than transfer
between two alphabets (Latin/Cyrillic) because it creates am-
biguous input. In the example, Spanish “i” is totally different
from Portuguese “i” (which is really “k”), but the model must
use the same representation.

0→ES PT→ES AR→ES

orig ciph orig ciph

50

acc ↑ 0.00 0.48 0.09 0.04 0.02
ED ↓ 5.42 0.85 3.25 4.06 4.62

20
0 acc ↑ 0.38 0.62 0.54 0.54 0.56

ED ↓ 1.37 0.57 0.95 0.87 0.93

Table 6: Results for ciphering. “0→ES” and “orig”
are original results, copied from Tab. 3; “ciph” is
the result after the cipher has been applied.

For 200 samples and ciphering, there is no clear
difference in performance between Portuguese and
Arabic. However, for 50 samples and ciphering,
Portuguese (0.09) seems to perform better than Ara-
bic (0.02) in accuracy. Portuguese uses suffixation
for inflection whereas Arabic is templatic and in-
flectional changes are not limited to the end of the
word. This difference is not affected by ciphering.
Perhaps even ciphered Portugese lets the model
learn better that the beginnings of words just need
to be copied. For 200 samples, the Spanish dataset
may be large enough, so that ciphered Portuguese
no longer helps in this regard.

Comparing no transfer with transfer from a ci-
phered language to Spanish, we see large perfor-
mance gains, at least for the 200 sample case:
0.38 (0→ES) vs. 0.54 (PT→ES) and 0.56 (AR→ES).
This is evidence that our conjecture is correct that
the baseline Arabic mainly acts as a regularizer that
prevents the model from memorizing the training
set and therefore improves performance. So per-
formance improves even though no true transfer of
morphological knowledge takes place.

6 Related Work

Cross-lingual transfer learning has been used
for many tasks, e.g., automatic speech recognition
(Huang et al., 2013), parsing (Cohen et al., 2011;
Søgaard, 2011; Naseem et al., 2012; Ammar et al.,
2016), language modeling (Tsvetkov et al., 2016),
entity recognition (Wang and Manning, 2014b) and
machine translation (Johnson et al., 2016; Ha et al.,
2016).

One straightforward method is to translate
datasets and then train a monolingual model (For-
tuna and Shawe-Taylor, 2005; Olsson et al., 2005).
Also, aligned corpora have been used to project
information from annotations in one language to
another (Yarowsky et al., 2001; Padó and Lapata,
2005). The drawback is that machine translation
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errors cause errors in the target. Therefore, alter-
native methods have been proposed, e.g., to port a
model trained on the source language to the target
language (Shi et al., 2010).

In the realm of morphology, Buys and Botha
(2016) recently adapted methods for the training
of POS taggers to learn weakly supervised mor-
phological taggers with the help of parallel text.
Snyder and Barzilay (2008a, 2008b) developed
a non-parametric Bayesian model for morpholog-
ical segmentation. They performed identification
of cross-lingual abstract morphemes and segmen-
tation simultaneously and reported, similar to us,
best results for related languages.

Work on paradigm completion has recently
been encouraged by the SIGMORPHON 2016
shared task on morphological reinflection (Cot-
terell et al., 2016a). Some work first applies an
unsupervised alignment model to source and tar-
get string pairs and then learns a string-to-string
mapping (Durrett and DeNero, 2013; Nicolai et al.,
2015), using, e.g., a semi-Markov conditional ran-
dom field (Sarawagi and Cohen, 2004). Encoder-
decoder RNNs (Aharoni et al., 2016; Faruqui et al.,
2016; Kann and Schütze, 2016b), a method which
our work further develops for the cross-lingual sce-
nario, define the current state of the art.

Encoder-decoder RNNs were developed in par-
allel by Cho et al. (2014) and Sutskever et al. (2014)
for machine translation and extended by Bahdanau
et al. (2015) with an attention mechanism, support-
ing better generalization. They have been applied
to NLP tasks like speech recognition (Graves and
Schmidhuber, 2005; Graves et al., 2013), parsing
(Vinyals et al., 2015) and segmentation (Kann et al.,
2016).

More recently, a number of papers have used
encoder-decoder RNNs in multitask and transfer
learning settings; this is mainly work in machine
translation: (Dong et al., 2015; Zoph and Knight,
2016; Chu et al., 2017; Johnson et al., 2016; Lu-
ong et al., 2016; Firat et al., 2016; Ha et al., 2016),
inter alia. Each of these papers has both similar-
ities and differences with our approach. (i) Most
train several distinct models whereas we train a
single model on input augmented with an explicit
encoding of the language (similar to (Johnson et al.,
2016)). (ii) Let k and m be the number of dif-
ferent input and output languages. We address
the case k ∈ {1, 2, 3} and m = k. Other work
has addressed cases with k > 3 or m > 3; this

would be an interesting avenue of future research
for paradigm completion. (iii) Whereas training
RNNs in machine translation is hard, we only expe-
rienced one difficult issue in our experiments (due
to the low-resource setting): regularization. (iv)
Some work is word- or subword-based, our work is
character-based. The same way that similar word
embeddings are learned for the inputs cow and
vache (French for “cow”) in machine translation,
we expect similar embeddings to be learned for sim-
ilar Cyrillic/Latin characters. (v) Similar to work in
machine translation, we show that zero-shot (and,
by extension, one-shot) learning is possible.

(Ha et al., 2016) (which was developed in par-
allel to our transfer model although we did not
prepublish our paper on arxiv) is most similar to
our work. Whereas Ha et al. (2016) address ma-
chine translation, we focus on the task of paradigm
completion in low-resource settings and establish
the state of the art for this problem.

7 Conclusion

We presented a cross-lingual transfer learning
method for paradigm completion, based on an RNN
encoder-decoder model. Our experiments showed
that information from a high-resource language can
be leveraged for paradigm completion in a related
low-resource language. Our analysis indicated that
the degree to which the source language data helps
for a certain target language depends on their re-
latedness. Our method led to significant improve-
ments in settings with limited training data – up
to 58% absolute improvement in accuracy – and,
thus, enables the use of state-of-the-art models for
paradigm completion in low-resource languages.

8 Future Work

In the future, we want to develop methods to make
better use of languages with different alphabets or
morphosyntactic features, in order to increase the
applicability of our knowledge transfer method.
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danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. arXiv preprint 1409.1259 .

Chenhui Chu, Raj Dabre, and Sadao Kurohashi. 2017.
An empirical comparison of simple domain adapta-
tion methods for neural machine translation. arXiv
preprint 1701.03214 .

Shay B Cohen, Dipanjan Das, and Noah A Smith. 2011.
Unsupervised structure prediction with non-parallel
multilingual guidance. In EMNLP.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
JMLR 12(Aug):2493–2537.

Greville Corbett and Bernard Comrie. 2003. The
Slavonic Languages. Routledge.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016a. The SIGMORPHON 2016 shared task—
morphological reinflection. In SIGMORPHON.

Ryan Cotterell, Nanyun Peng, and Jason Eisner.
2015. Modeling word forms using latent underlying
morphs and phonology. TACL 3:433–447.

Ryan Cotterell, Hinrich Schütze, and Jason Eisner.
2016b. Morphological smoothing and extrapolation
of word embeddings. In ACL.

Mathias Creutz, Teemu Hirsimäki, Mikko Kurimo,
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