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Abstract

Recent work in semantic parsing for ques-
tion answering has focused on long and
complicated questions, many of which
would seem unnatural if asked in a normal
conversation between two humans. In an ef-
fort to explore a conversational QA setting,
we present a more realistic task: answer-
ing sequences of simple but inter-related
questions. We collect a dataset of 6,066
question sequences that inquire about semi-
structured tables from Wikipedia, with
17,553 question-answer pairs in total. To
solve this sequential question answering
task, we propose a novel dynamic neural
semantic parsing framework trained using
a weakly supervised reward-guided search.
Our model effectively leverages the sequen-
tial context to outperform state-of-the-art
QA systems that are designed to answer
highly complex questions.

1 Introduction

Semantic parsing, which maps natural language
text to meaning representations in formal logic, has
emerged as a key technical component for building
question answering systems (Liang, 2016). Once a
natural language question has been mapped to a for-
mal query, its answer can be retrieved by executing
the query on a back-end structured database.

One of the main focuses of semantic parsing
research is how to address compositionality in lan-
guage, and complicated questions have been specif-
ically targeted in the design of a recently-released
QA dataset (Pasupat and Liang, 2015). Take for ex-
ample the following question: “of those actresses
who won a Tony after 1960, which one took the
most amount of years after winning the Tony to

∗Work done during an internship at Microsoft Research

win an Oscar?” The corresponding logical form is
highly compositional; in order to answer it, many
sub-questions must be implicitly answered in the
process (e.g., “who won a Tony after 1960?”).

While we agree that semantic parsers should be
able to answer very complicated questions, in re-
ality these questions are rarely issued by users.1

Because users can interact with a QA system re-
peatedly, there is no need to assume a single-turn
QA setting where the exact question intent has to be
captured with just one complex question. The same
intent can be more naturally expressed through a
sequence of simpler questions, as shown below:

1. What actresses won a Tony after 1960?
2. Of those, who later won an Oscar?
3. Who had the biggest gap between their two

award wins?
Decomposing complicated intents into multiple re-
lated but simpler questions is arguably a more ef-
fective strategy to explore a topic of interest, and
it reduces the cognitive burden on both the person
who asks the question and the one who answers it.2

In this work, we study semantic parsing for
answering sequences of simple related ques-
tions. We collect a dataset of question sequences
called SequentialQA (SQA; Section 2)3 by asking
crowdsourced workers to decompose complicated
questions sampled from the WikiTableQuestions
dataset (Pasupat and Liang, 2015) into multiple
easier ones. SQA, which contains 6,066 question
sequences with 17,553 total question-answer pairs,
is to the best of our knowledge the first semantic
parsing dataset for sequential question answering.
Section 3 describes our novel dynamic neural se-
mantic parsing framework (DynSP), a weakly su-

1For instance, there are only 3.75% questions with more
than 15 words in WikiAnswers (Fader et al., 2014).

2Studies have shown increased sentence complexity links
to longer reading times (Hale, 2006; Levy, 2008; Frank, 2013).

3Available at http://aka.ms/sqa
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Figure 1: An example question sequence created
from a compositional question intent. Workers
must write questions whose answers are subsets of
cells in the table.

pervised structured-output learning approach based
on reward-guided search that is designed for solv-
ing sequential QA. We demonstrate in Section 4
that DynSP achieves higher accuracies than exist-
ing systems on SQA, and we offer a qualitative
analysis of question types that our method answers
effectively, as well as those on which it struggles.

2 A Dataset of Question Sequences

We collect the SequentialQA (SQA) dataset
via crowdsourcing by leveraging WikiTableQues-
tions (Pasupat and Liang, 2015, henceforth WTQ),
which contains highly compositional questions as-
sociated with HTML tables from Wikipedia. Each
crowdsourcing task contains a long, complex ques-
tion originally from WTQ as the question intent.
The workers are asked to compose a sequence of
simpler questions that lead to the final intent; an
example of this process is shown in Figure 1.

To simplify the task for workers, we only use
questions from WTQ whose answers are cells in the
table, which excludes those involving arithmetic
and counting. We likewise also restrict the ques-
tions our workers can write to those answerable by
only table cells. These restrictions speed the an-
notation process because workers can just click on
the table to answer their question. They also allow
us to collect answer coordinates (row and column
in the table) as opposed to answer text, which re-
moves many normalization issues for answer string
matching in evaluation. Finally, we only use long
questions that contain nine or more words as in-
tents; shorter questions tend to be simpler and are
thus less amenable to decomposition.

2.1 Properties of SQA

In total, we used 2,022 question intents from the
train and test folds of the WTQ for decomposi-
tion. We had three workers decompose each intent,
resulting in 6,066 unique questions sequences con-
taining 17,553 total question-answer pairs (for an
average of 2.9 questions per sequence). We divide
the dataset into train and test using the original
WTQ folds, resulting in an 83/17 train/test split.
Importantly, just like in WTQ, none of the tables
in the test set are seen in the training set.

We identify three frequently-occurring question
classes: column selection, subset selection, and
row selection.4 In column selection questions, the
answer is an entire column of the table; these ques-
tions account for 23% of all questions in SQA. Sub-
set and row selection are more complicated than
column selection, as they usually contain corefer-
ences to the previous question’s answer. In subset
selections, the answer is a subset of the previous
question’s answer; similarly, the answers to row
selections occur in the same row(s) as the previous
answer but in a different column. Subset selections
make up 27% of SQA, while row selections are an
additional 19%. The remaining 31% contains more
complex combinations of these three types.

We also observe dramatic differences in the
types of questions that are asked at each position
of the sequence. For example, 51% of the first
questions in the sequences are column selections
(e.g., “what are all of the teams?”). This number
dwindles to just 18% when we look at the second
question of each sequence, which indicates that the
collected sequences start with general questions
and progress to more specific ones.

3 Dynamic Neural Semantic Parsing

The unique setting of SQA provides both opportu-
nities and challenges. On the one hand, it contains
short questions with less compositionality, which
in theory should reduce the difficulty of the se-
mantic parsing problem; on the other hand, the
additional contextual dependencies of the preced-
ing questions and their answers increase modeling
complexity. These observations lead us to pro-
pose a dynamic neural semantic parsing framework
(DynSP) trained using a reward-guided search pro-

4In the example sequence “what are all of the tourna-
ments? in which one did he score the least points? on what
date was that?”, the first question is a column selection, the
second is a subset selection, and the last one is a row selection.
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cedure for solving SQA.
Given a question (optionally along with previous

questions and answers) and a table, DynSP formu-
lates the semantic parsing problem as a state–action
search problem. Each state represents a complete
or partial parse, while each action corresponds to
an operation to extend a parse. The goal during
inference is to find an end state with the highest
score as the predicted parse.

The quality of the induced semantic parse ob-
viously depends on the scoring function. In our
design, the score of a state is determined by the
scores of actions taken from the initial state to
the target state, which are predicted by differ-
ent neural network modules based on action type.
By leveraging a margin-based objective function,
the model learning procedure resembles several
structured-output learning algorithms such as struc-
tured SVMs (Tsochantaridis et al., 2005), but can
take either strong or weak supervision seamlessly.
DynSP is inspired by STAGG, a search-based

semantic parser (Yih et al., 2015), as well as the dy-
namic neural module network (DNMN) of Andreas
et al. (2016). Much like STAGG, DynSP chains
together different modules as search progresses;
however, these modules are implemented as neural
networks, which enables end-to-end training as in
DNMN. The key difference between DynSP and
DNMN is that in DynSP the network structure of
an example is not predetermined. Instead, different
network structures are constructed dynamically as
our learning procedure explores the state space. It
is straightforward to answer sequential questions
using our framework: we allow the model to take
the previous question and its answers as input, with
a slightly modified action space to reflect a depen-
dent semantic parse. The same search / learning
procedure is then able to effortlessly adapt to the
new setting. In this section, we first describe the
formal language underlying DynSP, followed by
the model formulation and learning algorithm.

3.1 Semantic parse language

Because tables are used as the data source to an-
swer questions in SQA, we decide to form our
semantic parses in an SQL-like language5. Our
parses consist of two parts: a select statement and
conjunctions of zero or more conditions.

5Our framework is not restricted to the formal language
we use in this work. In addition, the structured query can be
straightforwardly represented in other formal languages, such
as the lambda DCS logic used in (Pasupat and Liang, 2015).

A select statement is associated with a column
name, which is referred to as the answer column.
Conditions enforce additional constraints on which
cells in the answer column can be chosen; a se-
lect statement without any conditions indicates
that an entire column of the table is the answer
to the question. In particular, each condition con-
tains a column name as the condition column and
an operator with zero or more arguments. The
operators in this work include: =, 6=, >,≥, <,≤,
argmin, argmax. A cell in the answer column
is only a legitimate answer if the cell of the cor-
responding row in the condition column satisfies
the constraint defined by the operator and its argu-
ments. As a concrete example, suppose the data
source is the same table in Fig. 1. The semantic
parse of the question “Which super heroes came
from Earth and first appeared after 2009?” is “Se-
lect Character Where {Home World = Earth} ∧
{First Appeared > 2009}” and the answers are
{Dragonwing, Harmonia}.

In order to handle the sequential aspect of SQA,
we extend the semantic parse language by adding
a preamble statement subsequent. A subsequent
statement contains only conditions, as it essentially
adds constraints to the semantic parse of the previ-
ous question. For instance, if the follow-up ques-
tion is “Which of them breathes fire?”, then the cor-
responding semantic parse is “Subsequent Where
{Powers = Fire breath}”. The answer to this ques-
tion is {Dragonwing}, a subset of the previous
answer.

3.2 Model formulation

We start introducing our model design by first defin-
ing the state and action space. Let S be the set of
states and A the set of all actions. A state s ∈ S
is simply a sequence of variable length of actions
{a1, a2, a3, · · · , at}, where ai ∈ A. An empty
sequence, s0 = φ, is a special state used as the
starting point of search.

As mentioned earlier, a state represents a (partial)
semantic parse of one question. Each action is thus
a legitimate operation that can be added to grow
the semantic parse. Our action space design is tied
closely to the statements defined by our parse lan-
guage; in particular, an action instance is either a
complete or partial statement, and action instances
are grouped by type. For example, select and subse-
quent operations are two action types. A condition
statement is formed by two different action types:
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Id Type # Action instances
A1 Select-column # columns
A2 Cond-column # columns
A3 Op-Equal (=) # rows
A4 Op-NotEqual (6=) # rows
A5 Op-GT (>) # numbers / datetimes
A6 Op-GE (≥) # numbers / datetimes
A7 Op-LT (<) # numbers / datetimes
A8 Op-LE (≤) # numbers / datetimes
A9 Op-ArgMin # numbers / datetimes
A10 Op-ArgMax # numbers / datetimes
A11 Subsequent 1
A12 S-Cond-column # columns
A13 S-Op-Equal (=) # rows
A14 S-Op-NotEqual (6=) # rows
A15 S-Op-GT (>) # numbers / datetimes
A16 S-Op-GE (≥) # numbers / datetimes
A17 S-Op-LT (<) # numbers / datetimes
A18 S-Op-LE (≤) # numbers / datetimes
A19 S-Op-ArgMin # numbers / datetimes
A20 S-Op-ArgMax # numbers / datetimes

Table 1: Types of actions and the number of action
instances in each type. Numbers / datetimes are
the mentions discovered in the question (plus the
previous question if it is a subsequent condition).

(1) selection of the condition column, and (2) the
comparison operator. The instances of each action
type differ in their arguments (e.g., column names,
or specific cells in a column). Because conditions
in a subsequent parse rely on previous questions
and answers, they belong to different action types
from regular conditions. Table 1 summarizes the
action space defined in this work.

Any state that represents a complete and legit-
imate parse is an end state. Notice that search
does not necessarily need to stop at an end state,
because adding more actions (e.g., condition state-
ments) can lead to another end state. Take the
same example question from before: “Which su-
per heroes came from Earth and first appeared
after 2009?”. One action sequence that represents
the parse is {(A1) select-column Character, (A2)
cond-column Home World, (A3) op-equal Earth,
(A2) cond-column First Appeared, (A5) op-gt
2009}.

Notice that many states represent semantically
equivalent parses (e.g., those with the same ac-
tions ordered differently, or states with repeated
conditions). To prune the search space, we intro-
duce the function Act(s) ⊂ A, which defines the
actions that can be taken when given a state s. Bor-
rowing the idea of staged state generation in (Yih
et al., 2015), we choose a default ordering of ac-
tions based on their types, dictating that a select
action must be picked first and that a condition-

A1 A2 A3...A10

s0

A2

A11 A12 A13...A20

A12

Figure 2: Possible action transitions based on their
types (see Table 1). Shaded circles are end states.

column needs to be determined before the operator
is chosen. The full transition diagram is presented
in Fig. 2. Note that to implement this transition
order, we only need to check the last action in the
state. In addition, we also disallow adding dupli-
cates of actions that already exist in the state.

We use beam search to find an end state with
the highest score for inference. Let st be a state
consisting of a sequence of actions a1, a2, · · · , at.
The state value function V is defined recursively
as V (st) = V (st−1) + π(st−1, at), V (s0) = 0,
where the policy function π(s, a) scores an action
a ∈ Act(s) given the current state.

3.3 Policy function
The intuition behind the policy function can be
summarized as follows. Halfway through the con-
struction of a semantic parse, the policy function
measures the quality of an immediate action that
can be taken next given the current state (i.e., the
question and actions that have previously been cho-
sen). To enable integrated, end-to-end learning, the
policy function in our framework is parameterized
using neural networks. Because each action type
has very different semantics, we design different
network structures (i.e., modules) accordingly.

Most of our network structures encourage learn-
ing semantic matching functions between the
words in the question and table (either the column
names or cells). Here we illustrate the design using
the select-column action type (A1). Conceptually,
the corresponding module is a combination of vari-
ous matching scores. Let WQ be the embeddings
of words in the question and WC be the embed-
dings of words in the target column name. The
component matching functions are:

fmax =
1

|WC |
∑

wc∈WC

max
wq∈WQ

wT
q wc

favg =


 1

|WC |
∑

wc∈WC

wc




T 
 1

|WQ|
∑

wq∈WQ

wq



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Essentially, for each word in the column name,
fmax finds the highest matching question word and
outputs the average score. Conversely, favg simply
uses the average word vectors of the question and
column name and returns their inner product. In
another variant of favg, we replace the question
representation with the output of a bi-directional
LSTM model. These matching component func-
tions are combined by a 2-layer feed-forward neu-
ral network, which outputs a scalar value as the
action score. Details of the neural module design
for other action types can be found in Appendix A.

3.4 Model learning

Because the state value function V is defined re-
cursively as the sum of scores of actions in the se-
quence, the goal of model optimization is to learn
the parameters in the neural networks behind the
policy function. Let θ be the collection of all the
model parameters. Then the state value function
can be written as: Vθ(st) =

∑t
i=1 πθ(si−1, ai).

In a fully supervised setting where the correct se-
mantic parse of each question is available, learning
the policy function can be reduced to a sequence
prediction problem. However, while having full
supervision leads to a better semantic parser, col-
lecting the correct parses requires a much more
sophisticated UI design (Yih et al., 2016). In many
scenarios, such as the one in the SQA dataset, it is
often the case that only the answers to the questions
are available. Adapting a learning algorithm to this
weakly supervised setting is thus critical.

Generally speaking, weakly supervised semantic
parsers operate on one assumption — a candidate
semantic parse is treated as a correct one if it results
in answers that are identical to the gold answers.
Therefore, a straightforward modification of exist-
ing structured learning algorithms in our setting is
to use any semantic parse found to evaluate to the
correct answers during beam search as a reference
parse, and then update the model parameters ac-
cordingly. In practice, however, this approach is
often problematic: the search space can grow enor-
mously, and when coupled with poor model per-
formance early during training, this leads to beams
that contain no parses evaluating to the correct an-
swer. As a result, learning becomes inefficient and
takes a long time to converge.

In this work, we propose a conceptually simple
learning algorithm for weakly supervised training
that sidesteps the inefficient learning problem. Our

key insight is to conduct inference using a beam
search procedure guided by an approximate reward
function. The search procedure is executed twice
for each training example, one for finding the best
possible reference semantic parse and the other
for finding the predicted semantic parse to update
the model. Our framework is suitable for learning
from either implicit or explicit supervision, and is
detailed in a companion paper (Peng et al., 2017).
Below we describe how we adapt it to the semantic
parsing problem in this work.

Approximate reward Let A(s) be the answers
retrieved by executing the semantic parse repre-
sented by state s, and let A∗ be the set of gold
answers of a given question. We define the reward
R(s;A∗) = 1[A(s) = A∗], or the accuracy of the
retrieved answers. We use R(s) as the abbreviation
for R(s;A∗). A state s with R(s) = 1 is called a
goal state. Directly using this reward function in
search of goal states can be difficult, as rewards
of most states are 0. However, even when the an-
swers from a semantic parse are not completely
correct, some overlap with the gold answers can
still hint that the state is close to a goal state, thus
providing useful information to guide search. To
formalize this idea, we define an approximated
reward R̃(s) in this work using the Jaccard coef-
ficient (R̃(s) = |A(s) ∩ A∗|/|A(s) ∪ A∗|). If s
is a goal state, then obviously R̃(s) = R(s) = 1.
Also because our actions effectively add additional
constraints to exclude some table cells, any suc-
ceeding states of s′ with R̃(s′) = 0 will also have 0
approximate reward and can be pruned from search
immediately.

We use the approximate reward R̃ to guide our
beam search to find the reference parses (i.e., goal
states). Some variations of the approximate reward
can be used to make learning more efficient. For
instance, we use the model score for tie-breaking,
effectively making the approximate reward func-
tion depend on the model parameters:

R̃θ(s) = |A(s)∩A∗|/|A(s)∪A∗|+ εVθ(s), (1)

where ε is a small constant. When a goal state is
not found, the state with the highest approximate
reward can still be used as a surrogate reference.

Updating parameters The model parameters
are updated by first finding the most violated state
ŝ and then comparing ŝ with a reference state s∗ to
compute a loss. The idea of finding the most vio-
lated state comes from Taskar et al. (2004), with the
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Algorithm 1 Model parameter updates
1: for pick a labeled data (x,A∗) do
2: s∗ ← argmax

s∈E(x)
R̃(s;A∗)

3: ŝ← argmax
s∈E(x)

Vθ(s)− R̃(s;A∗)

4: update θ by minimizing max(L(s), 0)
5: end for

intuition that the learning algorithm should make
the state value function behave similarly to the re-
ward. Formally, for every state s, we would like the
value function to satisfy the following constraint:

Vθ(s
∗)− Vθ(s) ≥ R(s∗)−R(s) (2)

R(s∗) − R(s) is thus the margin. As discussed
above, we use approximate reward function R̃θ
instead of the true reward. We want to update the
model parameters θ to make sure that the constraint
is satisfied. When the constraint is violated, the
degree of violation can be written as:

L(s) = Vθ(s)− Vθ(s∗)− R̃θ(s) + R̃θ(s
∗) (3)

In the algorithm, we want to find the state such
that the corresponding constraint is most violated.
Finding the most violated state is then equivalent to
finding the state with the highest value of Vθ(s)−
R̃θ(s) as the other two terms are constant.

Algorithm 1 sketches the key steps of our
method in each iteration. It first picks a training
instance (x and y), where x represents the table
and the question, and y is the gold answer set. The
approximate reward function R̃ is defined by y,
while E(x) is the set of end states for this instance.
Line 2 finds the best reference and Line 3 finds the
most violated state, both relying on beam search
for approximate inference. Line 4 computes the
gradient of the loss in Eq. (3), which is then used in
backpropagation to update the model parameters.

4 Experiments

Since the questions in SQA are decomposed from
those in WTQ, we compare our method, DynSP, to
two existing semantic parsers designed for WTQ:
(1) the floating parser (FP) of Pasupat and Liang
(2015), and (2) the neural programmer (NP) of Nee-
lakantan et al. (2017). We describe below each
system’s configurations in more detail and qualita-
tively compare and contrast their performance on
SQA.

Floating parser: The floating parser (Pasupat
and Liang, 2015) maps questions to logical forms
and then executes them on the table to retrieve the
answers. It was designed specifically for the WTQ
task (achieving 37.0% accuracy on the WTQ test
set) and differs from other semantic parsers by not
anchoring predicates to tokens in the question, re-
lying instead on typing constraints to reduce the
search space. Using FP as-is results in poor perfor-
mance on SQA because the system is configured
for questions with single answers, while SQA con-
tains many questions with multiple-cell answers.
We address this issue by removing a pruning hyper-
parameter (tooManyValues) and features that add
bias on the denotation size.

Neural programmer: The neural programmer
proposed by Neelakantan et al. (2017) has shown
promising results on WTQ, achieving accuracies
on par with those of FP. Similar to our method, NP
contains specialized neural modules that perform
discrete operations such as argmax and argmin,
and it is able to chain together multiple modules
to answer a single question. However, module se-
lection in NP is computed via soft attention (Cho
et al., 2014), and information is propagated from
one module to the next using a recurrent neural
network. Since module selection is not tied to a
pre-defined parse language like DynSP, NP sim-
ply runs for a fixed number of recurrent timesteps
per question rather than growing a parse until it is
complete.

Comparing the baseline systems: FP and NP
exemplify two very different paradigms for design-
ing a semantic parsing system to answer questions
using structured data. FP is a feature-rich system
that aims to output the correct semantic parse (in
a logical parse language) for a given question. On
the other hand, the end-to-end neural network of
NP relies on its modular architectures to output a
probability distribution over cells in a table given a
question. While NP can learn more powerful neural
matching functions between questions and tables
than FP’s simpler feature-based matching, NP can-
not produce a complete, discrete semantic parse,
which means that its actions can only be interpreted
coarsely by looking at the order of the modules se-
lected at each timestep.6 Furthermore, FP’s design
theoretically allows it to operate on partial tables

6Since NP uses a fixed number of timesteps for each ques-
tion, the module order is not guaranteed to correspond to a
complete parse.
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indirectly through an API, which is necessary if
tables are large and stored in a backend database,
while NP requires upfront access to the full tables
to facilitate end-to-end model differentiability.7

Even though FP and NP are powerful systems
designed for the more difficult, compositional ques-
tions in WTQ, our method outperforms both sys-
tems on SQA when we consider all questions
within a sequence independently of each other (a
fair comparison), demonstrating the power of our
search-based semantic parsing framework. More
interestingly, when we leverage the sequential in-
formation by including the subsequent action, our
method improves almost 3% in absolute accuracy.
DynSP combines the best parts of both FP and

NP. Given a question, we try to generate its correct
semantic parse in a formal language that can be
predefined by the choice of structured data source
(e.g., SQL). However, we push the burden of fea-
ture engineering to neural networks as in NP. Our
framework is easier to extend to the sequential set-
ting of SQA than either baseline system, requir-
ing just the additional subsequent action. FP’s
reliance on a hand-designed grammar necessitates
extra rules that operate over partial tables from the
previous question, which if added would blow up
the search space. Meanwhile, modifying NP to han-
dle sequential QA is non-trivial due to soft module
and answer selection; it is not immediately clear
how to constrain predictions for one question based
on the probability distribution over table cells from
the previous question in the sequence.

To more fairly compare DynSP to the baseline
systems, we also experiment with a “concatenated
questions” setting, which allows the baselines to
access sequential context. Here, we treat concate-
nated question prefixes of a sequence as additional
training examples, where a question prefix includes
all questions prior to the current question in the se-
quence.

For example, suppose the question sequence is:
1. what are all of the teams? 2. of those, which won
championships? For the second question, in addi-
tion to the original question–answer pair, we add
the concatenated question sequence “what are all
of the teams? of those, which won championships?”
paired with the second question’s answer. We refer
to these concatenated question baselines as FP+

and NP+.
7In fact, NP is restricted during training to only questions

whose associated tables have fewer than a certain threshold of
rows and columns due to computational constraints.

4.1 DynSP implementation details

Unlike previous dynamic neural network frame-
works (Andreas et al., 2016; Looks et al., 2017),
where each example can have different but prede-
termined structure, DynSP needs to dynamically
explores and constructs different neural network
structures for each question. Therefore, we choose
DyNet (Neubig et al., 2017) as our implementation
platform for its flexibility in composing computa-
tion graphs. We optimize our model parameters
using standard stochastic gradient descent. The
word embeddings are initialized with 100-d pre-
trained GloVe vectors (Pennington et al., 2014) and
fine-tuned during training with dropout rate 0.5.
For follow-up questions, we choose uniformly at
random to use either gold answers to the previous
question or the model’s previous predictions.8 We
constrain the maximum length of actions to 3 for
computational efficiency and set the beam size to
15 in our reported models, as accuracy gains are
negligible with larger beam sizes. We train our
model for 30 epochs, although the best model on
the validation set is usually found within the first
20 epochs. Only CPU is used in model training,
and each epoch in the beam size 15 setting takes
about 30 minutes to complete.

4.2 Results & Analysis

Table 2 shows the results of the baseline systems
as well as our method on SQA’s test set. For each
system, we show both the overall accuracy, the
sequence accuracy (the percentage of sequences
for which every question was answered correctly),
and the accuracy at each position in the sequence.
Our method without any sequential information
(DynSP) outperforms the standard baselines, and
when the subsequent action is added (DynSP∗), we
improve both overall and sequence accuracy over
the concatenated-question baselines.

With that said, all of the systems struggle to
answer all questions within a sequence correctly,
despite the fact that each individual question is
simpler on average than those in WTQ. Most of
the errors made by our system are due to either
semantic matching challenges or limitations of the
underlying parse language. In the middle example
of Figure 3, the first question asks for a list of super
heroes; from the model’s point of view, Real name
is a more relevant column than Character, although
the latter is correct. The second question also con-

8Only predicted answers are used at test time.
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Model All Seq Pos 1 Pos 2 Pos 3

FP 34.1 7.2 52.6 25.6 25.9
NP 39.4 10.8 58.9 35.9 24.6

DynSP 42.0 10.2 70.9 35.8 20.1

FP+ 33.2 7.7 51.4 22.2 22.3
NP+ 40.2 11.8 60.0 35.9 25.5

DynSP∗ 44.7 12.8 70.4 41.1 23.6

Table 2: Accuracies of all systems on SQA; the
models in the first half of the table treat questions
independently, while those in the second half con-
sider sequential context. Our method outperforms
existing ones both in terms of overall accuracy as
well as sequence accuracy.

tains a challenging matching problem where the
unlisted home worlds referred to in the question
are marked as Unknown in the table. Many of these
matching issues are resolved by humans using com-
mon sense, which for computers requires far more
data than is available in SQA to learn.

Even when there are no tricky discrepancies be-
tween question and table text, questions are often
complex enough that their semantic parses cannot
be expressed in our parse language. Although triv-
ial on the surface, the final question in the bottom
sequence of Figure 3 is one such example; the cor-
rect semantic parse requires access to the answers
of both the first and second question, actions that
we have not currently implemented in our language
due to concerns with the search space size. In-
creasing the number of complex actions requires
designing smarter optimization procedures, which
we leave to future work.

5 Related Work

Previous work on conversational QA has focused
on small, single-domain datasets. Perhaps most re-
lated to our task is the context-dependent sentence
analysis described in (Zettlemoyer and Collins,
2009), where conversations between customers and
travel agents are mapped to logical forms after re-
solving referential expressions. Another dataset
of travel booking conversations is used by Artzi
and Zettlemoyer (2011) to learn a semantic parser
for complicated queries given user clarifications.
More recently, Long et al. (2016) collect three con-
textual semantic parsing datasets (from synthetic
domains) that contain coreferences to entities and

1. Which nations competed in the FINA women’s water polo cup?

2. Of these nations, which ones took home at least one gold medal? 

3. Of those, which ranked in the top 2 positions?

SELECT Nation

SUBSEQUENT WHERE Gold != 0

SUBSEQUENT WHERE Rank <= 2

1. Who are all of the super heroes?

2. Which of those does not have a home world listed? 
SELECT

SUBSEQUENT WHERE !=

CharacterReal name

Home world UnknownVyrga

1. How many naturalizations did Maghreb have in 2000?

2. How many naturalizations did North America have in 2000?

3. Which had more?

SELECT 2000

SUBSEQUENT WHERE …Origin = North America

WHERE =…Origin Maghreb

SELECT 2000 WHERE =…Origin North America

MAX SUBSEQUENT 1 SUBSEQUENT 2

SELECT …Origin WHERE 2000 =

Figure 3: Parses computed by DynSP for three test
sequences (actions in blue boxes, values from table
in white boxes). Top: all three questions are parsed
correctly. Middle: semantic matching errors cause
the model to select incorrect columns and condi-
tions. Bottom: The final question is unanswerable
due to limitations of our parse language.

actions. We differentiate ourselves from these prior
works in two significant ways: first, our dataset is
not restricted to a particular domain, and second, a
major goal of our work is to analyze the different
types of sequence progressions people create when
they are trying to express a complicated intent.

Complex, interactive QA tasks have also been
proposed in the information retrieval community,
where the data source is a corpus of newswire
text (Kelly and Lin, 2007). We also build on aspects
of some existing interactive question-answering
systems. For example, the system of Harabagiu
et al. (2005) includes a module that predicts what a
user will ask next given their current question.

Other than FP and NP, the work of Neural
Symbolic Machines (NSM) (Liang et al., 2017)
is perhaps the closest to ours. NSM aims to
generate formal semantic parses of questions
that can be executed on Freebase to retrieve an-
swers, and is trained using the REINFORCE algo-
rithm (Williams, 1992) augmented with approxi-
mate gold parses found in a separate curriculum
learning stage. In comparison, finding reference
parses is an integral part of our algorithm. Our non-
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probabilistic, margin-based objective function also
helps avoid the need for empirical tricks to han-
dle normalization and proper sampling, which are
crucial when applying REINFORCE in practice.

6 Conclusion & Future Work

In this work we move towards a conversational,
multi-turn QA scenario in which systems must
rely on prior context to answer the user’s cur-
rent question. To this end, we introduce SQA, a
dataset that consists of 6,066 unique sequences
of inter-related questions about Wikipedia tables,
with 17,553 questions-answer pairs in total. To the
best of our knowledge, SQA is the first semantic
parsing dataset that addresses sequential question
answering. We propose DynSP, a dynamic neu-
ral semantic parsing framework, for solving SQA.
By formulating semantic parsing as a state–action
search problem, our method learns modular neu-
ral network models through reward-guided search.
DynSP outperforms existing state-of-the-art sys-
tems designed for answering complex questions
when applied to SQA, and increases the gain after
incorporating the subsequent actions.

In the future, we plan to investigate several in-
teresting research questions triggered by this work.
For instance, although our current formal language
design covers most question types in SQA, it is
nevertheless important to extend it further to make
the semantic parser more robust (e.g., by includ-
ing UNION or allowing comparison of multiple
previous answers). Practically, allowing a more
complicated semantic parse structure—either by in-
creasing the number of primitive statements or the
length of the parse—poses serious computational
challenges in both model learning and inference.
Because of the dynamic nature of our framework, it
is not trivial to leverage the computational capabili-
ties of GPUs using minibatched training; we plan to
investigate ways to take full advantage of modern
computing machinery in the near future. Finally,
better resolution of semantic matching errors is a
top priority, and unsupervised learning from large
external corpora is one way to make progress in
this direction.
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A Action Neural Module Design

We describe here the neural module design for each
action. As most actions try to match question text
to column names or table entries, the neural net-
work architectures are essentially various kinds of
semantic similarity matching functions.

A1 Select-column Conceptually, the correspond-
ing module is a combination of various matching
scores. Let WQ be the embeddings of words in the
question and WC be the embeddings of words in
the target column name. The component matching
functions are:

fmax =
1

|WC |
∑

wc∈WC

max
wq∈WQ

wT
q wc

favg =


 1

|WC |
∑

wc∈WC

wc




T 
 1

|WQ|
∑

wq∈WQ

wq




Essentially, for each word in the column name,
fmax finds the highest matching question word and
outputs the average score. Conversely, favg simply
uses the average word vectors of the question and
column name and returns their inner product. In
another variant of favg, we replace the question rep-
resentation with the output of a bidirectional LSTM
model. These matching component functions are
combined by a 2-layer feed-forward neural net-
work, which outputs a scalar value as the action
score.

A2 Cond-column Because this action also tries
to find the correct column (but for conditions), we
use the same matching scoring functions as in A1

module. However, a different 2-layer feed-forward
neural network is used to combine the scores, as
well as two binary features that indicate whether
all the cells in this column are numeric values or
not.

A3 Op-Equal This action checks whether a par-
ticular column value matches the question text.
Suppose the average of the word vectors of the
particular cell is wx and the question word vectors
are WQ. Here the matching function is:

fmax = max
wq∈WQ

wTq wx
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A4 Op-NotEqual The neural module for this ac-
tion extends the design for A3. It first uses a max
function similar to fmax in A3 to compare the vec-
tor of the negation word “not”, and the question
words. This score is combined with the fmax score
in A3 using a 2-layer feed-forward neural network
as the final module score.

A5-A8 Op-GT, Op-GE, Op-LT, Op-LE The ar-
guments of these comparison operations are ex-
tracted from question in advance. Therefore, the
action modules just need to decide whether such
relations are indeed used in the question. We take a
simple strategy by initialing a special word vector
that tries to capture the semantics of the relation.
Take op-gt, greater than, for example. We use the
average of the vectors of words like more, greater
and larger to initialize the special word vector, de-
noted as wgt. Let warg be the averaged vectors of
words within a [−2,+2] window centered at the
argument in the question. The inner product of wgt
and warg is then used as the scoring function.

A9-A10 Op-ArgMin, Op-ArgMax We handle
ArgMin and ArgMax similarly to the comparison
operations. The difference is that we compare the
special word vector to the averaged vector of all
the question words, instead of a short subsequence
of words.

Subsequent actions The modules in subsequent
actions use basically the same design as their coun-
terparts in the independent question setting. The
main difference is that we extend the question repre-
sentation to words from not just the target question,
but also the question that immediately precedes it.
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