
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1612–1622
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1148

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1612–1622
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1148

Learning Semantic Correspondences in Technical Documentation

Kyle Richardson and Jonas Kuhn
Institute of Natural Language Processing

University of Stuttgart
{kyle,jonas}@ims.uni-stuttgart.de

Abstract

We consider the problem of translating
high-level textual descriptions to formal
representations in technical documenta-
tion as part of an effort to model the
meaning of such documentation. We fo-
cus specifically on the problem of learn-
ing translational correspondences between
text descriptions and grounded represen-
tations in the target documentation, such
as formal representation of functions or
code templates. Our approach exploits
the parallel nature of such documentation,
or the tight coupling between high-level
text and the low-level representations we
aim to learn. Data is collected by min-
ing technical documents for such paral-
lel text-representation pairs, which we use
to train a simple semantic parsing model.
We report new baseline results on sixteen
novel datasets, including the standard li-
brary documentation for nine popular pro-
gramming languages across seven natural
languages, and a small collection of Unix
utility manuals.

1 Introduction

Technical documentation in the computer domain,
such as source code documentation and other how-
to manuals, provide high-level descriptions of how
lower-level computer programs and utilities work.
Often these descriptions are coupled with formal
representations of these lower-level features, ex-
pressed in the target programming languages. For
example, Figure 1.1 shows the source code doc-
umentation (in red/bold) for the max function in
the Java programming language paired with the
representation of this function in the underlying
Java language (in black). This formal representa-
tion captures the name of the function, the return

1. Java Documentation

*Returns the greater of two long values
*
* @param a an argument
* @param b another argument
* @return the larger of a and b
* @see java.lang.Long#MAX VALUE
*/
public static long max(long a, long b)

2. Clojure Documentation

(defn random-sample
"Returns items from coll with random
probability of prob (0.0 - 1.0)"
([prob coll] ...))

3. PHP documentation (French)

Ajoute une valeur comme dernier élément
*
* @param value La valeur á ajouter
* @see ArrayIterations::next()
*/
public void append(mixed $value)

Figure 1: Example source code documentation.

value, the types of arguments the function takes,
among other details related to the function’s place
and visibility in the overall source code collection
or API.

Given the high-level nature of the textual anno-
tations, modeling the meaning of any given de-
scription is not an easy task, as it involves much
more information than what is directly provided in
the associated documentation. For example, cap-
turing the meaning of the description the greater of
might require having a background theory about
quantity/numbers and relations between different
quantities. A first step towards capturing the
meaning, however, is learning to translate this de-
scription to symbols in the target representation, in
this case to the max symbol. By doing this trans-
lation to a formal language, modeling and learn-
ing the subsequent semantics becomes easier since
we are eliminating the ambiguity of ordinary lan-

1612

https://doi.org/10.18653/v1/P17-1148
https://doi.org/10.18653/v1/P17-1148

Unix Utility Manual

NAME : dappprof

profile user and lib function usage.

SYNOPSIS dappprof [-ac] -p PID | command

DESCRIPTION

-p PID examine the PID ...

EXAMPLES

Print elapsed time for PID 1871
dappprof -p PID=1871

SEE ALSO: dapptrace(1M), dtrace(1M), ...

Figure 2: An example computer utility manual in
the Unix domain. Descriptions of example uses
are shown in red.

guage. Similarly, we would want to first translate
the description two long values, which specifies
the number and type of argument taken by this
function, to the sequence long a,long b.

By focusing on translation, we can create new
datasets by mining these types of source code
collections for sets of parallel text-representation
pairs. Given the wide variety of available pro-
gramming languages, many such datasets can be
constructed, each offering new challenges related
to differences in the formal representations used
by different programming languages. Figure 1.2
shows example documentation for the Clojure pro-
gramming language, which is part of the Lisp fam-
ily of languages. In this case, the description Re-
turns random probability of should be translated
to the function name random-sample since it
describes what the overall function does. Simi-
larly, the argument descriptions from coll and of
prob should translate to coll and prob.

Given the large community of programmers
around the world, many source code collections
are available in languages other than English. Fig-
ure 1.3 shows an example entry from the French
version of the PHP standard library, which was
translated by volunteer developers. Having multi-
lingual data raises new challenges, and broadens
the scope of investigations into this type of seman-
tic translation.

Other types of technical documentation, such
as utility manuals, exhibit similar features. Fig-
ure 2 shows an example manual in the domain of
Unix utilities. The textual description in red/bold
describes an example use of the dappprof util-
ity paired with formal representations in the form
of executable code. As with the previous exam-

ples, such formal representations do not capture
the full meaning of the different descriptions, but
serve as a convenient operationalization, or trans-
lational semantics, of the meaning in Unix. Print
elapsed time, for example, roughly describes what
the dappprof utility does, whereas PID 1871
describes the second half of the code sequence.

In both types of technical documentation, infor-
mation is not limited to raw pairs of descriptions
and representations, but can include other infor-
mation and clues that are useful for learning. Java
function annotations include textual descriptions
of individual arguments and return values (shown
in green). Taxonomic information and pointers
to related functions or utilities are also annotated
(e.g., the @see section in Figure 1, or SEE ALSO
section in Figure 2). Structural information about
code sequences, and the types of abstract argu-
ments these sequences take, are described in the
SYNOPSIS section of the Unix manual. This last
piece of information allows us to generate abstract
code templates, and generalize individual argu-
ments. For example, the raw argument 1871 in
the sequence dappprof -p 1871 can be typed
as a PID instance, and an argument of the -p flag.

Given this type of data, a natural experiment is
to see whether we can build programs that trans-
late high-level textual descriptions to correct for-
mal representations. We aim to learn these trans-
lations using raw text-meaning pairs as the sole su-
pervision. Our focus is on learning function trans-
lations or representations within nine program-
ming language APIs, each varying in size, repre-
sentation style, and source natural language. To
our knowledge, our work is the first to look at
translating source code descriptions to formal rep-
resentations using such a wide variety of program-
ming and natural languages. In total, we intro-
duce fourteen new datasets in the source code do-
main that include seven natural languages, and re-
port new results for an existing dataset. As well,
we look at learning simple code templates using a
small collection of English Unix manuals.

The main goal of this paper is to establish strong
baselines results on these resources, which we
hope can be used for benchmarking and develop-
ing new semantic parsing methods. We achieved
initial baselines using the language modeling
and translation approach of Deng and Chrupała
(2014). We also show that modest improvements
can be achieved by using a more conventional

1613

discriminative model (Zettlemoyer and Collins,
2009) that, in part, exploits document-level fea-
tures from the technical documentation sets.

2 Related Work

Our work is situated within research on seman-
tic parsing, which focuses on the problem of
generating formal meaning representations from
text for natural language understanding applica-
tions. Recent interest in this topic has centered
around learning meaning representation from ex-
ample text-meaning pairs, for applications such
as automated question-answering (Berant et al.,
2013), robot control (Matuszek et al., 2012) and
text generation (Wong and Mooney, 2007a).

While generating representations for natural
language understanding is a complex task, most
studies focus on the translation or generation prob-
lem independently of other semantic or knowledge
representation issues. Earlier work looks at super-
vised learning of logical representations using ex-
ample text-meaning pairs using tools from statisti-
cal machine translation (Wong and Mooney, 2006)
and parsing (Zettlemoyer and Collins, 2009).
These methods are meant to be applicable to a
wide range of translation problems and represen-
tation types, which make new parallel datasets or
resources useful for furthering the research.

In general, however, such datasets are hard to
construct since building them requires consider-
able domain knowledge and knowledge of logic.
Alternatively, we construct parallel datasets au-
tomatically from technical documentation, which
obviates the need for annotation. While the for-
mal representations are not actual logical forms,
they still provide a good test case for testing how
well semantic parsers learn translations to repre-
sentations.

To date, most benchmark datasets are limited to
small controlled domains, such as geography and
navigation. While attempts have been made to do
open-domain semantic parsing using larger, more
complex datasets (Berant et al., 2013; Pasupat and
Liang, 2015), such resources are still scarce. In
Figure 3, we compare the details of one widely
used dataset, Geoquery (Zelle and Mooney, 1996),
to our new datasets. Our new resources are on av-
erage much larger than geoquery in terms of the
number of example pairs, and the size of the differ-
ent language vocabularies. Most existing datasets
are also primarily English-based, while we focus

on learning in a multilingual setting using several
new moderately sized datasets.

Within semantic parsing, there has also been
work on situated or grounded learning, that in-
volves learning in domains with weak supervision
and indirect cues (Liang, 2016; Richardson and
Kuhn, 2016). This has sometimes involved learn-
ing from automatically generated parallel data and
representations (Chen and Mooney, 2008) of the
type we consider in this paper. Here one can
find work in technical domains, including learning
to generate regular expressions (Manshadi et al.,
2013; Kushman and Barzilay, 2013) and other
types of source code (Quirk et al., 2015), which
ultimately aim to solve the problem of natural lan-
guage programming. We view our work as one
small step in this general direction.

Our work is also related to software components
retrieval and builds on the approach of Deng and
Chrupała (2014). Robustly learning the translation
from language to code representations can help to
facilitate natural language querying of API collec-
tions (Lv et al., 2015). As part of this effort, recent
work in machine learning has focused on the sim-
ilar problem of learning code representations us-
ing resources such as StackOverflow and Github.
These studies primarily focus on learning longer
programs (Allamanis et al., 2015) as opposed to
function representations, or focus narrowly on a
single programming language such as Java (Gu
et al., 2016) or on related tasks such as text gener-
ation (Iyer et al., 2016; Oda et al., 2015). To our
knowledge, none of this work has been applied to
languages other than English or such a wide vari-
ety of programming languages.

3 Mapping Text to Representations

In this section, we formulate the basic problem
of translating to representations in technical doc-
umentation.

3.1 Problem Description

We use the term technical documentation to re-
fer to two types of resources: textual descriptions
inside of source code collections, and computer
utility manuals. In this paper, the first type in-
cludes high-level descriptions of functions in stan-
dard library source code documentation. The sec-
ond type includes a collection of Unix manuals,
also known as man pages. Both types include pairs
of text and code representations.

1614

Dataset #Pairs #Descr. Symbols#Words Vocab. Example Pairs (x, z), Goal: learn a function x→ z

Java 7,183 4,804 4,072 82,696 3,721 x : Compares this Calendar to the specified Object.
z : boolean util.Calendar.equals(Object obj)

Ruby 6,885 1,849 3,803 67,274 5,131 x : Computes the arc tangent given y and x.
z : Math.atan2(y,x) → Float

PHPen 6,611 13,943 8,308 68,921 4,874 x : Delete an entry in the archive using its name.
z : bool ZipArchive::deleteName(string $name)

Python 3,085 429 3,991 27,012 2,768 x : Remove the specific filter from this handler.
z : logging.Filterer.removeFilter(filter)

Elisp 2,089 1,365 1,883 30,248 2,644 x : This function returns the total height, in lines, of the window.
z : (window-total-height window round)

Haskell 1,633 255 1,604 19,242 2,192 x : Extract the second component of a pair.
z : Data.Tuple.snd :: (a, b) -> b

Clojure 1,739 – 2,569 17,568 2,233 x : Returns a lazy seq of every nth item in coll.
z : (core.take-nth n coll)

C 1,436 1,478 1,452 12,811 1,835 x : Returns the current file position of the stream stream.
z : long int ftell(FILE *stream)

Scheme 1,301 376 1,343 15,574 1,756 x : Returns a new port with type port-type and the given state.
z : (make-port port-type state)

Unix 921 940 1,000 11,100 2,025 x : To get policies for a specific user account.
z : pwpolicy -u username -getpolicy

Geoquery 880 – 167 6,663 279 x : What is the tallest mountain in America?
z : (highest(mountain(loc 2(countryid usa))))

Figure 3: Description of our English corpus collection with example text/function pairs.

We will refer to the target representations in
these resources as API components, or compo-
nents. In source code, components are formal rep-
resentations of functions, or function signatures
(Deng and Chrupała, 2014). The form of a func-
tion signature varies depending on the resource,
but in general gives a specification of how a func-
tion is named and structured. The example func-
tion signatures in Figure 3 all specify a function
name, a list of arguments, and other optional in-
formation such as a return value and a names-
pace. Components in utility manuals are short ex-
ecutable code sequences intended to show an ex-
ample use of a utility. We assume typed code se-
quences following Richardson and Kuhn (2014),
where the constituent parts of the sequences are
abstracted by type.

Given a set of example text-component pairs,
D = {(xi, zi)}n

i=1, the goal is to learn how to gen-
erate correct, well-formed components z ∈ C for
each input x. Viewed as a semantic parsing prob-
lem, this treats the target components as a kind
of formal meaning representation, analogous to a
logical form. In our experiments, we assume that
the complete set of output components are known.
In the API documentation sets, this is because each
standard library contains a finite number of func-

tion representations, roughly corresponding to the
number of pairs as shown in Figure 3. For a given
input, therefore, the goal is to find the best candi-
date function translation within the space of the to-
tal API components C (Deng and Chrupała, 2014).

Given these constraints, our setup closely re-
sembles that of Kushman et al. (2014), who learn
to parse algebra word problems using a small set
of equation templates. Their approach is inspired
by template-based information extraction, where
templates are recognized and instantiated by slot-
filling. Our function signatures and code tem-
plates have a similar slot-like structure, consisting
of slots such as return value, arguments, function
name and namespace.

3.2 Language Modeling Baselines

Existing approaches to semantic parsing formalize
the mapping from language to logic using a va-
riety of formalisms including CFGs (Börschinger
et al., 2011), CCGs (Kwiatkowski et al., 2010),
synchronous CFGs (Wong and Mooney, 2007b).
Deciding to use one formalism over another is of-
ten motivated by the complexities of the target rep-
resentations being learned. For example, recent in-
terest in learning graph-based representations such
as those in the AMR bank (Banarescu et al., 2013)

1615

requires parsing models that can generate com-
plex graph shaped derivations such as CCGs (Artzi
et al., 2015) or HRGs (Peng et al., 2015). Given
the simplicity of our API representations, we opt
for a simple semantic parsing model that exploits
the finiteness of our target representations.

Following ((Deng and Chrupała, 2014); hence-
forth DC), we treat the problem of component
translation as a language modeling problem (Song
and Croft, 1999). For a given query sequence
or text x = wi, .., wI and component sequence
z = uj , .., uJ , the probability of the component
given the query is defined as follows using Bayes’
theorem: p(z|x) ∝ p(x|z)p(z).

By assuming a uniform prior over the proba-
bility of each component p(z), the problem re-
duces to computing p(x|z), which is where lan-
guage modeling is used. Given each word wi in
the query, a unigram model is defined as p(x|z) =∏I

i=1 p(wi|z). Using this formulation, we can
then define different models to estimate p(w|z).

Term Matching As a baseline for p(w|z), DC
define a term matching approach that exploits the
fact that many queries in our English datasets
share vocabulary with target component vocabu-
lary. A smoothed version of this baseline is de-
fined below, where f(w|z) is the frequency of
matching terms in the target signature, f(w|C) is
frequency of the term word in the overall docu-
mentation collection, and λ is a smoothing param-
eter (for Jelinek-Mercer smoothing):

p(x|z) =
∏

w∈x

(1 − λ)f(w|z) + λf(w|C)

Translation Model In order to account for the
co-occurrence between non-matching words and
component terms, DC employ a word-based trans-
lation model, which models the relation between
natural language words wj and individual compo-
nent terms uj . In this paper, we limit ourselves to
sequence-based word alignment models (Och and
Ney, 2003), which factor in the following manner:

p(x|z) =
I∏

i=1

J∑

j=0

pt(wi|uj)pd(l(j)|i, I, J)

Here each pt(wi|uj) defines an (unsmoothed)
multinomial distribution over a given component
term uj for all words wj . The function pd is a dis-
tortion parameter, and defines a dependency be-
tween the alignment positions and the lengths of

Algorithm 1 Rank Decoder
Input: Query x, Components C of size m, rank k, modelA,

sort function K-BEST
Output: Top k components ranked by A model score p
1: procedure RANKCOMPONENTS(x, C, k,A)
2: SCORES ← [] ▷ Initialize score list
3: for each component c ∈ C do
4: p← ALIGNA(x, c) ▷ Score using A
5: SCORES += (c, p) ▷ Add to list
6: return K-Best(SCORES,k) ▷ k best components

both input strings. This function, and the defi-
nition of l(j), assumes different forms according
to the particular alignment model being used. We
consider three different types of alignment models
each defined in the following way:

pd(l(j)|...) =





1
J+1 (1)
a(j|i, I, J) (2)
a(t(j)|i, I, tlen(J)) (3)

Models (1-2) are the classic IBM word-alignment
models of Brown et al. (1993). IBM Model
1, for example, assumes a uniform distribution
over all positions, and is the main model investi-
gated in DC. For comparison, we also experiment
with IBM Model 2, where each l(j) refers to the
string position of j in the component input, and
a(..) defines a multinomial distribution such that∑J

j=0 a(j|i, I, J) = 1.0.
We also define a new tree based alignment

model (3) that takes into account the syntax asso-
ciated with the function representations. Each l(j)
is the relative tree position of the alignment point,
shown as t(j), and tlen(J) is the length of the tree
associated with z. This approach assumes a tree
representation for each z. We generated these trees
heuristically by preserving the information that is
lost when components are converted to a linear se-
quence representation. An example structure for
PHP is shown in Figure 4, where the red solid line
indicates the types of potential errors avoided by
this model.

Learning is done by applying the standard EM
training procedure of Brown et al. (1993).

3.3 Ranking and Decoding

Algorithm 1 shows how to rank API components.
For a text input x, we iterate through all known
API components C and assign a score using a
model A. We then rank the components by their
scores using a K-BEST function. This method
serves as a type of word-based decoding algorithm

1616

bool ZipArchive::deleteName(string $name)

bool3

bool

string $name2

namestring

deleteName1

namedelete

ZipArchive0

ZipArchive

Delete entry in an archive using its name

X012 →
⟨

X
01

X
2

, X
01

X
2
bool

⟩

X01 →
⟨

X
1

in an X
0

, X
0

X
1

⟩

X1 →
⟨

Delete X
1

, delete X
1

⟩

X1 →
⟨

entry, name
⟩

X0 →
⟨

archive, ZipArchive
⟩

X2 →
⟨

using its X
2

, X
2

⟩

X2 →
⟨

name, string $name
⟩

Figure 4: An example tree structure (above) asso-
ciated with an input component. Below are Hiero
rules (Chiang, 2007) extracted from the alignment
and tree information.

which is simplified by the finite nature of the tar-
get language. The complexity of the scoring pro-
cedure, lines 3-5, is linear over the number com-
ponents m in C. In practice, we implement the
K-BEST sorting function on line 6 as a binary in-
sertion sort on line 5, resulting in an overall com-
plexity of O(m log m).

While iterating over m API components might
not be feasible given more complicated formal lan-
guages with recursion, a more clever decoding al-
gorithm could be applied, e.g., one based on the
lattice decoding approach of (Dyer et al., 2008).
Since we are interested in providing initial base-
line results, we leave this for future work.

4 Discriminative Approach

In this section, we introduce a new model that aims
to improve on the previous baseline methods.

While the previous models are restricted to
word-level information, we extend this approach
by using a discriminative reranking model that
captures phrase information to see if this leads
to an improvement. This model can also capture
document-level information from the APIs, such
as the additional textual descriptions of param-
eters, see also declarations or classes of related
functions and syntax information.

4.1 Modeling
Like in most semantic parsing approaches (Zettle-
moyer and Collins, 2009; Liang et al., 2011),
our model is defined as a conditional log-linear

z: function float cosh float $arg

x: Returns the hyperbolic cosine of arg

c4 ={ cosh ,acosh,sinh.} ’the arg of..’

ϕ(x,z) =

Model score: is it in top 5..10?
Pairs/Alignments: (hyperbolic, cosh) = 1, (cosine, cosh) = 1, ...

Phrases: (hyperbolic cosine, cosh) = 1, (of arg, float $arg) = ...

See also: (hyperbolic, c4 = {cos,..}) = 1, (arg, c4) = 1, ...
In Descr.: (arg, , $arg) = 1, (arg , float) = 0, ...

Trees/Matches (hyperbolic, cosh, NAME NODE) = 1, number of matches= ...

Figure 5: Example features used by our rerankers.

model over components z ∈ C with parameters
θ ∈ Rb, and a set of feature functions ϕ(x, z):
p(z| x; θ) ∝ eθ·ϕ(x,z).

Formally, our training objective is to maxi-
mize the conditional log-likehood of the correct
component output z for each input x: O(θ) =∑n

i=1 log p (zi | xi; θ).

4.2 Features

Our model uses word-level features, such as word
match, word pairs, as well as information from the
underlying aligner model such as Viterbi align-
ment information and model score. Two ad-
ditional categories of non-word features are de-
scribed below. An illustration of the feature ex-
traction procedure is shown in Figure 5 1.

Phrases Features We extract phrase features
(e.g., (hyper. cosine,cosh) in Figure 5) from ex-
ample text component pairs by training symmetric
word aligners and applying standard word-level
heuristics (Koehn et al., 2003). Additional fea-
tures, such as phrase match/overlap, tree positions
of phrases, are defined over the extracted phrases.

We also extract hierarchical phrases (Chiang,
2007) using a variant of the SAMT method of
Zollmann and Venugopal (2006) and the compo-
nent syntax trees. Example rules are shown in Fig-
ure 4, where gaps (i.e., symbols in square brack-
ets) are filled with smaller phrase-tree alignments.

Document Level Features Document features
are of two categories. The first includes additional
textual descriptions of parameters, return values,
and modules. One class of features is whether
certain words under consideration appear in the
@param and @return descriptions of the tar-
get components. For example, the arg token in

1A more complete description of features is included as
supplementary material, along with all source code.

1617

Algorithm 2 Online Rank Learner
Input: Dataset D, components C, iterations T , rank k, learn-

ing rate α, model A, ranker function RANK
Output: Weight vector θ
1: procedure LEARNRERANKER(D, C, T, k, α,A, RANK)
2: θ ← 0 ▷ Initialize
3: for t ∈ 1..T do
4: for pairs (xi, zi) ∈ D do
5: S = RANK(xi, C, k,A) ▷ Scored candidates
6: ∆ = ϕ(xi, zi)− Es∈S∼p(s|xi;θ)[ϕ(xi, s)]
7: θ = θ + α∆ ▷ Update online
8: return θ

Figure 5 appears in the textual description of the
$arg parameter elsewhere in the documentation
string.

Other features relate to general information
about abstract symbol categories, as specified in
see-also assertions, or hyper-link pointers. By
exploiting this information, we extract general
classes of functions, for example the set of hyper-
bolic function (e.g., sinh, cosh, shown as c4 in
Figure 5), and associate these classes with words
and phrases (e.g., hyperbolic and hyperbolic co-
sine).

4.3 Learning

To optimize our objective, we use Algorithm 2.
We estimate the model parameters θ using a K-
best approximation of the standard stochastic gra-
dient updates (lines 6-7), and a ranker function
RANK. We note that while we use the ranker de-
scribed in Algorithm 1, any suitable ranker or de-
coding method could be used here.

5 Experimental Setup

5.1 Datasets

Source code documentation Our source code
documentation collection consists of the standard
library for nine programming languages, which
are listed in Figure 3. We also use the translated
version of the PHP collection for six additional
languages, the details of which are shown in Fig-
ure 6. The Java dataset was first used in DC, while
we extracted all other datasets for this work.

The size of the different datasets are detailed in
both figures. The number of pairs is the number
of single sentences paired with function represen-
tations, which constitutes the core part of these
datasets. The number of descriptions is the num-
ber of additional textual descriptions provided in
the overall document, such as descriptions of pa-
rameters or return values.

Dataset # Pairs #Descr. Symbols Words Vocab.
PHPfr 6,155 14,058 7,922 70,800 5,904
PHPes 5,823 13,285 7,571 69,882 5,790
PHPja 4,903 11,251 6,399 65,565 3,743
PHPru 2,549 6,030 3,340 23,105 4,599
PHPtr 1,822 4,414 2,725 16,033 3,553
PHPde 1,538 3,733 2,417 17,460 3,209

Figure 6: The non-English PHP datasets.

We also quantify the different datasets in terms
of unique symbols in the target representations,
shown as Symbols. All function representations
and code sequences are linearized, and in some
cases further tokenized, for example, by convert-
ing out of camel case or removing underscores.

Man pages The collection of man pages is from
Richardson and Kuhn (2014) and includes 921
text-code pairs that span 330 Unix utilities and
man pages. Using information from the synopsis
and parameter declarations, the target code repre-
sentations are abstracted by type. The extra de-
scriptions are extracted from parameter descrip-
tions, as shown in the DESCRIPTION section in
Figure 1, as well as from the NAME sections of
each manual.

5.2 Evaluation

For evaluation, we split our datasets into sepa-
rate training, validation and test sets. For Java,
we reserve 60% of the data for training and the
remaining 40% for validation (20%) and testing
(20%). For all other datasets, we use a 70%-30%
split. From a retrieval perspective, these left out
descriptions are meant to mimic unseen queries to
our model. After training our models, we eval-
uate on these held out sets by ranking all known
components in each resource using Algorithm 1.
A predicted component is counted as correct if it
matches exactly a gold component.

Following DC, we report the accuracy of pre-
dicting the correct representation at the first posi-
tion in the ranked list (Accuracy @1) and within
the top 10 positions (Accuracy @10). We also re-
port the mean reciprocal rank MRR, or the multi-
plicative inverse of the rank of the correct answer.

Baselines For comparison, we trained a bag-of-
words classifier (the BoW Model in Table 1). This
model uses the occurrence of word-component
symbol pairs as binary features, and aims to see if
word co-occurrence alone is sufficient to for rank-
ing representations.

1618

Method Java PHPen Python Haskell Clojure Ruby Elisp C
BOW Model 16.4 63.8 31.8 08.0 40.5 18.1 04.1 33.3 13.6 05.6 55.6 21.7 03.0 49.2 16.4 07.0 38.0 16.9 09.9 54.6 23.5 08.8 48.8 20.0
Term Match 15.7 41.3 24.8 15.6 37.0 23.1 16.6 41.7 24.8 15.4 41.8 24.0 20.7 49.2 30.0 23.1 46.9 31.2 29.3 65.4 41.4 13.1 37.5 21.9
IBM M1 34.3 79.8 50.2 35.5 70.5 47.2 22.7 61.0 35.8 22.3 70.3 39.6 29.6 69.2 41.6 31.4 68.5 44.2 30.6 67.4 43.5 21.8 63.7 34.4
IBM M2 30.3 77.2 46.5 33.2 67.7 45.0 21.4 58.0 34.4 13.8 68.2 31.8 26.5 64.2 38.2 27.9 66.0 41.4 28.1 66.1 40.7 23.7 60.9 34.6
Tree Model 29.3 75.4 45.3 28.0 63.2 39.8 17.5 55.4 30.7 17.8 65.4 35.2 23.0 60.3 34.4 27.1 63.3 39.5 26.8 63.2 39.7 18.1 56.2 29.4
M1 Descr. 33.3 77.0 48.7 34.1 71.1 47.2 22.7 62.3 35.9 23.9 69.5 40.2 29.6 69.2 41.6 32.5 70.0 45.5 30.3 73.4 44.7 21.8 62.7 33.9
Reranker 35.3 81.5 51.4 36.9 74.2 49.3 25.5 66.0 38.7 24.7 73.9 43.0 35.0 76.9 47.9 35.1 72.5 48.0 37.6 80.5 53.3 29.7 67.4 40.1

Method Scheme PHPfr PHPes PHPja PHPru PHPtr PHPde Unix
BOW Model 06.1 58.1 21.4 06.1 36.9 16.0 05.9 37.8 15.8 04.7 33.2 13.8 04.4 43.6 16.6 05.4 43.4 17.6 04.3 39.2 15.3 08.6 49.6 21.0
Term Match 25.5 61.2 37.4 04.0 15.8 07.7 02.9 10.4 05.4 02.3 11.2 05.2 01.0 09.3 03.6 01.4 08.7 03.6 03.8 09.4 06.2 15.1 33.8 22.4
IBM M1 32.1 75.5 46.2 32.1 65.1 43.5 29.5 63.7 41.2 23.0 58.1 34.9 20.3 58.4 33.3 25.9 61.6 38.6 22.8 62.5 36.8 30.2 66.9 42.2
IBM M2 29.5 71.4 43.9 30.6 62.2 41.2 26.7 59.8 38.3 22.2 56.1 33.3 18.5 54.5 30.6 23.3 57.6 35.8 19.8 58.6 33.0 23.0 60.4 36.0
Tree Model 26.1 71.2 40.3 27.9 59.3 38.6 25.9 61.0 37.6 22.6 57.8 34.1 20.6 59.0 32.9 18,9 55.1 32.0 18.5 56.0 30.6 23.0 58.2 34.3
M1 Descr. 33.1 75.5 47.1 31.0 64.8 42.7 28.6 64.9 41.1 25.4 60.4 37.0 21.1 62.6 34.5 29.1 62.0 41.4 26.7 62.0 38.8 34.5 71.9 47.4
Reranker 34.6 77.5 48.9 32.7 66.8 44.2 30.6 66.3 42.6 25.8 61.8 37.8 21.1 66.8 35.9 29.9 63.8 41.2 28.0 65.9 40.5 34.5 74.8 48.5

Accuracy @1 Accuracy @10 Mean Reciprocal Rank (MRR)

Table 1: Test results according to the table below.

Since our discriminative models use more data
than the baseline models, which therefore make
the results not directly comparable, we train a
more comparable translation model, shown as M1
Descr. in Table 1, by adding the additional textual
data (i.e. parameter and return or module descrip-
tions) to the models’ parallel training data.

6 Results and Discussion

Test results are shown in Table 1. Among the base-
line models, IBM Model 1 outperforms virtually
all other models and is in general a strong baseline.
Of particular note is the poor performance of the
higher-order translation models based on Model 2
and the Tree Model. While Model 2 is known to
outperform Model 1 on more conventional trans-
lation tasks (Och and Ney, 2003), it appears that
such improvements are not reflected in this type of
semantic translation context.

The bag-of-words (BoW) and Term Match
baselines are outperformed by all other models.
This shows that translation in this context is more
complicated than simple word matching. In some
cases the term matching baseline is competitive
with other models, suggesting that API collections
differ in how language descriptions overlap with
component names and naming conventions. It is
clear, however, that this heuristic only works for
English, as shown by results on the non-English
PHP datasets in Table 1.

We achieve improvements on many datasets by
adding additional data to the translation model
(M1 Descr.). We achieve further improvements
on all datasets using the discriminative model
(Reranker), with most increases in performance
occurring at how the top ten items are ranked.

This last result suggests that phrase-level and
document-level features can help to improve the
overall ranking and translation, though in some
cases the improvement is rather modest.

Despite the simplicity of our semantic parsing
model and decoder, there is still much room for
improvement, especially on achieving better Ac-
curacy @1. While one might expect better results
when moving from a word-based model to a model
that exploits phrase and hierarchical phrase fea-
tures, the sparsity of the component vocabulary is
such that most phrase patterns in the training are
not observed in the evaluation. In many bench-
mark semantic parsing datasets, such sparsity is-
sues do not occur (Cimiano and Minock, 2009),
suggesting that state-of-the-art methods will have
similar problems when applied to our datasets.

Recent approaches to open-domain semantic
parsing have dealt with this problem by using
paraphrasing techniques (Berant and Liang, 2014)
or distant supervision (Reddy et al., 2014). We
expect that these methods can be used to improve
our models and results, especially given the wide
availability of technical documentation, for exam-
ple, distributed within the Opus project (Tiede-
mann, 2012).

Model Errors We performed analysis on some
of the incorrect predictions made by our mod-
els. For some documentation sets, such as those
in the GNU documentation collection2, informa-
tion is organized into a small and concrete set of
categories/chapters, each corresponding to vari-
ous features or modules in the language and re-
lated functions. Given this information, Figure

2https://www.gnu.org/doc/doc.en.html

1619

As
so

ci
at

io
ns

Da
ta

ty
pe

s
En

vi
ro

nm
en

ts
Pr

oc
ed

ur
es OS IO

Gr
ap

hi
cs

Er
ro

rs
Wi

nd
ow

s
Ot

he
r

Sc
he

me
Eq

ui
v.

Sp
ec

.
Fo

rm
s

Ch
ar

ac
te

rs
Nu

mb
er

s
Li

st
s

St
ri

ng
s

Bi
t

St
ri

ng
s

Ve
ct

or
s

Vectors
Bit Strings

Strings
Lists

Numbers
Characters

Spec. Forms
Equiv.
Scheme
Other

Windows
Errors

Graphics
IO
OS

Procedures
Environments

Datatypes
Associations

da
sh se
l

Fi
le
s

Ba
ck
up
s

Bu
ff
er
s

Wi
nd
ow
s

Co
mm
an
dL
oo
p

Ke
ym
ap
s

Mo
de
s

Do
cu
me
nt
at
io
n

Fr
am
es

Po
si
ti
on
s

St
ri
ng
s

Da
ta
ty
pe
s

Ch
ar
ac
te
rs

Nu
mb
er
s

Ha
sh
 T
ab
le
s

Se
qu
en
ce
s

Ev
al
ua
ti
on

Sy
mb
ol
s OS

Ga
rb
ag
e
Co
ll
.

Di
st
r.

Fu
nc
ti
on
s

Lo
ad
in
g

Cu
st
om
iz
at
io
n

De
bu
g

Mi
ni
bu
ff
er
s

No
n-
As
ci
i

Te
xt

Ma
rk
er
s

Di
sp
la
y

Pr
oc
es
se
s

Ab
br
ev
s

Sy
nt
ax
 T
ab
le
s

Se
ar
ch
/M
at
ch

Re
ad
/W
ri
te

Read/Write
Search/Match

Syntax Tables
Abbrevs

Processes
Display
Markers

Text
Non-Ascii

Minibuffers
Debug

Customization
Loading

Functions
Distr.

Garbage Coll.
OS

Symbols
Evaluation
Sequences

Hash Tables
Numbers

Characters
Datatypes

Strings
Positions

Frames
Documentation

Modes
Keymaps

CommandLoop
Windows
Buffers
Backups

Files
sel

dash

Figure 7: Function predictions by documentation category for Scheme (left) and Elisp (right).

7 shows the confusion between predicting differ-
ent categories of functions, where the rows show
the categories of functions to be predicted and the
columns show the different categories predicted.
We built these plots by finding the categories of
the top 50 non-gold (or erroneous) representations
generated for each validation example.

The step-like lines through the diagonal of both
plots show that alternative predictions (shaded ac-
cording to occurrence) are often of the same cat-
egory, most strikingly for the corner categories.
This trend seems stable across other datasets, even
among datasets with large numbers of categories.
Interestingly, many confusions appear to be be-
tween related categories. For example, when
making predictions about Strings functions in
Scheme, the model often generates function re-
lated to BitStrings, Characters and IO.
Again, this trend seems to hold for other documen-
tation sets, suggesting that the models are often
making semantically sensible decisions.

Looking at errors in other datasets, one com-
mon error involves generating functions with the
same name and/or functionality. In large libraries,
different modules sometimes implement that same
core functions, such the genericpath or
posixpath modules in Python. When generat-
ing a representation for the text return size of file,
our model confuses the getsize(filename)
function in one module with others. Similarly,
other subtle distinctions that are not explicitly ex-
pressed in the text descriptions are not captured,
such as the distinction in Haskell between safe and
unsafe bit shifting functions.

While many of these predictions might be cor-
rect, our evaluation fails to take into account these
various equivalences, which is an issue that should

be investigated in future work. Future work will
also look systematically at the effect that types
(i.e., in statically typed versus dynamic languages)
have on prediction.

7 Future Work

We see two possible use cases for this data. First,
for benchmarking semantic parsing models on the
task of semantic translation. While there has
been a trend towards learning executable seman-
tic parsers (Berant et al., 2013; Liang, 2016), there
has also been renewed interest in supervised learn-
ing of formal representations in the context of neu-
ral semantic parsing models (Dong and Lapata,
2016; Jia and Liang, 2016). We believe that good
performance on our datasets should lead to better
performance on more conventional semantic pars-
ing tasks, and raise new challenges involving spar-
sity and multilingual learning.

We also see these resources as useful for in-
vestigations into natural language programming.
While our experiments look at learning rudimen-
tary translational correspondences between text
and code, a next step might be learning to syn-
thesize executable programs via these translations,
along the lines of (Desai et al., 2016; Raza et al.,
2015). Other document-level features, such as ex-
ample input-output pairs, unit tests, might be use-
ful in this endeavor.

Acknowledgements

This work was funded by the Deutsche
Forschungsgemeinschaft (DFG) via SFB 732,
project D2. Thanks also to our IMS colleagues,
in particular Christian Scheible, for providing
feedback on earlier drafts, as well as to Jonathan
Berant for helpful discussions.

1620

References
Miltiadis Allamanis, Daniel Tarlow, Andrew D Gor-

don, and Yi Wei. 2015. Bimodal modelling of
source code and natural language. In Proceedings
of the 32th International Conference on Machine
Learning. volume 951, page 2015.

Yoav Artzi, Kenton Lee, and Luke Zettlemoyer. 2015.
Broad-coverage CCG semantic parsing with AMR.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing. pages
1699–1710.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Martha Palmer, and Nathan Schneider.
2013. Abstract meaning representation for sem-
banking. In In Proceedings of the 7th Linguistic
Annotation Workshop and Interoperability with Dis-
course.

Jonathan Berant, Andrew Chou, Roy Frostig, and
Percy Liang. 2013. Semantic parsing on Freebase
from question-answer pairs. In in Proceedings of
EMNLP-2013. pages 1533–1544.

Jonathan Berant and Percy Liang. 2014. Semantic
parsing via paraphrasing. In Proceedings of ACL-
2014. pages 1415–1425.

Benjamin Börschinger, Bevan K. Jones, and Mark
Johnson. 2011. Reducing grounded learning tasks to
grammatical inference. In Proceedings of EMNLP-
2011. pages 1416–1425.

Peter F Brown, Vincent J Della Pietra, Stephen A Della
Pietra, and Robert L Mercer. 1993. The mathemat-
ics of statistical machine translation: Parameter esti-
mation. Computational linguistics 19(2):263–311.

David L. Chen and Raymond J. Mooney. 2008. Learn-
ing to sportscast: A test of grounded language acqui-
sition. In Proceedings of ICML-2008. pages 128–
135.

David Chiang. 2007. Hierarchical phrase-based trans-
lation. computational linguistics 33(2):201–228.

Philipp Cimiano and Michael Minock. 2009. Natural
language interfaces: what is the problem?–a data-
driven quantitative analysis. In International Con-
ference on Application of Natural Language to In-
formation Systems. Springer, pages 192–206.

Huijing Deng and Grzegorz Chrupała. 2014. Seman-
tic approaches to software component retrieval with
English queries. In Proceedings of LREC-14. pages
441–450.

Aditya Desai, Sumit Gulwani, Vineet Hingorani, Nidhi
Jain, Amey Karkare, Mark Marron, Subhajit Roy,
et al. 2016. Program synthesis using natural lan-
guage. In Proceedings of the 38th International
Conference on Software Engineering. ACM, pages
345–356.

Li Dong and Mirella Lapata. 2016. Language to
logical form with neural attention. arXiv preprint
arXiv:1601.01280 .

Christopher Dyer, Smaranda Muresan, and Philip
Resnik. 2008. Generalizing word lattice translation.
Proceedings of ACL-08 page 1012.

Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and
Sunghun Kim. 2016. Deep API Learning. arXiv
preprint arXiv:1605.08535 .

Srinivasan Iyer, Ioannis Kostas, Alvin Cheung, and
Luke Zettlemoyer. 2016. Summarizing source code
using a neural attention model. Proceedings of ACL-
2016 .

Robin Jia and Percy Liang. 2016. Data recombina-
tion for neural semantic parsing. arXiv preprint
arXiv:1606.03622 .

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In Pro-
ceedings of the NACL-2003. pages 48–54.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and
Regina Barzilay. 2014. Learning to automatically
solve algebra word problems. In Proceedings of
ACL-2014. pages 271–281.

Nate Kushman and Regina Barzilay. 2013. Using se-
mantic unification to generate regular expressions
from natural language. In Proceedings of NAACL-
2013.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwa-
ter, and Mark Steedman. 2010. Inducing probabilis-
tic CCG grammars from logical form with higher-
order unification. In Proceedings of EMNLP-2010.
pages 1223–1233.

P. Liang, M. I. Jordan, and D. Klein. 2011. Learning
dependency-based compositional semantics. In Pro-
ceedings of ACL-11. pages 590–599.

Percy Liang. 2016. Learning executable semantic
parsers for natural language understanding. Com-
munications of the ACM 59(9):68–76.

Fei Lv, Hongyu Zhang, Jian-guang Lou, Shaowei
Wang, Dongmei Zhang, and Jianjun Zhao. 2015.
Codehow: Effective code search based on api
understanding and extended boolean model (e).
In Automated Software Engineering (ASE), 2015
30th IEEE/ACM International Conference on. IEEE,
pages 260–270.

Mehdi Hafezi Manshadi, Daniel Gildea, and James F
Allen. 2013. Integrating programming by example
and natural language programming. In Proceedings
of AAAI-2013.

Cynthia Matuszek, Evan Herbst, Luke Zettlemoyer,
and Dieter Fox. 2012. Learning to parse natural lan-
guage commands to a robot control system. In Pro-
ceedings of the International Symposium on Experi-
mental Robotics (ISER).

1621

Franz Josef Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Computational linguistics 29(1):19–51.

Yusuke Oda, Hiroyuki Fudaba, Graham Neubig,
Hideaki Hata, Sakriani Sakti, Tomoki Toda, and
Satoshi Nakamura. 2015. Learning to generate
pseudo-code from source code using statistical ma-
chine translation (t). In Automated Software Engi-
neering (ASE), 2015 30th IEEE/ACM International
Conference on. IEEE, pages 574–584.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of ACL-2015.

Xiaochang Peng, Linfeng Song, and Daniel Gildea.
2015. A Synchronous Hyperedge Replacement
Grammar based approach for AMR parsing. Pro-
ceedings of CoNLL-2015 page 32.

Chris Quirk, Raymond J Mooney, and Michel Galley.
2015. Language to code: Learning semantic parsers
for if-this-then-that recipes. In Proceedings of ACL-
2015. pages 878–888.

Mohammad Raza, Sumit Gulwani, and Natasa Milic-
Frayling. 2015. Compositional program synthesis
from natural language and examples. In IJCAI.
pages 792–800.

Siva Reddy, Mirella Lapata, and Mark Steedman. 2014.
Large-scale semantic parsing without question-
answer pairs. Transactions of the Association for
Computational Linguistics 2:377–392.

Kyle Richardson and Jonas Kuhn. 2014. UnixMan cor-
pus: A resource for language learning in the Unix
domain. In Proceedings of LREC-2014.

Kyle Richardson and Jonas Kuhn. 2016. Learning to
make inferences in a semantic parsing task. Trans-
actions of the Association for Computational Lin-
guistics 4:155–168.

F. Song and W.B Croft. 1999. A general language
model for information retrieval. In in Proceed-
ings International Conference on Information and
Knowledge Management.

Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in opus. In LREC. volume 2012, pages 2214–
2218.

Yuk Wah Wong and Raymond J. Mooney. 2006. Learn-
ing for semantic parsing with statistical machine
translation. In Proceedings of HLT-NAACL-2006.
pages 439–446.

Yuk Wah Wong and Raymond J Mooney. 2007a. Gen-
eration by inverting a semantic parser that uses sta-
tistical machine translation. In Proceedings of HLT-
NAACL-2007. pages 172–179.

Yuk Wah Wong and Raymond J. Mooney. 2007b.
Learning synchronous grammars for semantic pars-
ing with lambda calculus. In Proceedings of ACL-
2007. Prague, Czech Republic.

John M Zelle and Raymond J Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of AAAI-1996. pages
1050–1055.

Luke S. Zettlemoyer and Michael Collins. 2009.
Learning context-dependent mappings from sen-
tences to logical form. In Proceedings of ACL-2009.
pages 976–984.

Andreas Zollmann and Ashish Venugopal. 2006. Syn-
tax augmented machine translation via chart pars-
ing. In Proceedings of the Workshop on Statistical
Machine Translation. pages 138–141.

1622

	Learning Semantic Correspondences in Technical Documentation

