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Abstract

Word embeddings are well known to cap-
ture linguistic regularities of the language
on which they are trained. Researchers
also observe that these regularities can
transfer across languages. However, previ-
ous endeavors to connect separate mono-
lingual word embeddings typically require
cross-lingual signals as supervision, either
in the form of parallel corpus or seed lex-
icon. In this work, we show that such
cross-lingual connection can actually be
established without any form of supervi-
sion. We achieve this end by formulating
the problem as a natural adversarial game,
and investigating techniques that are cru-
cial to successful training. We carry out
evaluation on the unsupervised bilingual
lexicon induction task. Even though this
task appears intrinsically cross-lingual, we
are able to demonstrate encouraging per-
formance without any cross-lingual clues.

1 Introduction

As word is the basic unit of a language, the better-
ment of its representation has significant impact on
various natural language processing tasks. Con-
tinuous word representations, commonly known
as word embeddings, have formed the basis for
numerous neural network models since their ad-
vent. Their popularity results from the perfor-
mance boost they bring, which should in turn be
attributed to the linguistic regularities they capture
(Mikolov et al., 2013b).

Soon following the success on monolingual
tasks, the potential of word embeddings for cross-
lingual natural language processing has attracted
much attention. In their pioneering work, Mikolov
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caballo (horse) horse
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cerdo- (pig) pig
([ ]
gato (cat) cat
- » ‘ »
Spanish English
Figure 1: [Illustrative monolingual word em-

beddings of Spanish and English, adapted from
(Mikolov et al., 2013a). Although trained inde-
pendently, the two sets of embeddings exhibit ap-
proximate isomorphism.

et al. (2013a) observe that word embeddings
trained separately on monolingual corpora exhibit
isomorphic structure across languages, as illus-
trated in Figure 1. This interesting finding is
in line with research on human cognition (Youn
et al., 2016). It also means a linear transforma-
tion may be established to connect word embed-
ding spaces, allowing word feature transfer. This
has far-reaching implication on low-resource sce-
narios (Daumé III and Jagarlamudi, 2011; Irvine
and Callison-Burch, 2013), because word embed-
dings only require plain text to train, which is the
most abundant form of linguistic resource.
However, connecting separate word embedding
spaces typically requires supervision from cross-
lingual signals. For example, Mikolov et al.
(2013a) use five thousand seed word translation
pairs to train the linear transformation. In a re-
cent study, Vuli¢ and Korhonen (2016) show that
at least hundreds of seed word translation pairs are
needed for the model to generalize. This is un-
fortunate for low-resource languages and domains,
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Figure 2: (a) The unidirectional transformation model directly inspired by the adversarial game: The
generator G tries to transform source word embeddings (squares) to make them seem like target ones
(dots), while the discriminator D tries to classify whether the input embeddings are generated by G or
real samples from the target embedding distribution. (b) The bidirectional transformation model. Two
generators with tied weights perform transformation between languages. Two separate discriminators
are responsible for each language. (c) The adversarial autoencoder model. The generator aims to make
the transformed embeddings not only indistinguishable by the discriminator, but also recoverable as

measured by the reconstruction loss Lp.

because data encoding cross-lingual equivalence is
often expensive to obtain.

In this work, we aim to entirely eliminate the
need for cross-lingual supervision. Our approach
draws inspiration from recent advances in gen-
erative adversarial networks (Goodfellow et al.,
2014). We first formulate our task in a fashion
that naturally admits an adversarial game. Then
we propose three models that implement the game,
and explore techniques to ensure the success of
training. Finally, our evaluation on the bilingual
lexicon induction task reveals encouraging perfor-
mance, even though this task appears formidable
without any cross-lingual supervision.

2 Models

In order to induce a bilingual lexicon, we start
from two sets of monolingual word embeddings
with dimensionality d. They are trained separately
on two languages. Our goal is to learn a mapping
function f : R? — R? so that for a source word
embedding x, f (x) lies close to the embedding of
its target language translation y. The learned map-
ping function can then be used to translate each

source word x by finding the nearest target em-
bedding to f (z).

We consider = to be drawn from a distribution
Dz, and similarly y ~ p,. The key intuition here is
to find the mapping function to make f (z) seem
to follow the distribution p,, for all z ~ p,. From
this point of view, we design an adversarial game
as illustrated in Figure 2(a): The generator G im-
plements the mapping function f, trying to make
f (x) passable as target word embeddings, while
the discriminator D is a binary classifier striving
to distinguish between fake target word embed-
dings f (z) ~ py(y) and real ones y ~ p,. This
intuition can be formalized as the minimax game
ming maxp V (D, G) with value function

V(D,G)

:Ey~py [log D (3/)] +
Ezp, [log (1 = D (G (x)))].-

ey

Theoretical analysis reveals that adversarial
training tries to minimize the Jensen-Shannon
divergence JSD (p,||ps(»)) (Goodfellow et al.,
2014). Importantly, the minimization happens
at the distribution level, without requiring word
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translation pairs to supervise training.

2.1 Model 1: Unidirectional Transformation

The first model directly implements the adversar-
ial game, as shown in Figure 2(a). As hinted
by the isomorphism shown in Figure 1, previous
works typically choose the mapping function f
to be a linear map (Mikolov et al., 2013a; Dinu
et al., 2015; Lazaridou et al., 2015). We therefore
parametrize the generator as a transformation ma-
trix G € R¥?  We also tried non-linear maps
parametrized by neural networks, without success.
In fact, if the generator is given sufficient capacity,
it can in principle learn a constant mapping func-
tion to a target word embedding, which makes the
discriminator impossible to distinguish, much like
the “mode collapse” problem widely observed in
the image domain (Radford et al., 2015; Salimans
et al., 2016). We therefore believe it is crucial to
grant the generator with suitable capacity.

As a generic binary classifier, a standard feed-
forward neural network with one hidden layer is
used to parametrize the discriminator D, and its
loss function is the usual cross-entropy loss, as in
the value function (1):

Lp=—logD(y) —log(1—D(Gz)). ()

For simplicity, here we write the loss with a mini-
batch size of 1; in our experiments we use 128.
The generator loss is given by

Lg = —log D (Gx). 3)

In line with previous work (Goodfellow et al.,
2014), we find this loss easier to minimize than
the original form log (1 — D (Gx)).

Orthogonal Constraint

The above model is very difficult to train. One
possible reason is that the parameter search space
R4 for the generator may still be too large. Pre-
vious works have attempted to constrain the trans-
formation matrix to be orthogonal (Xing et al.,
2015; Zhang et al., 2016b; Artetxe et al., 2016).
An orthogonal transformation is also theoretically
appealing for its self-consistency (Smith et al.,
2017) and numerical stability. However, using
constrained optimization for our purpose is cum-
bersome, so we opt for an orthogonal parametriza-
tion (Mhammedi et al., 2016) of the generator in-
stead.

2.2 Model 2: Bidirectional Transformation

The orthogonal parametrization is still quite slow.
We can relax the orthogonal constraint and only
require the transformation to be self-consistent
(Smith et al., 2017): If G transforms the source
word embedding space into the target language
space, its transpose G| should transform the tar-
get language space back to the source. This can be
implemented by two unidirectional models with a
tied generator, as illustrated in Figure 2(b). Two
separate discriminators are used, with the same
cross-entropy loss as Equation (2) used by Model
1. The generator loss is given by

Lg = —log D1 (Gx) — log Do (GTJL') @

2.3 Model 3: Adversarial Autoencoder

As another way to relax the orthogonal con-
straint, we introduce the adversarial autoencoder
(Makhzani et al., 2015), depicted in Figure 2(c).
After the generator GG transforms a source word
embedding z into a target language representation
Gz, we should be able to reconstruct the source
word embedding x by mapping back with G . We
therefore introduce the reconstruction loss mea-
sured by cosine similarity:

Lg = —cos (z GTG:p) . (5)

Note that this loss will be minimized if G is or-
thogonal. With this term included, the loss func-
tion for the generator becomes

Lg = —log D (Gz) — Acos (a?, GTGw> , (6)

where A is a hyperparameter that balances the two
terms. A = 0 recovers the unidirectional trans-
formation model, while larger A should enforce a
stricter orthogonal constraint.

3 Training Techniques

Generative adversarial networks are notoriously
difficult to train, and investigation into stabler
training remains a research frontier (Radford et al.,
2015; Salimans et al., 2016; Arjovsky and Bottou,
2017). We contribute in this aspect by reporting
techniques that are crucial to successful training
for our task.

3.1 Regularizing the Discriminator

Recently, it has been suggested to inject noise into
the input to the discriminator (Sgnderby et al.,
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2016; Arjovsky and Bottou, 2017). The noise is
typically additive Gaussian. Here we explore more
possibilities, with the following types of noise, in-
jected into the input and hidden layer:

e Multiplicative Bernoulli noise (dropout) (Sri-
vastava et al., 2014): € ~ Bernoulli (p).

e Additive Gaussian noise: € ~ N (0,0?).

e Multiplicative Gaussian noise: €  ~

/\/(1,02).

As noise injection is a form of regularization
(Bishop, 1995; Van der Maaten et al., 2013; Wa-
ger et al., 2013), we also try l2 regularization, and
directly restricting the hidden layer size to combat
overfitting. Our findings include:

e Without regularization, it is not impossible
for the optimizer to find a satisfactory param-
eter configuration, but the hidden layer size
has to be tuned carefully. This indicates that
a balance of capacity between the generator
and discriminator is needed.

e All forms of regularization help training by
allowing us to liberally set the hidden layer
size to a relatively large value.

e Among the types of regularization, multi-
plicative Gaussian injected into the input is
the most effective, and additive Gaussian is
similar. On top of input noise, hidden layer
noise helps slightly.

In the following experiments, we inject multiplica-
tive Gaussian into the input and hidden layer of the
discriminator with o = 0.5.

3.2 Model Selection

From a typical training trajectory shown in Fig-
ure 3, we observe that training is not convergent.
In fact, simply using the model saved at the end
of training gives poor performance. Therefore we
need a mechanism to select a good model. We ob-
serve there are sharp drops of the generator loss
Lg, and find they correspond to good models,
as the discriminator gets confused at these points
with its classification accuracy (D accuracy) drop-
ping simultaneously. Interestingly, the reconstruc-
tion loss L and the value of HGTG - IHF ex-
hibit synchronous drops, even if we use the uni-
directional transformation model (A = 0). This
means a good transformation matrix is indeed
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Figure 3: A typical training trajectory of the adver-
sarial autoencoder model with A = 1. The values
are averages within each minibatch.

nearly orthogonal, and justifies our encourage-
ment of G towards orthogonality. With this find-
ing, we can train for sufficient steps and save the
model with the lowest generator loss.

As we aim to find the cross-lingual transforma-
tion without supervision, it would be ideal to de-
termine hyperparameters without a validation set.
The sharp drops can also be indicative in this case.
If a hyperparameter configuration is poor, those
values will oscillate without a clear drop. Al-
though this criterion is somewhat subjective, we
find it to be quite feasible in practice.

3.3 Other Training Details

Our approach takes monolingual word embed-
dings as input. We train the CBOW model
(Mikolov et al., 2013b) with default hyperparam-
eters in word2vec.! The embedding dimension
d is 50 unless stated otherwise. Before feeding
them into our system, we normalize the word em-
beddings to unit length. When sampling words for
adversarial training, we penalize frequent words
in a way similar to (Mikolov et al., 2013b). G is

"https://code.google.com/archive/p/word2vec

1962



initialized with a random orthogonal matrix. The
hidden layer size of D is 500. Adversarial training
involves alternate gradient update of the genera-
tor and discriminator, which we implement with a
simpler variant algorithm described in (Nowozin
et al., 2016). Adam (Kingma and Ba, 2014) is
used as the optimizer, with default hyperparame-
ters. For the adversarial autoencoder model, A = 1
generally works well, but A = 10 appears stabler
for the low-resource Turkish-English setting.

4 Experiments

We evaluate the quality of the cross-lingual em-
bedding transformation on the bilingual lexicon
induction task. After a source word embedding
is transformed into the target space, its M nearest
target embeddings (in terms of cosine similarity)
are retrieved, and compared against the entry in
a ground truth bilingual lexicon. Performance is
measured by top-M accuracy (Vuli¢ and Moens,
2013): If any of the M translations is found in the
ground truth bilingual lexicon, the source word is
considered to be handled correctly, and the accu-
racy is calculated as the percentage of correctly
translated source words. We generally report the
harshest top-1 accuracy, unless when comparing
with published figures in Section 4.4.

Baselines

Almost all approaches to bilingual lexicon induc-
tion from non-parallel data depend on seed lexica.
An exception is decipherment (Dou and Knight,
2012; Dou et al., 2015), and we use it as our
baseline. The decipherment approach is not based
on distributional semantics, but rather views the
source language as a cipher for the target lan-
guage, and attempts to learn a statistical model to
decipher the source language. We run the Mono-
Giza system as recommended by the toolkit.> It
can also utilize monolingual embeddings (Dou
et al., 2015); in this case, we use the same em-
beddings as the input to our approach.

Sharing the underlying spirit with our approach,
related methods also build upon monolingual word
embeddings and find transformation to link dif-
ferent languages. Although they need seed word
translation pairs to train and thus not directly com-
parable, we report their performance with 50 and
100 seeds for reference. These methods are:

“http://www.isi.edu/natural-
language/software/monogiza_release_v1.0.tar.gz

# tokens | vocab. size

Wikipedia comparable corpora

Jheen zh 21m 3,349
en 53m 5,154

esen es 61m 4,774
en 95m 6,637

iten it 73m 8,490
en 93m 6,597

ja-zh ja 38m 6,043
zh 16m 2,814

tren tr 6m 7,482
en 28m 13,220

Large-scale settings

zh-en zh 143m 14,686
Wikipedia | en | 1,907m 61,899
zh-en zh | 2,148m 45,958
Gigaword | en | 5,017m 73,504

Table 1: Statistics of the non-parallel corpora.
Language codes: zh = Chinese, en = English, es
= Spanish, it = Italian, ja = Japanese, tr = Turkish.

e Translation matrix (TM) (Mikolov et al.,
2013a): the pioneer of this type of methods
mentioned in the introduction, using linear
transformation. We use a publicly available
implementation.’

e [sometric alignment (IA) (Zhang et al.,
2016b): an extension of TM by augmenting
its learning objective with the isometric (or-
thogonal) constraint. Although Zhang et al.
(2016b) had subsequent steps for their POS
tagging task, it could be used for bilingual
lexicon induction as well.

We ensure the same input embeddings for these
methods and ours.

The seed word translation pairs are obtained as
follows. First, we ask Google Translate* to trans-
late the source language vocabulary. Then the tar-
get translations are queried again and translated
back to the source language, and those that do
not match the original source words are discarded.
This helps to ensure the translation quality. Fi-
nally, the translations are discarded if they fall out
of our target language vocabulary.

3http://clic.cimec.unitn.it/"georgiana.dinu/down
*https://translate.google.com
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method # seeds H accuracy (%) ‘
MonoGiza w/o emb. 0 0.05
MonoGiza w/ emb. 0 0.09
™ 50 0.29
100 21.79
A 50 18.71
100 32.29
Model 1 0 39.25
Model 1 + ortho. 0 28.62
Model 2 0 40.28
Model 3 0 43.31

Table 2: Chinese-English top-1 accuracies of the
MonoGiza baseline and our models, along with
the translation matrix (TM) and isometric align-
ment (IA) methods that utilize 50 and 100 seeds.

4.1 Experiments on Chinese-English
Data

For this set of experiments, the data for training
word embeddings comes from Wikipedia com-
parable corpora.’ Following (Vuli¢ and Moens,
2013), we retain only nouns with at least 1,000
occurrences. For the Chinese side, we first use
OpenCC® to normalize characters to be simplified,
and then perform Chinese word segmentation and
POS tagging with THULAC.” The preprocessing
of the English side involves tokenization, POS tag-
ging, lemmatization, and lowercasing, which we
carry out with the NLTK toolkit.® The statistics
of the final training data is given in Table 1, along
with the other experimental settings.

As the ground truth bilingual lexicon for evalua-
tion, we use Chinese-English Translation Lexicon
Version 3.0 (LDC2002L.27).

Overall Performance

Table 2 lists the performance of the MonoGiza
baseline and our four variants of adversarial train-
ing. MonoGiza obtains low performance, likely
due to the harsh evaluation protocol (cf. Sec-
tion 4.4). Providing it with syntactic information
can help (Dou and Knight, 2013), but in a low-
resource scenario with zero cross-lingual informa-
tion, parsers are likely to be inaccurate or even un-
available.

>http://linguatools.org/tools/corpora/wikipedia-
comparable-corpora

Shttps://github.com/BY Void/OpenCC

"http://thulac.thunlp.org

Shttp://www.nltk.org

BT MTE M
chengshi | xiaoxingxing | wenxue
city asteroid poetry
town astronomer | literature
suburb comet prose
area constellation poet
proximity orbit writing

Table 3: Top-5 English translation candidates pro-
posed by our approach for some Chinese words.
The ground truth is marked in bold.

Accuracy (%)

—— T™

0 500 1000

# seeds

Figure 4: Top-1 accuracies of our approach,
isometric alignment (IA), and translation matrix
(TM), with the number of seeds varying in {50,
100, 200, 500, 1000, 1280}.

The unidirectional transformation model attains
reasonable accuracy if trained successfully, but it
is rather sensitive to hyperparameters and initial-
ization. This training difficulty motivates our or-
thogonal constraint. But imposing a strict orthog-
onal constraint hurts performance. It is also about
20 times slower even though we utilize orthogonal
parametrization instead of constrained optimiza-
tion. The last two models represent different relax-
ations of the orthogonal constraint, and the adver-
sarial autoencoder model achieves the best perfor-
mance. We therefore use it in our following exper-
iments. Table 3 lists some word translation exam-
ples given by the adversarial autoencoder model.

Comparison With Seed-Based Methods

In this section, we investigate how many seeds
TM and IA require to attain the performance level
of our approach. There are a total of 1,280 seed
translation pairs for Chinese-English, which are
removed from the test set during the evaluation for
this experiment. We use the most frequent .S pairs
for TM and IA.

Figure 4 shows the accuracies with respect to
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method

# seeds H es-en ‘ it-en ‘ ja-zh ‘ tr-en ‘

MonoGiza w/o embeddings 0 035 | 030 | 0.04| 0.00
MonoGiza w/ embeddings 0 1.19 | 027 | 0.23 | 0.09
M 50 124 | 076 | 0.35| 0.09
100 48.61 | 37.95 | 26.67 | 11.15
A 50 39.89 | 27.03 | 19.04 | 7.58
100 60.44 | 46.52 | 36.35 | 17.11

] Ours 0 [[71.97]5860]43.02]17.18 |

Table 4: Top-1 accuracies (%) of the MonoGiza baseline and our approach on Spanish-English, Italian-
English, Japanese-Chinese, and Turkish-English. The results for translation matrix (TM) and isometric
alignment (I2) using 50 and 100 seeds are also listed.

50 —0]
S
2 40
<
=
;d 30
50 100 150 200

Embedding dimension

Figure 5: Top-1 accuracies of our approach with
respect to the input embedding dimensions in {20,
50, 100, 200}.

S. When the seeds are few, the seed-based meth-
ods exhibit clear performance degradation. In this
case, we also observe the importance of the or-
thogonal constraint from the superiority of IA to
TM, which supports our introduction of this con-
straint as we attempt zero supervision. Finally,
in line with the finding in (Vuli¢ and Korhonen,
2016), hundreds of seeds are needed for TM to gen-
eralize. Only then do seed-based methods catch up
with our approach, and the performance difference
is marginal even when more seeds are provided.

Effect of Embedding Dimension

As our approach takes monolingual word embed-
dings as input, it is conceivable that their quality
significantly affects how well the two spaces can
be connected by a linear map. We look into this
aspect by varying the embedding dimension d in
Figure 5. As the dimension increases, the accuracy
improves and gradually levels off. This indicates
that too low a dimension hampers the encoding of
linguistic information drawn from the corpus, and
itis advisable to use a sufficiently large dimension.

4.2 Experiments on Other Language Pairs
Data

We also induce bilingual lexica from Wikipedia
comparable corpora for the following language
pairs: Spanish-English, Italian-English, Japanese-
Chinese, and Turkish-English.  For Spanish-
English and Italian-English, we choose to use
TreeTagger” for preprocessing, as in (Vuli¢ and
Moens, 2013). For the Japanese corpus, we use
MeCab!? for word segmentation and POS tag-
ging. For Turkish, we utilize the preprocessing
tools (tokenization and POS tagging) provided in
LORELEI Language Packs (Strassel and Tracey,
2016), and its English side is preprocessed by
NLTK. Unlike the other language pairs, the fre-
quency cutoff threshold for Turkish-English is
100, as the amount of data is relatively small.

The ground truth bilingual lexica for Spanish-
English and Italian-English are obtained from
Open Multilingual WordNet!! through NLTK. For
Japanese-Chinese, we use an in-house lexicon.
For Turkish-English, we build a set of ground truth
translation pairs in the same way as how we obtain
seed word translation pairs from Google Translate,
described above.

Results

As shown in Table 4, the MonoGiza baseline still
does not work well on these language pairs, while
our approach achieves much better performance.
The accuracies are particularly high for Spanish-
English and Italian-English, likely because they
are closely related languages, and their embedding
spaces may exhibit stronger isomorphism. The

*http://www.cis.uni-muenchen.de/"schmid/tools/
TreeTagger
http://taku910.github.io/mecab
"http://compling hss.ntu.edu.sg/omw
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method | # seeds H Wikipedia | Gigaword ‘

- 50 0.00 0.01
100 479 2.07
A 50 3.25 1.68
100 7.08 4.18

Ours 0 [ 792 [ 253 |

Table 5: Top-1 accuracies (%) of our approach
to inducing bilingual lexica for Chinese-English
from Wikipedia and Gigaword. Also listed are
results for translation matrix (TM) and isometric
alignment (I2) using 50 and 100 seeds.

performance on Japanese-Chinese is lower, on a
comparable level with Chinese-English (cf. Table
2), and these languages are relatively distantly re-
lated. Turkish-English represents a low-resource
scenario, and therefore the lexical semantic struc-
ture may be insufficiently captured by the embed-
dings. The agglutinative nature of Turkish can also
add to the challenge.

4.3 Large-Scale Settings

We experiment with large-scale Chinese-English
data from two sources: the whole Wikipedia dump
and Gigaword (LDC2011T13 and LDC2011T07).
We also simplify preprocessing by removing the
noun restriction and the lemmatization step (cf.
preprocessing decisions for the above experi-
ments).

Although large-scale data may benefit the train-
ing of embeddings, it poses a greater challenge to
bilingual lexicon induction. First, the degree of
non-parallelism tends to increase. Second, with
cruder preprocessing, the noise in the corpora may
take its toll. Finally, but probably most impor-
tantly, the vocabularies expand dramatically com-
pared to previous settings (see Table 1). This
means a word translation has to be retrieved from
a much larger pool of candidates.

For these reasons, we consider the performance
of our approach presented in Table 5 to be encour-
aging. The imbalanced sizes of the Chinese and
English Wikipedia do not seem to cause a prob-
lem for the structural isomorphism needed by our
method. MonoGiza does not scale to such large
vocabularies, as it already takes days to train in our
Italian-English setting. In contrast, our approach
is immune from scalability issues by working with
embeddings provided by word2vec, which is
well known for its fast speed. With the network

y method | 5k [ 10k |
MonoGiza w/o embeddings | 13.74 | 7.80
MonoGiza w/ embeddings | 17.98 | 10.56
(Caoetal., 2016) 23.54 | 17.82

| Ours | 68.59 | 51.86 |

Table 6: Top-5 accuracies (%) of 5k and 10k most
frequent words in the French-English setting. The
figures for the baselines are taken from (Cao et al.,
2016).

configuration used in our experiments, the adver-
sarial autoencoder model takes about two hours to
train for 500k minibatches on a single CPU.

4.4 Comparison With (Cao et al., 2016)

In order to compare with the recent method by Cao
et al. (2016), which also uses zero cross-lingual
signal to connect monolingual embeddings, we
replicate their French-English experiment to test
our approach.!? This experimental setting has im-
portant differences from the above ones, mostly in
the evaluation protocol. Apart from using top-5
accuracy as the evaluation metric, the ground truth
bilingual lexicon is obtained by performing word
alignment on a parallel corpus. We find this auto-
matically constructed bilingual lexicon to be nois-
ier than the ones we use for the other language
pairs; it often lists tens of translations for a source
word. This lenient evaluation protocol should ex-
plain MonoGiza’s higher numbers in Table 6 than
what we report in the other experiments. In this
setting, our approach is able to considerably out-
perform both MonoGiza and the method by Cao
et al. (2016).

5 Related Work

5.1 Cross-Lingual Word Embeddings for
Bilingual Lexicon Induction

Inducing bilingual lexica from non-parallel data
is a long-standing cross-lingual task. Except for
the decipherment approach, traditional statistical
methods all require cross-lingual signals (Rapp,
1999; Koehn and Knight, 2002; Fung and Cheung,
2004; Gaussier et al., 2004; Haghighi et al., 2008;
Vulié et al., 2011; Vuli¢ and Moens, 2013).
Recent advances in cross-lingual word embed-
dings (Vuli¢ and Korhonen, 2016; Upadhyay et al.,

12As a confirmation, we ran MonoGiza in this setting and
obtained comparable performance as reported.
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2016) have rekindled interest in bilingual lexi-
con induction. Like their traditional counterparts,
these embedding-based methods require cross-
lingual signals encoded in parallel data, aligned at
document level (Vuli¢ and Moens, 2015), sentence
level (Zou et al., 2013; Chandar A P et al., 2014;
Hermann and Blunsom, 2014; Kocisky et al.,
2014; Gouws et al., 2015; Luong et al., 2015;
Coulmance et al., 2015; Oshikiri et al., 2016),
or word level (i.e. seed lexicon) (Gouws and
S@gaard, 2015; Wick et al., 2016; Duong et al.,
2016; Shi et al., 2015; Mikolov et al., 2013a; Dinu
et al., 2015; Lazaridou et al., 2015; Faruqui and
Dyer, 2014; Lu et al., 2015; Ammar et al., 2016;
Zhang et al., 2016a, 2017; Smith et al., 2017). In
contrast, our work completely removes the need
for cross-lingual signals to connect monolingual
word embeddings, trained on non-parallel text cor-
pora.

As one of our baselines, the method by Cao
et al. (2016) also does not require cross-lingual
signals to train bilingual word embeddings. It
modifies the objective for training embeddings,
whereas our approach uses monolingual embed-
dings trained beforehand and held fixed. More im-
portantly, its learning mechanism is substantially
different from ours. It encourages word embed-
dings from different languages to lie in the shared
semantic space by matching the mean and vari-
ance of the hidden states, assumed to follow a
Gaussian distribution, which is hard to justify. Our
approach does not make any assumptions and di-
rectly matches the mapped source embedding dis-
tribution with the target distribution by adversarial
training.

A recent work also attempts adversarial train-
ing for cross-lingual embedding transformation
(Barone, 2016). The model architectures are simi-
lar to ours, but the reported results are not positive.
We tried the publicly available code on our data,
but the results were not positive, either. Therefore,
we attribute the outcome to the difference in the
loss and training techniques, but not the model ar-
chitectures or data.

5.2 Adversarial Training

Generative adversarial networks are originally
proposed for generating realistic images as an im-
plicit generative model, but the adversarial train-
ing technique for matching distributions is gen-
eralizable to much more tasks, including natural

language processing. For example, Ganin et al.
(2016) address domain adaptation by adversari-
ally training features to be domain invariant, and
test on sentiment classification. Chen et al. (2016)
extend this idea to cross-lingual sentiment clas-
sification. Our research deals with unsupervised
bilingual lexicon induction based on word embed-
dings, and therefore works with word embedding
distributions, which are more interpretable than
the neural feature space of classifiers in the above
works.

In the field of neural machine translation, a re-
cent work (He et al., 2016) proposes dual learn-
ing, which also involves a two-agent game and
therefore bears conceptual resemblance to the ad-
versarial training idea. The framework is carried
out with reinforcement learning, and thus differs
greatly in implementation from adversarial train-
ing.

6 Conclusion

In this work, we demonstrate the feasibility of con-
necting word embeddings of different languages
without any cross-lingual signal. This is achieved
by matching the distributions of the transformed
source language embeddings and target ones via
adversarial training. The success of our approach
signifies the existence of universal lexical seman-
tic structure across languages. Our work also
opens up opportunities for the processing of ex-
tremely low-resource languages and domains that
lack parallel data completely.

Our work is likely to benefit from advances in
techniques that further stabilize adversarial train-
ing. Future work also includes investigating other
divergences that adversarial training can minimize
(Nowozin et al., 2016), and broader mathematical
tools that match distributions (Mohamed and Lak-
shminarayanan, 2016).
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