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Abstract

Cybersecurity risks and malware threats
are becoming increasingly dangerous and
common. Despite the severity of the prob-
lem, there has been few NLP efforts fo-
cused on tackling cybersecurity.

In this paper, we discuss the construction
of a new database for annotated malware
texts. An annotation framework is intro-
duced based around the MAEC vocabu-
lary for defining malware characteristics,
along with a database consisting of 39 an-
notated APT reports with a total of 6,819
sentences. We also use the database to
construct models that can potentially help
cybersecurity researchers in their data col-
lection and analytics efforts.

1 Introduction

In 2010, the malware known as Stuxnet physically
damaged centrifuges in Iranian nuclear facilities
(Langner, 2011). More recently in 2016, a botnet
known as Mirai used infected Internet of Things
(IoT) devices to conduct large-scale Distributed
Denial of Service (DDoS) attacks and disabled In-
ternet access for millions of users in the US West
Coast (US-CERT, 2016). These are only two cases
in a long list ranging from ransomeware on per-
sonal laptops (Andronio et al., 2015) to taking over
control of moving cars (Checkoway et al., 2011).
Attacks such as these are likely to become increas-
ingly frequent and dangerous as more devices and
facilities become connected and digitized.

Recently, cybersecurity defense has also been
recognized as one of the “problem areas likely
to be important both for advancing AI and for

Figure 1: Annotated sentence and sentence frag-
ment from MalwareTextDB. Such annotations
provide semantic-level information to the text.

its long-run impact on society" (Sutskever et al.,
2016). In particular, we feel that natural language
processing (NLP) has the potential for substantial
contribution in cybersecurity and that this is a crit-
ical research area given the urgency and risks in-
volved.

There exists a large repository of malware-
related texts online, such as detailed malware re-
ports by various cybersecurity agencies such as
Symantec (DiMaggio, 2015) and Cylance (Gross,
2016) and in various blog posts. Cybersecurity
researchers often consume such texts in the pro-
cess of data collection. However, the sheer vol-
ume and diversity of these texts make it difficult
for researchers to quickly obtain useful informa-
tion. A potential application of NLP can be to
quickly highlight critical information from these
texts, such as the specific actions taken by a cer-
tain malware. This can help researchers quickly
understand the capabilities of a specific malware
and search in other texts for malware with similar
capabilities.

An immediate problem preventing application
of NLP techniques to malware texts is that such
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texts are mostly unannotated. This severely limits
their use in supervised learning techniques.

In light of that, we introduce a database of anno-
tated malware reports for facilitating future NLP
work in cybersecurity. To the best of our knowl-
edge, this is the first database consisting of anno-
tated malware reports. It is intended for public re-
lease, where we hope to inspire contributions from
other research groups and individuals.

The main contributions of this paper are:

• We initiate a framework for annotating mal-
ware reports and annotate 39 Advanced Per-
sistent Threat (APT) reports (containing 6,819
sentences) with attribute labels from the Mal-
ware Attribute Enumeration and Characteri-
zation (MAEC) vocabulary (Kirillov et al.,
2010).

• We propose the following tasks, construct
models for tackling them, and discuss the chal-
lenges:

• Classify if a sentence is useful for infer-
ring malware actions and capabilities,

• Predict token, relation and attribute labels
for a given malware-related text, as de-
fined by the earlier framework, and

• Predict a malware’s signatures based only
on text describing the malware.

2 Background

2.1 APTnotes
The 39 APT reports in this database are sourced
from APTnotes, a GitHub repository of publicly-
released reports related to APT groups (Blanda,
2016). The repository is constantly updated,
which means it is a constant source of reports for
annotations. While the repository consists of 384
reports (as of writing), we have chosen 39 reports
from the year 2014 to initialize the database.

2.2 MAEC
The MAEC vocabulary was devised by The
MITRE Corporation as a standardized language
for describing malware (Kirillov et al., 2010). The
MAEC vocabulary is used as a source of labels
for our annotations. This will facilitate cross-
applications in other projects and ensure relevance
in the cybersecurity community.

2.3 Related Work
There are datasets available, which are used for
more general tasks such as content extraction

(Walker et al., 2006) or keyword extraction (Kim
et al., 2010). These may appear similar to our
dataset. However, a big difference is that we are
not performing general-purpose annotation and
not all tokens are annotated. Instead, we only
annotated tokens relevant to malware capabilities
and provide more valuable information by anno-
tating the type of malware capability or action im-
plied. These are important differentiating factors,
specifically catered to the cybersecurity domain.

While we are not aware of any database catering
specifically to malware reports, there are various
databases in the cybersecurity domain that provide
malware hashes, such as the National Software
Reference Library (NSRL) (NIST, 2017; Mead,
2006) and the File Hash Repository (FHR) by the
Open Web Application Security Project (OWASP,
2015).

Most work on classifying and detecting mal-
ware has also been focusing on detecting system
calls (Alazab et al., 2010; Briones and Gomez,
2008; Willems et al., 2007; Qiao et al., 2013).
More recently, Rieck et al. (2011) has incorpo-
rated machine learning techniques for detecting
malware, again through system calls. To the best
of our knowledge, we are not aware of any work
on classifying malware based on analysis of mal-
ware reports. By building a model that learns to
highlight critical information on malware capabili-
ties, we feel that malware-related texts can become
a more accessible source of information and pro-
vide a richer form of malware characterization be-
yond detecting file hashes and system calls.

3 Data Collection

We worked together with cybersecurity re-
searchers while choosing the preliminary dataset,
to ensure that it is relevant for the cybersecurity
community. The factors considered when select-
ing the dataset include the mention of most current
malware threats, the range of author sources, with
blog posts and technical security reports, and the
range of actor attributions, from several suspected
state actors to smaller APT groups.

3.1 Preprocessing

After the APT reports have been downloaded in
PDF format, the PDFMiner tool (Shinyama, 2004)
is used to convert the PDF files into plaintext for-
mat. The reports often contain non-sentences,
such as the cover page or document header and
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footer. We went through these non-sentences man-
ually and subsequently removed them before the
annotation. Hence only complete sentences are
considered for subsequent steps.

3.2 Annotation

The Brat Rapid Annotation Tool (Stenetorp et al.,
2012) is used to annotate the reports. The main
aim of the annotation is to map important word
phrases that describe malware actions and behav-
iors to the relevant MAEC vocabulary, such as
the ones shown in Figure 1. We first extract and
enumerate the labels from the MAEC vocabulary,
which we call attribute labels. This gives us a total
of 444 attribute labels, consisting of 211 Action-
Name labels, 20 Capability labels, 65 StrategicOb-
jectives labels and 148 TacticalObjectives labels.
These labels are elaborated in Section 3.5.

There are three main stages to the annotation
process. These are cumulative and eventually
build up to the annotation of the attribute labels.

3.3 Stage 1 - Token Labels

The first stage involves annotating the text with
the following token labels, illustrated in Fig-
ure 2:

Action This refers to an event, such as “regis-
ters”, “provides” and “is written”.

Subject This refers to the initiator of the Action
such as “The dropper” and “This module”.

Object This refers to the recipient of the Action
such as “itself ”, “remote persistent access”
and “The ransom note”; it also refers to word
phrases that provide elaboration on the Action
such as “a service”, “the attacker” and “disk”.

Modifier This refers to tokens that link to other
word phrases that provide elaboration on the
Action such as “as” and “to”.

This stage helps to identify word phrases that
are relevant to the MAEC vocabulary. Notice that
for the last sentence in Figure 2, “The ransom
note” is tagged as an Object instead of a Subject.
This is because the Action “is written” is not be-
ing initiated by “The ransom note”. Instead, the
Subject is absent in this sentence.

3.4 Stage 2 - Relation Labels

The second stage involves annotating the text with
the following relation labels:

Figure 2: Examples of annotated sentences.

Figure 3: Examples of irrelevant sentences.

SubjAction This links an Action with its relevant
Subject.

ActionObj This links an Action with its relevant
Object.

ActionMod This links an Action with its relevant
Modifier.

ModObj This links a Modifier with the Object
that provides elaboration.

This stage helps to make the links between
the labelled tokens explicit, which is important in
cases where a single Action has multiple Subjects,
Objects or Modifiers. Figure 2 demonstrates how
the relation labels are used to link the token labels.

3.5 Stage 3 - Attribute Labels

The third stage involves annotating the text with
the attribute labels extracted from the MAEC vo-
cabulary. Since the Action is the main indicator
of a malware’s action or capability, the attribute
labels are annotated onto the Actions tagged in
Stage 1. Each Action should have one or more
attribute labels.

There are four classes of attribute labels: Ac-
tionName, Capability, StrategicObjectives and
TacticalObjectives. These labels describe differ-
ent actions and capabilities of the malware. Refer
to Appendix A for examples and elaboration.

3.6 Summary

The above stages complete the annotation process
and is done for each document. There are also sen-
tences that are not annotated at all since they do
not provide any indication of malware actions or
capabilities, such as the sentences in Figure 3. We
call these sentences irrelevant sentences.

At the time of writing, the database consists of
39 annotated APT reports with a combined total
of 6,819 sentences. Out of the 6,819 sentences,
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Figure 4: Two different ways for annotating a sentence, where both seem to be equally satisfactory to a
human annotator. In this case, both serve to highlight the malware’s ability to hide its DLL’s functionality.

Token Labels Relation Labels Attribute Labels
(by label) (by label) (by class)

Subj 1,778 SubjAction 2,343 ActionName 982
Obj 4,411 ActionObj 2,713 Capability 2,524
Act 2,975 ActionMod 1,841 StratObj 2,004
Mod 1,819 ModObj 1,808 TactObj 1,592
Total 10,983 Total 8,705 Total 7,102

Table 1: Breakdown of annotation statistics.

2,080 sentences are annotated. Table 1 shows the
breakdown of the annotation statistics.

3.7 Annotators’ Challenges

We can calculate the Cohen’s Kappa (Cohen,
1960) to quantify the agreement between anno-
tators and to give an estimation of the difficulty
of this task for human annotators. Using annota-
tions from pairs of annotators, the Cohen’s Kappa
was calculated to be 0.36 for annotation of the
Token labels. This relatively low agreement be-
tween annotators suggests that this is a rather diffi-
cult task. In the following subsections, we discuss
some possible reasons that make this annotation
task difficult.

3.7.1 Complex Sentence Structures

In many cases, there may be no definite way to la-
bel the tokens. Figure 4 shows two ways to an-
notate the same sentence. Both annotations es-
sentially serve to highlight the Gen 2 sub-family’s
capability of hiding the DLL’s functionality. The
first annotation highlights the method used by the
malware to hide the library, i.e., employing the
Driver. The second annotation focuses on the mal-
ware hiding the library and does not include the
method. Also notice that the Modifiers highlighted
are different in the two cases, since this depends on
the Action highlighted and are hence mutually ex-
clusive. Such cases occur more commonly when
the sentences contain complex noun- and verb-
phrases that can be decomposed in several ways.
Repercussions surface later in the experiments de-

scribed in Section 5.2, specifically in the second
point under Discussion.

3.7.2 Large Quantity of Labels
Due to the large number (444) of attribute la-
bels, it is challenging for annotators to re-
member all of the attribute labels. Moreover,
some of the attribute labels are subject to in-
terpretation. For instance, should Capability:
005: MalwareCapability-command_and_control
be tagged for sentences that mention the location
or IP addresses of command and control servers,
even though such sentences may not be relevant to
the capabilities of the malware?

3.7.3 Specialized Domain Knowledge
Required

Finally, this task requires specialized cybersecu-
rity domain knowledge from the annotator and
the ability to apply such knowledge in a natu-
ral language context. For example, given the
phrase “load the DLL into memory”, the annota-
tor has to realize that this phrase matches the at-
tribute label ActionName: 119: ProcessMemory-
map_library_into_process. The abundance of la-
bels with the many ways that each label can be
expressed in natural language makes this task ex-
tremely challenging.

4 Proposed Tasks

The main goal of creating this database is to
aid cybersecurity researchers in parsing malware-
related texts for important information. To this
end, we propose several tasks that build up to this
main goal.

Task 1 Classify if a sentence is relevant for infer-
ring malware actions and capabilities

Task 2 Predict token labels for a given malware-
related text

Task 3 Predict relation labels for a given
malware-related text
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Task 4 Predict attribute labels for a given
malware-related text

Task 5 Predict a malware’s signatures based on
the text describing the malware and the text’s
annotations

Task 1 arose from discussions with domain ex-
perts where we found that a main challenge for
cybersecurity researchers is having to sift out crit-
ical sentences from lengthy malware reports and
articles. Figure 3 shows sentences describing
the political and military background of North
Korea in the APT report HPSR SecurityBrief-
ing_Episode16_NorthKorea. Such information is
essentially useless for cybersecurity researchers
focused on malware actions and capabilities. It
will be helpful to build a model that can filter rel-
evant sentences that pertain to malware.

Tasks 2 to 4 serve to automate the laborious an-
notation procedure as described earlier. With suf-
ficient data, we hope that it becomes possible to
build an effective model for annotating malware-
related texts, using the framework and labels we
defined earlier. Such a model will help to quickly
increase the size of the database, which in turn fa-
cilitate other supervised learning tasks.

Task 5 explores the possibility of using malware
texts and annotations to predict a malware’s sig-
natures. While conventional malware analyzers
generate a list of malware signatures based on the
malware’s activities in a sandbox, such analysis is
often difficult due to restricted distribution of mal-
ware samples. In contrast, numerous malware re-
ports are freely available and it will be helpful for
cybersecurity researchers if such texts can be used
to predict malware signatures instead of having to
rely on a limited supply of malware samples.

In the following experiments, we construct
models for tackling each of these tasks and discuss
the performance of our models.

5 Experiments and Results

Since the focus of this paper is on the introduc-
tion of a new framework and database for anno-
tating malware-related texts, we only use simple
algorithms for building the models and leave more
complex models for future work.

For the following experiments, we use linear
support vector machine (SVM) and multinomial
Naive Bayes (NB) implementations in the scikit-
learn library (Pedregosa et al., 2011). The regular-
ization parameter in SVM and smoothing parame-

P R F1

SVM 69.7 54.0 60.5
NB 59.5 68.5 63.2

Table 2: Task 1 scores: classifying relevant sen-
tences.

ter in NB were tuned (with the values 10−3 to 103

in logarithmic increments) by taking the value that
gave the best performance in development set.

For experiments where Conditional Random
Field (CRF) (Lafferty et al., 2001) is used, we uti-
lized the CRF++ implementation (Kudo, 2005).

For scoring the predictions, unless otherwise
stated, we use the metrics module in scikit-learn
for SVM and NB, as well as the CoNLL2000 con-
lleval Perl script for CRF1.

Also, unless otherwise mentioned, we make use
of all 39 annotated documents in the database. The
experiments are conducted with a 60%/20%/20%
training/development/test split, resulting in 23, 8
and 8 documents in the respective datasets. Each
experiment is conducted 5 times with a different
random allocation of the dataset splits and we re-
port averaged scores2.

Since we focus on building a database, we
weigh recall and precision as equally important
in the following experiments and hence focus on
the F1 score metric. The relative importance of
recall against precision will ultimately depend on
the downstream tasks.

5.1 Task 1 - Classify sentences relevant to
malware

We make use of the annotations in our database for
this supervised learning task and consider a sen-
tence to be relevant as long as it has an annotated
token label. For example, the sentences in Figure
2 will be labeled relevant whereas the sentences in
Figure 3 will be labeled irrelevant.

A simple bag-of-words model is used to repre-
sent each sentence. We then build two models –
SVM and NB – for tackling this task.

Results: Table 2 shows that while the NB
model outperforms the SVM model in terms of
F1 score, the performance of both models are still
rather low with F1 scores below 70 points. We
proceed to discuss possible sources of errors for
the models.

1www.cnts.ua.ac.be/conll2000/chunking/output.html
2Note that therefore the averaged F1 may not be the har-

monic mean of averaged P and R in the result tables.
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Figure 5: An example of a token (“a lure document”) labelled as both Subject and Object. In the first
case, it is the recipient of the Action “used”, while in the latter case, it is the initiator of the Action
“installed”.

Figure 6: Actual and predicted annotations. For predicted annotations, the Entity label replaces the
Subject and Object labels.

Discussion: We find that there are two main
types of misclassified sentences.

1. Sentences describing malware without im-
plying specific actions

These sentences often contain malware-specific
terms, such as “payload” and “malware” in the
following sentence.

This file is the main payload of the malware.

These sentences are often classified as relevant,
probably due to the presence of malware-specific
terms. However, such sentences are actually irrel-
evant because they merely describe the malware
but do not indicate specific malware actions or ca-
pabilities.

2. Sentences describing attacker actions
Such sentences mostly contain the term “at-

tacker” or names of attackers. For instance, the
following sentence is incorrectly classified as ir-
relevant.

This is another remote administration tool often
used by the Pitty Tiger crew.

Such sentences involving the attacker are often
irrelevant since the annotations focus on the mal-
ware and not the attacker. However, the above sen-
tence implies that the malware is a remote admin-
istration tool and hence is a relevant sentence that
implies malware capability.

5.2 Task 2 - Predict token labels

Task 2 concerns automating Stage 1 for the anno-
tation process described in Section 3.3. Within the
annotated database, we find several cases where
a single word-phrase may be annotated with both
Subject and Object labels (see Figure 5). In order
to simplify the model for prediction, we redefine
Task 2 as predicting Entity, Action and Modifier
labels for word-phrases. The single Entity label
is used to replace both Subject and Object labels.
Since the labels may extend beyond a single word
token, we use the BIO format for indicating the
span of the labels (Sang and Veenstra, 1999). We
use two approaches for tackling this task: a) CRF
is used to train a model for directly predicting to-
ken labels, b) A pipeline approach where the NB
model from Task 1 is used to filter relevant sen-
tences. A CRF model is then trained to predict
token labels for relevant sentences.

The CRF model in Approach 1 is trained on the
entire training set, whereas the CRF model in Ap-
proach 2 is trained only on the gold relevant sen-
tences in the training set.

For features in both approaches, we use un-
igrams and bigrams, part-of-Speech labels from
the Stanford POStagger (Toutanova et al., 2003),
and Brown clustering features after optimizing the
cluster size (Brown et al., 1992). A C++ imple-
mentation of the Brown clustering algorithm is
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Approach 1 Approach 2
Token Label P R F1 P R F1

Entity 48.8 25.1 32.9 42.8 33.8 37.6
Action 55.2 30.3 38.9 50.8 41.1 45.2
Modifier 55.7 28.4 37.3 48.9 37.4 42.1
Average 51.7 27.0 35.2 45.9 36.3 40.3

Table 3: Task 2 scores: predicting token labels.

used (Liang, 2005). The Brown cluster was trained
on a larger corpus of APT reports, consisting of
103 APT reports not in the annotated database and
the 23 APT reports from the training set. We group
together low-frequency words that appear 4 or less
times in the set of 126 APT reports into one cluster
and during testing we assign new words into this
cluster.

Results: Table 3 demonstrates that Approach
2 outperforms Approach 1 on most scores. Nev-
ertheless, both approaches still give low perfor-
mance for tackling Task 2 with F1-scores below
50 points.

Discussion: There seem to be three main cate-
gories of wrong predictions:

1. Sentences describing attacker actions
Such sentences are also a main source of pre-

diction errors in Task 1. Again, most sentences
describing attackers are deemed irrelevant and left
unannotated because we focus on malware ac-
tions rather than human attacker actions. How-
ever, these sentences may be annotated in cases
where the attacker’s actions imply a malware ac-
tion or capability.

For example, the Figure 6a describes the attack-
ers stealing credentials. This implies that the mal-
ware used is capable of stealing and exfiltrating
credentials. It may be challenging for the model
to distinguish whether such sentences describing
attackers should be annotated since a level of in-
ference is required.

2. Sentences containing noun-phrases made
up of participial phrases and/or prepositional
phrases

These sentences contain complex noun-phrases
with multiple verbs and prepositions, such as in
Figures 6b and 6c. In Figure 6b, “the RCS sam-
ple sent to Ahmed” is a noun-phrase annotated
as a single Subject/Entity. However, the model
decomposes the noun-phrase into the subsidiary
noun “the RCS sample” and participial phrase
“sent to Ahmed” and further decompose the par-
ticipial phrase into the constituent words, predict-

Approach 1 Approach 2
Token Label P R F1 P R F1

Entity 63.6 32.1 42.3 56.5 46.3 50.6
Action 60.2 31.4 41.0 54.6 42.8 47.7
Modifier 56.4 28.1 37.1 50.1 37.1 42.3
Average 62.7 31.8 41.9 55.9 45.3 49.8

Table 4: Task 2 relaxed/token-level scores.

Relation Label P R F1

SubjAction 86.3 82.3 84.2
ActionObj 91.6 86.2 88.8
ActionMod 98.5 96.4 97.4
ModObj 98.0 96.7 97.4
Average 89.2 89.4 89.3

Table 5: Task 3 scores: predicting relation labels.

ing Action, Modifier and Entity labels for “sent”,
“to” and “Ahmed” respectively. There are cases
where such decomposition of noun-phrases is cor-
rect, such as in Figure 6c.

As mentioned in Section 3.7, this is also a chal-
lenge for human annotators because there may be
several ways to decompose the sentence, many of
which serve equally well to highlight certain mal-
ware aspects (see Figure 4).

Whether such decomposition is correct depends
on the information that can be extracted from the
decomposition. For instance, the decomposition
in Figure 6c implies that the malware can receive
remote commands from attackers. In contrast, the
decomposition predicted by the model in Figure
6b does not offer any insight into the malware.
This is a difficult task that requires recognition of
the phrase spans and the ability to decide which
level of decomposition is appropriate.

3. Sentences containing noun-phrases made
up of determiners and adjectives

These sentences contain noun-phrases with de-
terminers and adjectives such as “All the requests”
in Figure 6d. In such cases, the model may only
predict the Entity label for part of the noun-phrase.
This is shown in Figure 6d, where the model pre-
dicts the Entity label for “the requests” instead of
“All the requests”.

Thus, we also consider a relaxed scoring
scheme where predictions are scored in token level
instead of phrase level (see Table 4). The aim of
the relaxed score is to give credit to the model
when the span for a predicted label intersects with
the span for the actual label, as in Figure 6d.

1563



Figure 7: An example of an entity with multiple parents. In this case, stage two payloads has two
parents by ActionObject relations - downloading and executing.

5.3 Task 3 - Predict relation labels

Following the prediction of token labels in Task
2, we move on to Task 3 for building a model for
predicting relation labels. Due to the low perfor-
mance of the earlier models for predicting token
labels, for this experiment we decided to use the
gold token labels as input into the model for pre-
dicting relation labels. Nevertheless, the models
can still be chained in a pipeline context.

The task initially appeared to be similar to a de-
pendency parsing task where the model predicts
dependencies between the entities demarcated by
the token labels. However, on further inspection,
we realized that there are several entities which
have more than one parent entity (see Figure 7).
As such, we treat the task as a binary classification
task, by enumerating all possible pairs of entities
and predicting whether there is a relation between
each pair.

Predicting the relation labels from the token la-
bels seem to be a relatively straightforward task
and hence we design a simple rule-based model
for the predictions. We tuned the rule-based
model on one of the documents (AdversaryIntel-
ligenceReport_DeepPanda_0 (1)) and tested it on
the remaining 38 documents. The rules are docu-
mented in Appendix B.

Results: Table 5 shows the scores from testing
the model on the remaining 38 documents.

The results from the rule-based model are better
than expected, with the average F1-scores exceed-
ing 84 points for all the labels. This shows that
the relation labels can be reliably predicted given
good predictions of the preceding token labels.

Discussion: The excellent performance from
the rule-based model suggests that there is a well-
defined structure in the relations between the enti-
ties. It may be possible to make use of this inher-
ent structure to help improve the results for pre-
dicting the token labels.

Also, notice that by predicting the SubjAction,
ActionObj and ActionMod relations, we are si-
multaneously classifying the ambiguous Entity la-
bels into specific Subject and Object labels. For
instance, Rule 1 predicts a ModObj relation be-

Attribute Category NB SVM
P R F1 P R F1

ActionName 35.2 23.9 28.0 43.9 27.9 33.9
Capability 41.5 39.8 40.6 42.5 41.1 41.8
StrategicObjectives 33.7 24.4 28.3 32.2 23.5 27.2
TacticalObjectives 27.6 17.4 21.1 30.2 18.4 22.7

Table 6: Task 4 scores: predicting attribute labels.

tween a Modifier and an Entity, implying that the
Entity is an Object, whereas Rule 3 predicts a
SubjAction relation between an Entity and an Ac-
tion, implying that the Entity is a Subject.

5.4 Task 4 - Predict attribute labels

A significant obstacle in the prediction of attribute
labels is the large number of attribute labels avail-
able. More precisely, we discover that many of
these attribute labels occur rarely, if not never, in
the annotated reports. This results in a severely
sparse dataset for training a model.

Due to the lack of substantial data, we decide
to use token groups instead of entire sentences for
predicting attribute labels. Token groups are the
set of tokens that are linked to each other via rela-
tion labels. We extract the token groups from the
gold annotations and then build a model for pre-
dicting the attribute labels for each token group.
Again, we use a bag-of-words model to represent
the token groups while SVM and NB are each used
to build a model for predicting attribute labels.

Results: Table 6 shows the average scores over
5 runs for the four separate attribute categories.
For this task, SVM appears to perform generally
better than NB, although much more data seems
to be required in order to train a reliable model
for predicting attribute labels. The Capability cat-
egory shows the best performance, which is to be
expected, since the Capability attributes occur the
most frequently.

Discussion: The main challenge for this task is
the sparse data and the abundant attribute labels
available. In fact, out of the 444 attribute labels,
190 labels do not appear in the database. For the
remaining 254 attribute labels that do occur in the
database, 92 labels occur less than five times and
50 labels occur only once. With the sparse data
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Features Used NB SVM
P R F1 P R F1

Text only 58.8 50.8 53.5 49.3 47.0 47.2
Ann. only 64.7 55.0 58.0 62.6 57.2 59.2
Text and Ann. 59.3 50.7 53.6 54.3 51.1 51.6

Table 7: Task 5 scores: predicting malware sig-
natures using text and annotations.

available, particularly for rare attribute labels, ef-
fective one-shot learning models might have to be
designed to tackle this difficult task.

5.5 Task 5 - Predict malware signatures using
text and annotations

Conventional malware analyzers, such as
malwr.com, generate a list of signatures based on
the malware’s activities in a sandbox. Examples
of such signatures include antisandbox_sleep,
which indicates anti-sandbox capabilities or
persistence_autorun, which indicates persistence
capabilities.

If it is possible to build an effective model to
predict malware signatures based on natural lan-
guage texts about the malware, this can help cy-
bersecurity researchers predict signatures of mal-
ware samples that are difficult to obtain, using the
malware reports freely available online.

By analyzing the hashes listed in each APT re-
port, we obtain a list of signatures for the malware
discussed in the report. However, we are unable
to obtain the signatures for several hashes due to
restricted distribution of malware samples. There
are 8 APT reports without any obtained signatures,
which are subsequently discarded for the follow-
ing experiments. This leaves us with 31 out of 39
APT reports.

The current list of malware signatures from
Cuckoo Sandbox3 consists of 378 signature types.
However, only 68 signature types have been iden-
tified for the malware discussed in the 31 doc-
uments. Furthermore, out of these 68 signature
types, 57 signature types appear less than 10 times,
which we exclude from the experiments. The ex-
periments that follow will focus on predicting the
remaining 11 signature types using the 31 docu-
ments.

The OneVsRestClassifier implementation in
scikit-learn is used in the following experiments,
since this is a multilabel classification problem.
We also use SVM and NB to build two types of

3https://cuckoosandbox.org/

models for comparison.
Three separate methods are used to generate

features for the task: a) the whole text in each APT
report is used as features via a bag-of-words rep-
resentation, without annotations, b) the gold labels
from the annotations are used as features, without
the text, and c) both the text and the gold annota-
tions are used, via a concatenation of the two fea-
ture vectors.

Results: Comparing the first two rows in Ta-
ble 7, we can see that using the annotations as fea-
tures significantly improve the results, especially
the precision. SVM model also seems to bene-
fit more from the annotations, even outperforming
NB in one case.

Discussion: The significant increase in preci-
sion suggests that the annotations provide a con-
densed source of features for predicting malware
signatures, improving the models’ confidence. We
also observe that some signatures seem to ben-
efit more from the annotations, such as persis-
tence_autorun and has_pdb. In particular, per-
sistence_autorun has a direct parallel in attribute
labels, which is MalwareCapability-persistence,
showing that using MAEC vocabulary as attribute
labels is appropriate.

6 Conclusion

In this paper, we presented a framework for
annotating malware reports. We also intro-
duced a database with 39 annotated APT re-
ports and proposed several new tasks and built
models for extracting information from the re-
ports. Finally, we discuss several factors that
make these tasks extremely challenging given cur-
rently available models. We hope that this pa-
per and the accompanying database serve as a
first step towards NLP being applied in cyber-
security and that other researchers will be in-
spired to contribute to the database and to con-
struct their own datasets and implementations.
More details about this database can be found at
http://statnlp.org/research/re/.
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A Attribute Labels

The following elaborates on the types of malware
actions described by each class of attribute labels
and gives specific examples.

A.1 ActionName
The ActionName labels describe specific actions
taken by the malware, such as downloading a
file ActionName: 090: Network- download_ file
or creating a registry key ActionName: 135:
Registry-create_registry_key.

A.2 Capability
The Capability labels describe general capa-
bilities of the malware, such as exfiltrating

stolen data Capability: 006: MalwareCapability-
data_exfiltration or spying on the victim Capabil-
ity: 019: MalwareCapability-spying.

A.3 StrategicObjectives

The StrategicObjectives labels elaborate on
the Capability labels and provide more de-
tails on the capabilities of the malware,
such as preparing stolen data for exfiltration
StrategicObjectives: 021: DataExfiltration-
stage_data_for_exfiltration or capturing informa-
tion from input devices connected to the victim’s
machine StrategicObjectives: 061: Spying-
capture_system_input_peripheral_data.

Each StrategicObjectives label belongs to a Ca-
pability label.

A.4 TacticalObjectives

The TacticalObjectives labels provide third level
of details on the malware’s capability, such as en-
crypting stolen data for exfiltration TacticalObjec-
tives: 053: DataExfiltration-encrypt_data or an
ability to perform key-logging TacticalObjectives:
140: Spying-capture_keyboard_input.

Again, each TacticalObjectives label belongs to
a Capability label.

B Rules for Rule-based Model in Task 3

The following are the rules used in the rule-based
model described in Section 5.3.
1. If a Modifier is followed by an Entity, a Mod-

Obj relation is predicted between the Modi-
fier and the Entity

2. If an Action is followed by an Entity, an Ac-
tionObj relation is predicted between the Ac-
tion and the Entity

3. If an Entity is followed by an Action of token-
length 1, a SubjAction relation is predicted
between the Entity and the Action

4. An ActionObj relation is predicted between
any Action that begins with be and the most
recent previous Entity

5. An ActionObj relation is predicted between
any Action that begins with is, was, are or
were and ends with -ing and the most recent
previous Entity

6. An ActionMod relation is predicted between
all Modifiers and the most recent previous
Action
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