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Abstract

We present Grid Beam Search (GBS), an
algorithm which extends beam search to
allow the inclusion of pre-specified lex-
ical constraints. The algorithm can be
used with any model that generates a se-
quence ¥ = {yo...yr}, by maximizing
plylx) = IZIP(ytIX; {vo-.-y—1}). Lex-

ical constraints take the form of phrases
or words that must be present in the out-
put sequence. This is a very general way
to incorporate additional knowledge into
a model’s output without requiring any
modification of the model parameters or
training data. We demonstrate the feasibil-
ity and flexibility of Lexically Constrained
Decoding by conducting experiments on
Neural Interactive-Predictive Translation,
as well as Domain Adaptation for Neural
Machine Translation. Experiments show
that GBS can provide large improvements
in translation quality in interactive scenar-
ios, and that, even without any user in-
put, GBS can be used to achieve signifi-
cant gains in performance in domain adap-
tation scenarios.

1 Introduction

The output of many natural language processing
models is a sequence of text. Examples include
automatic summarization (Rush et al., 2015), ma-
chine translation (Koehn, 2010; Bahdanau et al.,
2014), caption generation (Xu et al., 2015), and di-
alog generation (Serban et al., 2016), among oth-
ers.

In some real-world scenarios, additional infor-
mation that could inform the search for the opti-
mal output sequence may be available at inference
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time. Humans can provide corrections after view-
ing a system’s initial output, or separate classifi-
cation models may be able to predict parts of the
output with high confidence. When the domain of
the input is known, a domain terminology may be
employed to ensure specific phrases are present in
a system’s predictions. Our goal in this work is to
find a way to force the output of a model to contain
such lexical constraints, while still taking advan-
tage of the distribution learned from training data.

For Machine Translation (MT) usecases in par-
ticular, final translations are often produced by
combining automatically translated output with
user inputs.  Examples include Post-Editing
(PE) (Koehn, 2009; Specia, 2011) and Interactive-
Predictive MT (Foster, 2002; Barrachina et al.,
2009; Green, 2014). These interactive scenarios
can be unified by considering user inputs to be lex-
ical constraints which guide the search for the op-
timal output sequence.

In this paper, we formalize the notion of lexi-
cal constraints, and propose a decoding algorithm
which allows the specification of subsequences
that are required to be present in a model’s out-
put. Individual constraints may be single tokens or
multi-word phrases, and any number of constraints
may be specified simultaneously.

Although we focus upon interactive applica-
tions for MT in our experiments, lexically con-
strained decoding is relevant to any scenario
where a model is asked to generate a sequence
¥ = {yo...yr} given both an input x, and a
set {cp...cn}, where each c; is a sub-sequence
{cio...cij}, that must appear somewhere in y.
This makes our work applicable to a wide range
of text generation scenarios, including image de-
scription, dialog generation, abstractive summa-
rization, and question answering.

The rest of this paper is organized as follows:
Section 2 gives the necessary background for our
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Figure 1: A visualization of the decoding process for an actual example from our English-German MT experiments. The output
token at each timestep appears at the top of the figure, with lexical constraints enclosed in boxes. Generation is shown in
blue, Starting new constraints in green, and Continuing constraints in red. The function used to create the hypothesis at each
timestep is written at the bottom. Each box in the grid represents a beam; a colored strip inside a beam represents an individual
hypothesis in the beam’s k-best stack. Hypotheses with circles inside them are closed, all other hypotheses are open. (Best

viewed in colour).

discussion of GBS, Section 3 discusses the lex-
ically constrained decoding algorithm in detail,
Section 4 presents our experiments, and Section 5
gives an overview of closely related work.

2 Background: Beam Search for
Sequence Generation

Under a model parameterized by 6, let the best
output sequence ¥ given input x be Eq. 1.

§ = argmax py(y|x), (1)

ye{y™}

where we use {y[T!} to denote the set of all se-
quences of length T'. Because the number of pos-
sible sequences for such a model is |v|?, where | v|
is the number of output symbols, the search for ¥
can be made more tractable by factorizing pg(y|x)
into Eq. 2:

T
po(ylx) = Hpe(yt|X; {yo---ye—1}). @
=0

The standard approach is thus to generate the
output sequence from beginning to end, condition-
ing the output at each timestep upon the input x,

and the already-generated symbols {yo...yi—¢}.
However, greedy selection of the most probable
output at each timestep, i.e.:

G = argmax p(yi|x; {yo ... w—1}), (3)
yi€{v}

risks making locally optimal decisions which are
actually globally sub-optimal. On the other hand,
an exhaustive exploration of the output space
would require scoring |v|T sequences, which is
intractable for most real-world models. Thus, a
search or decoding algorithm is often used as a
compromise between these two extremes. A com-
mon solution is to use a heuristic search to at-
tempt to find the best output efficiently (Pearl,
1984; Koehn, 2010; Rush et al., 2013). The key
idea is to discard bad options early, while trying
to avoid discarding candidates that may be locally
risky, but could eventually result in the best overall
output.

Beam search (Och and Ney, 2004) is probably
the most popular search algorithm for decoding se-
quences. Beam search is simple to implement, and
is flexible in the sense that the semantics of the
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Figure 2: Different structures for beam search. Boxes repre-
sent beams which hold k-best lists of hypotheses. (A) Chart
Parsing using SCFG rules to cover spans in the input. (B)
Source coverage as used in PB-SMT. (C) Sequence timesteps
(as used in Neural Sequence Models), GBS is an extension of
(C). In (A) and (B), hypotheses are finished once they reach
the final beam. In (C), a hypothesis is only complete if it has
generated an end-of-sequence (EOS) symbol.

graph of beams can be adapted to take advantage
of additional structure that may be available for
specific tasks. For example, in Phrase-Based Sta-
tistical MT (PB-SMT) (Koehn, 2010), beams are
organized by the number of source words that are
covered by the hypotheses in the beam — a hypoth-
esis is “finished” when it has covered all source
words. In chart-based decoding algorithms such as
CYK, beams are also tied to coverage of the input,
but are organized as cells in a chart, which facili-
tates search for the optimal latent structure of the
output (Chiang, 2007). Figure 2 visualizes three
common ways to structure search. (A) and (B) de-
pend upon explicit structural information between
the input and output, (C) only assumes that the
output is a sequence where later symbols depend
upon earlier ones. Note also that (C) corresponds
exactly to the bottom rows of Figures 1 and 3.
With the recent success of neural models for
text generation, beam search has become the
de-facto choice for decoding optimal output se-
quences (Sutskever et al., 2014). However,
with neural sequence models, we cannot organize
beams by their explicit coverage of the input. A
simpler alternative is to organize beams by output
timesteps from ¢y - - - ¢y, where N is a hyperpa-
rameter that can be set heuristically, for example
by multiplying a factor with the length of the in-
put to make an educated guess about the maximum
length of the output (Sutskever et al., 2014). Out-
put sequences are generally considered complete
once a special “end-of-sentence”(EOS) token has
been generated. Beam size in these models is also
typically kept small, and recent work has shown
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o
|
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Figure 3: Visualizing the lexically constrained decoder’s
complete search graph. Each rectangle represents a beam
containing k hypotheses. Dashed (diagonal) edges indicate
starting or continuing constraints. Horizontal edges repre-
sent generating from the model’s distribution. The horizontal
axis covers the timesteps in the output sequence, and the ver-
tical axis covers the constraint tokens (one row for each token
in each constraint). Beams on the top level of the grid contain
hypotheses which cover all constraints.

that the performance of some architectures can ac-
tually degrade with larger beam size (Tu et al.,
2016).

3 Grid Beam Search

Our goal is to organize decoding in such a way that
we can constrain the search space to outputs which
contain one or more pre-specified sub-sequences.
We thus wish to use a model’s distribution both to
“place” lexical constraints correctly, and to gener-
ate the parts of the output which are not covered
by the constraints.

Algorithm 1 presents the pseudo-code for lex-
ically constrained decoding, see Figures 1 and 3
for visualizations of the search process. Beams
in the grid are indexed by ¢ and c. The ¢ vari-
able tracks the timestep of the search, while the
c variable indicates how many constraint tokens
are covered by the hypotheses in the current beam.
Note that each step of c covers a single constraint
token. In other words, constraints is an array of
sequences, where individual tokens can be indexed
as constraints;;, i.e. token; in constraint;. The
num(C parameter in Algorithm 1 represents the to-
tal number of tokens in all constraints.

The hypotheses in a beam can be separated
into two types (see lines 9-11 and 15-19 of Algo-
rithm 1):

1. open hypotheses can either generate from the
model’s distribution, or start available con-
straints,

2. closed hypotheses can only generate the next
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Algorithm 1 Pseudo-code for Grid Beam Search, note that ¢ and ¢ indices are 0-based

1: procedure CONSTRAINEDSEARCH(model, input, constraints, maxLen, numC, k)
2: startHyp < model.getStartHyp(input, constraints)

3: Grid < initGrid(max Len, numC, k) > initialize beams in grid
4: Grid[0][0] = startHyp
5: fort=1, t++, t < maxLendo
6: for ¢ = maz(0, (numC +t) — maxLen), c++, c<min(t,numC) do
7: n,s,g—=o
8: for each hyp € Grid[t — 1][c] do
9: if hyp.isOpen() then
10: g < g|J model.generate(hyp, input, constraints) 1> generate new open hyps
11: end if
12: end for
13: if ¢ > 0 then
14: for each hyp € Grid[t — 1|[c — 1] do
15: if hyp.isOpen() then
16: n < n|J model.start(hyp, input, constraints) > start new constrained hyps
17: else
18: s < s|J model.continue(hyp, input, constraints) > continue unfinished
19: end if
20: end for
21: end if
22: Grid[t][c] = k-argmax model.score(h) > k-best scoring hypotheses stay on the beam
henUsUg
23: end for
24: end for

25: topLevel Hyps <= Grid[:][numC]

26: finishedHyps <= hasEOS (topLevel Hyps)
model.score(h)

argmax
he finishedHyps
28: return best Hyp

29: end procedure

27: best Hyp <

> get hyps in top-level beams
> finished hyps have generated the EOS token

token for in a currently unfinished constraint.

At each step of the search the beam at
Grid[t][] is filled with candidates which may be
created in three ways:

1. the open hypotheses in the beam to the
left (Grid[t — 1][c]) may generate con-
tinuations from the model’s distribution

po(yilx, {yo ... yi—1}),

2. the open hypotheses in the beam to the left
and below (Grid[t — 1][c— 1]) may start new
constraints,

3. the closed hypotheses in the beam to the left
and below (Grid[t — 1][c — 1]) may continue
constraints.

Therefore, the model in Algorithm 1 imple-
ments an interface with three functions: generate,

start, and continue, which build new hypotheses
in each of the three ways. Note that the scoring
function of the model does not need to be aware of
the existence of constraints, but it may be, for ex-
ample via a feature which indicates if a hypothesis
is part of a constraint or not.

The beams at the top level of the grid (beams
where ¢ = numConstraints) contain hypothe-
ses which cover all of the constraints. Once a hy-
pothesis on the top level generates the EOS token,
it can be added to the set of finished hypotheses.
The highest scoring hypothesis in the set of fin-
ished hypotheses is the best sequence which cov-
ers all constraints.'

'Our implementation of GBS is available at https:
//github.com/chrishokamp/constrained_
decoding
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3.1 Multi-token Constraints

By distinguishing between open and closed hy-
potheses, we can allow for arbitrary multi-token
phrases in the search. Thus, the set of constraints
for a particular output may include both individ-
ual tokens and phrases. Each hypothesis main-
tains a coverage vector to ensure that constraints
cannot be repeated in a search path — hypotheses
which have already covered constraint; can only
generate, or start constraints that have not yet
been covered.

Note also that discontinuous lexical constraints,
such as phrasal verbs in English or German, are
easy to incorporate into GBS, by adding filters to
the search, which require that one or more con-
ditions must be met before a constraint can be
used. For example, adding the phrasal verb “ask
(someone) out” as a constraint would mean using
“ask” as constrainty and “out” as constraint,
with two filters: one requiring that constraint;
cannot be used before constrainty, and another
requiring that there must be at least one generated
token between the constraints.

3.2 Subword Units

Both the computation of the score for a hypoth-
esis, and the granularity of the tokens (character,
subword, word, etc...) are left to the underlying
model. Because our decoder can handle arbitrary
constraints, there is a risk that constraints will con-
tain tokens that were never observed in the training
data, and thus are unknown by the model. Espe-
cially in domain adaptation scenarios, some user-
specified constraints are very likely to contain un-
seen tokens. Subword representations provide an
elegant way to circumvent this problem, by break-
ing unknown or rare tokens into character n-grams
which are part of the model’s vocabulary (Sen-
nrich et al., 2016; Wu et al., 2016). In the ex-
periments in Section 4, we use this technique to
ensure that no input tokens are unknown, even if
a constraint contains words which never appeared
in the training data.’

3.3 Efficiency

Because the number of beams is multiplied by the
number of constraints, the runtime complexity of
a naive implementation of GBS is O(ktc). Stan-
dard time-based beam search is O(kt); therefore,

2If a character that was not observed in training data is

observed at prediction time, it will be unknown. However,
we did not observe this in any of our experiments.

some consideration must be given to the efficiency
of this algorithm. Note that the beams in each col-
umn c of Figure 3 are independent, meaning that
GBS can be parallelized to allow all beams at each
timestep to be filled simultaneously. Also, we find
that the most time is spent computing the states for
the hypothesis candidates, so by keeping the beam
size small, we can make GBS significantly faster.

3.4 Models

The models used for our experiments are state-
of-the-art Neural Machine Translation (NMT) sys-
tems using our own implementation of NMT with
attention over the source sequence (Bahdanau
et al.,, 2014). We used Blocks and Fuel to im-
plement our NMT models (van Merrinboer et al.,
2015). To conduct the experiments in the fol-
lowing section, we trained baseline translation
models for English-German (EN-DE), English—
French (EN-FR), and English—Portuguese (EN-
PT). We created a shared subword representation
for each language pair by extracting a vocabulary
of 80000 symbols from the concatenated source
and target data. See the Appendix for more de-
tails on our training data and hyperparameter con-
figuration for each language pair. The beam.Size
parameter is set to 10 for all experiments.

Because our experiments use NMT models, we
can now be more explicit about the implemen-
tations of the generate, start, and continue
functions for this GBS instantiation. For an
NMT model at timestep ¢, generate(hyp;—1) first
computes a vector of output probabilities o; =
softmax(g(ys—1,5i,¢;))° using the state infor-
mation available from hAyp;_;. and returns the best
k continuations, i.e. Eq. 4:

g: = k-argmax oy;. @
i

The start and continue functions simply index
into the softmax output of the model, selecting
specific tokens instead of doing a k-argmax over
the entire target language vocabulary. For exam-
ple, to start constraint c;, we find the score of to-
ken c;g , i.€. Oy¢y-

4 Experiments

4.1 Pick-Revise for Interactive Post Editing

Pick-Revise is an interaction cycle for MT Post-
Editing proposed by Cheng et al. (2016). Starting

3we use the notation for the ¢ function from Bahdanau
et al. (2014)
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ITERATION 0 1 2 3

Strict Constraints

EN-DE 18.44 27.64 (+9.20) 36.66 (+9.01) 43.92 (+7.26)
EN-FR 28.07 36.71 (+8.64) 44.84 (+8.13) 45.48 +(0.63)
EN-PT* 15.41 23.54 (+8.25) 31.14 (+7.60) 35.89 (+4.75)
Relaxed Constraints

EN-DE 18.44 26.43 (+7.98) 34.48 (+8.04) 41.82 (+7.34)
EN-FR 28.07 33.8 (+5.72) 40.33 (+6.53) 47.0 (+6.67)
EN-PT* 15.41 23.22 (+7.80) 33.82 (+10.6) 40.75 (+6.93)

Table 1: Results for four simulated editing cycles using WMT test data. EN-DE uses newstest2013, EN-FR uses newstest2014,
and EN-PT uses the Autodesk corpus discussed in Section 4.2. Improvement in BLEU score over the previous cycle is shown
in parentheses. * indicates use of our test corpus created from Autodesk post-editing data.

with the original translation hypothesis, a (sim-
ulated) user first picks a part of the hypothesis
which is incorrect, and then provides the correct
translation for that portion of the output. The user-
provided correction is then used as a constraint for
the next decoding cycle. The Pick-Revise process
can be repeated as many times as necessary, with
a new constraint being added at each cycle.

We modify the experiments of Cheng et al.
(2016) slightly, and assume that the user only pro-
vides sequences of up to three words which are
missing from the hypothesis.* To simulate user
interaction, at each iteration we chose a phrase
of up to three tokens from the reference transla-
tion which does not appear in the current MT hy-
potheses. In the strict setting, the complete phrase
must be missing from the hypothesis. In the re-
laxed setting, only the first word must be missing.
Table 1 shows results for a simulated editing ses-
sion with four cycles. When a three-token phrase
cannot be found, we backoff to two-token phrases,
then to single tokens as constraints. If a hypoth-
esis already matches the reference, no constraints
are added. By specifying a new constraint of up to
three words at each cycle, an increase of over 20
BLEU points is achieved in all language pairs.

4.2 Domain Adaptation via Terminology

The requirement for use of domain-specific termi-
nologies is common in real-world applications of
MT (Crego et al., 2016). Existing approaches in-
corporate placeholder tokens into NMT systems,
which requires modifying the pre- and post- pro-
cessing of the data, and training the system with

“NMT models do not use explicit alignment between

source and target, so we cannot use alignment information
to map target phrases to source phrases

data that contains the same placeholders which oc-
cur in the test data (Crego et al., 2016). The MT
system also loses any possibility to model the to-
kens in the terminology, since they are represented
by abstract tokens such as “(TERM_1)”. An at-
tractive alternative is to simply provide term map-
pings as constraints, allowing any existing system
to adapt to the terminology used in a new test do-
main.

For the target domain data, we use the Autodesk
Post-Editing corpus (Zhechev, 2012), which is a
dataset collected from actual MT post-editing ses-
sions. The corpus is focused upon software local-
ization, a domain which is likely to be very dif-
ferent from the WMT data used to train our gen-
eral domain models. We divide the corpus into ap-
proximately 100,000 training sentences, and 1000
test segments, and automatically generate a termi-
nology by computing the Pointwise Mutual Infor-
mation (PMI) (Church and Hanks, 1990) between
source and target n-grams in the training set. We
extract all n-grams from length 2-5 as terminology
candidates.

) — log P2 Y)
. pmi(x;y)
npmi(x;y) = Thixy) (6)

Equations 5 and 6 show how we compute the
normalized PMI for a terminology candidate pair.
The PMI score is normalized to the range [—1, +1]
by dividing by the entropy h of the joint prob-
ability p(x,y). We then filter the candidates to
only include pairs whose PMI is > 0.9, and where
both the source and target phrases occur at least
five times in the corpus. When source phrases
that match the terminology are observed in the test
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data, the corresponding target phrase is added to
the constraints for that segment. Results are shown
in Table 2.

As a sanity check that improvements in BLEU
are not merely due to the presence of the terms
somewhere in the output, i.e. that the placement
of the terms by GBS is reasonable, we also eval-
uate the results of randomly inserting terms into
the baseline output, and of prepending terms to the
baseline output.

This simple method of domain adaptation leads
to a significant improvement in the BLEU score
without any human intervention. Surprisingly,
even an automatically created terminology com-
bined with GBS yields performance improve-
ments of approximately +2 BLEU points for En-
De and En-Fr, and a gain of almost 14 points
for En-Pt. The large improvement for En-Pt is
probably due to the training data for this sys-
tem being very different from the IT domain
(see Appendix). Given the performance improve-
ments from our automatically extracted terminol-
ogy, manually created domain terminologies with
good coverage of the test domain are likely to lead
to even greater gains. Using a terminology with
GBS is likely to be beneficial in any setting where
the test domain is significantly different from the
domain of the model’s original training data.

System BLEU
EN-DE

Baseline 26.17
Random 25.18 (-0.99)
Beginning 26.44 (+0.26)
GBS 27.99 (+1.82)
EN-FR

Baseline 32.45
Random 31.48 (-0.97)
Beginning 34.51 (+2.05)
GBS 35.05 (+2.59)
EN-PT

Baseline 15.41
Random 18.26 (+2.85)
Beginning 20.43 (+5.02)
GBS 29.15 (+13.73)

Table 2: BLEU Results for EN-DE, EN-FR, and EN-PT ter-
minology experiments using the Autodesk Post-Editing Cor-
pus. “Random’ indicates inserting terminology constraints
at random positions in the baseline translation. “Beginning”
indicates prepending constraints to baseline translations.

4.3 Analysis

Subjective analysis of decoder output shows that
phrases added as constraints are not only placed
correctly within the output sequence, but also have
global effects upon translation quality. This is a
desirable effect for user interaction, since it im-
plies that users can bootstrap quality by adding the
most critical constraints (i.e. those that are most
essential to the output), first. Table 3 shows several
examples from the experiments in Table 1, where
the addition of lexical constraints was able to
guide our NMT systems away from initially quite
low-scoring hypotheses to outputs which perfectly
match the reference translations.

5 Related Work

Most related work to date has presented modifica-
tions of SMT systems for specific usecases which
constrain MT output via auxilliary inputs. The
largest body of work considers Interactive Ma-
chine Translation (IMT): an MT system searches
for the optimal target-language suffix given a com-
plete source sentence and a desired prefix for
the target output (Foster, 2002; Barrachina et al.,
2009; Green, 2014). IMT can be viewed as sub-
case of constrained decoding, where there is only
one constraint which is guaranteed to be placed at
the beginning of the output sequence. Wuebker
et al. (2016) introduce prefix-decoding, which
modifies the SMT beam search to first ensure that
the target prefix is covered, and only then contin-
ues to build hypotheses for the suffix using beams
organized by coverage of the remaining phrases
in the source segment. Wuebker et al. (2016) and
Knowles and Koehn (2016) also present a simple
modification of NMT models for IMT, enabling
models to predict suffixes for user-supplied pre-
fixes.

Recently, some attention has also been given to
SMT decoding with multiple lexical constraints.
The Pick-Revise (PRIMT) (Cheng et al., 2016)
framework for Interactive Post Editing introduces
the concept of edit cycles. Translators specify con-
straints by editing a part of the MT output that is
incorrect, and then asking the system for a new
hypothesis, which must contain the user-provided
correction. This process is repeated, maintain-
ing constraints from previous iterations and adding
new ones as needed. Importantly, their approach
relies upon the phrase segmentation provided by
the SMT system. The decoding algorithm can
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EN-DE

Source

He was also an anti- smoking activist and took part in several campaigns .

Original Hypothesis

Es war auch ein Anti- Rauch- Aktiv- ist und nahmen an mehreren Kampagnen teil .

Reference

Ebenso setzte er sich gegen das Rauchen ein und nahm an mehreren Kampagnen teil .

Constrained Hypothesis

Constraints
(1) Ebenso setzte er
(2) gegen das Rauchen

Ebenso setzte er sich gegen das Rauchen ein und nahm an mehreren Kampagnen teil . (3) nahm
EN-FR

Source

At that point I was no longer afraid of him and I was able to love him .

Original Hypothesis

Je n’avais plus peur de lui et j’etais capable de I’aimer .

Reference Constraints

L4 je n’ai plus eu peur de lui et j’ai pu I’aimer . (1) L4 je n’ai

Constrained Hypothesis (2)j’ai pu

La je n’ai plus eu peur de lui et j’ai pu I’aimer . 3)eu
EN-PT

Source

Mo- dif- y drain- age features by selecting them individually .

Original Hypothesis

- Ja temos as caracteristicas de extrac¢do de idade , com eles individualmente .

Reference Constraints

Modi- fique os recursos de drenagem ao selec- ion- d-los individualmente .

Constrained Hypothesis
Modi- fique os recursos de dr

ao selec- ion- 4-los individualmente .

(1) drenagem ao selec-
(2) Modi- fique os
(3) recursos

Table 3: Manual analysis of examples from lexically constrained decoding experiments.

«

> followed by whitespace indicates

the internal segmentation of the translation model (see Section 3.2)

only make use of constraints that match phrase
boundaries, because constraints are implemented
as “rules” enforcing that source phrases must be
translated as the aligned target phrases that have
been selected as constraints. In contrast, our ap-
proach decodes at the token level, and is not de-
pendent upon any explicit structure in the underly-
ing model.

Domingo et al. (2016) also consider an interac-
tive scenario where users first choose portions of
an MT hypothesis to keep, then query for an up-
dated translation which preserves these portions.
The MT system decodes the source phrases which
are not aligned to the user-selected phrases un-
til the source sentence is fully covered. This ap-
proach is similar to the system of Cheng et al., and
uses the “XML input” feature in Moses (Koehn
et al., 2007).

Some recent work considers the inclusion of
soft lexical constraints directly into deep models
for dialog generation, and special cases, such as
recipe generation from a list of ingredients (Wen
et al., 2015; Kiddon et al., 2016). Such constraint-
aware models are complementary to our work, and
could be used with GBS decoding without any
change to the underlying models.

To the best of our knowledge, ours is the
first work which considers general lexically con-
strained decoding for any model which outputs
sequences, without relying upon alignments be-
tween input and output, and without using a search

organized by coverage of the input.

6 Conclusion

Lexically constrained decoding is a flexible way
to incorporate arbitrary subsequences into the out-
put of any model that generates output sequences
token-by-token. A wide spectrum of popular text
generation models have this characteristic, and
GBS should be straightforward to use with any
model that already uses beam search.

In translation interfaces where translators can
provide corrections to an existing hypothesis,
these user inputs can be used as constraints, gener-
ating a new output each time a user fixes an error.
By simulating this scenario, we have shown that
such a workflow can provide a large improvement
in translation quality at each iteration.

By using a domain-specific terminology to gen-
erate target-side constraints, we have shown that
a general domain model can be adapted to a new
domain without any retraining. Surprisingly, this
simple method can lead to significant performance
gains, even when the terminology is created auto-
matically.

In future work, we hope to evaluate GBS with
models outside of MT, such as automatic sum-
marization, image captioning or dialog genera-
tion. We also hope to introduce new constraint-
aware models, for example via secondary attention
mechanisms over lexical constraints.
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A NMT System Configurations

We train all systems for 500000 iterations, with
validation every 5000 steps. The best single model
from validation is used in all of the experiments for
alanguage pair. We use /5 regularization on all pa-
rameters with & = le~®. Dropout is used on the
output layers with p(drop) = 0.5. We sort mini-
batches by source sentence length, and reshuffle
training data after each epoch.

All systems use a bidirectional GRUs (Cho
et al.,, 2014) to create the source representation
and GRUs for the decoder transition. We use
AdaDelta (Zeiler, 2012) to update gradients, and
clip large gradients to 1.0.

Training Configurations

EN-DE

Embedding Size 300
Recurrent Layers Size 1000
Source Vocab Size 80000
Target Vocab Size 90000
Batch Size 50
EN-FR

Embedding Size 300
Recurrent Layers Size 1000
Source Vocab Size 66000
Target Vocab Size 74000
Batch Size 40
EN-PT

Embedding Size 200
Recurrent Layers Size 800
Source Vocab Size 60000
Target Vocab Size 74000
Batch Size 40

A.1 English-German

Our English-German training corpus consists of
4.4 Million segments from the Europarl (Bojar
et al.,, 2015) and CommonCrawl (Smith et al.,
2013) corpora.

A.2 English-French

Our English-French training corpus consists of 4.9
Million segments from the Europarl and Com-
monCrawl corpora.

A.3 English-Portuguese

Our English-Portuguese training corpus consists
of 28.5 Million segments from the Europarl, JRC-

Aquis (Steinberger et al., 2006) and OpenSubti-
tles> corpora.

Shttp://www.opensubtitles.org/
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