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Abstract

Fixed-vocabulary language models fail to
account for one of the most characteristic
statistical facts of natural language: the fre-
quent creation and reuse of new word types.
Although character-level language models
offer a partial solution in that they can cre-
ate word types not attested in the training
corpus, they do not capture the “bursty” dis-
tribution of such words. In this paper, we
augment a hierarchical LSTM language
model that generates sequences of word to-
kens character by character with a caching
mechanism that learns to reuse previously
generated words. To validate our model
we construct a new open-vocabulary lan-
guage modeling corpus (the Multilingual
Wikipedia Corpus; MWC) from compara-
ble Wikipedia articles in 7 typologically
diverse languages and demonstrate the ef-
fectiveness of our model across this range
of languages.

1 Introduction

Language modeling is an important problem in nat-
ural language processing with many practical ap-
plications (translation, speech recognition, spelling
autocorrection, etc.). Recent advances in neural
networks provide strong representational power
to language models with distributed representa-
tions and unbounded dependencies based on recur-
rent networks (RNNs). However, most language
models operate by generating words by sampling
from a closed vocabulary which is composed of
the most frequent words in a corpus. Rare tokens
are typically replaced by a special token, called
the unknown word token, 〈UNK〉. Although fixed-
vocabulary language models have some important
practical applications and are appealing models

for study, they fail to capture two empirical facts
about the distribution of words in natural languages.
First, vocabularies keep growing as the number of
documents in a corpus grows: new words are con-
stantly being created (Heaps, 1978). Second, rare
and newly created words often occur in “bursts”,
i.e., once a new or rare word has been used once in
a document, it is often repeated (Church and Gale,
1995; Church, 2000).

The open-vocabulary problem can be solved
by dispensing with word-level models in favor
of models that predict sentences as sequences of
characters (Sutskever et al., 2011; Chung et al.,
2017). Character-based models are quite success-
ful at learning what (new) word forms look like
(e.g., they learn a language’s orthographic conven-
tions that tell us that sustinated is a plausible En-
glish word and bzoxqir is not) and, when based on
models that learn long-range dependencies such as
RNNs, they can also be good models of how words
fit together to form sentences.

However, existing character-sequence models
have no explicit mechanism for modeling the fact
that once a rare word is used, it is likely to be used
again. In this paper, we propose an extension to
character-level language models that enables them
to reuse previously generated tokens (§2). Our
starting point is a hierarchical LSTM that has been
previously used for modeling sentences (word by
word) in a conversation (Sordoni et al., 2015), ex-
cept here we model words (character by character)
in a sentence. To this model, we add a caching
mechanism similar to recent proposals for caching
that have been advocated for closed-vocabulary
models (Merity et al., 2017; Grave et al., 2017).
As word tokens are generated, they are placed in
an LRU cache, and, at each time step the model
decides whether to copy a previously generated
word from the cache or to generate it from scratch,
character by character. The decision of whether
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to use the cache or not is a latent variable that
is marginalised during learning and inference. In
summary, our model has three properties: it creates
new words, it accounts for their burstiness using
a cache, and, being based on LSTM s over word
representations, it can model long range dependen-
cies.

To evaluate our model, we perform ablation ex-
periments with variants of our model without the
cache or hierarchical structure. In addition to stan-
dard English data sets (PTB and WikiText-2), we
introduce a new multilingual data set: the Multi-
lingual Wikipedia Corpus (MWC), which is con-
structed from comparable articles from Wikipedia
in 7 typologically diverse languages (§3) and show
the effectiveness of our model in all languages (§4).
By looking at the posterior probabilities of the gen-
eration mechanism (language model vs. cache) on
held-out data, we find that the cache is used to gen-
erate “bursty” word types such as proper names,
while numbers and generic content words are gen-
erated preferentially from the language model (§5).

2 Model

In this section, we describe our hierarchical char-
acter language model with a word cache. As is
typical for RNN language models, our model uses
the chain rule to decompose the problem into incre-
mental predictions of the next word conditioned on
the history:

p(w) =

|w|∏

t=1

p(wt | w<t).

We make two modifications to the traditional
RNN language model, which we describe in turn.
First, we begin with a cache-less model we call
the hierarchical character language model (HCLM;
§2.1) which generates words as a sequence of char-
acters and constructs a “word embedding” by en-
coding a character sequence with an LSTM (Ling
et al., 2015). However, like conventional closed-
vocabulary, word-based models, it is based on an
LSTM that conditions on words represented by
fixed-length vectors.1

The HCLM has no mechanism to reuse words
that it has previously generated, so new forms will

1The HCLM is an adaptation of the hierarchical recurrent
encoder-decoder of Sordoni et al. (2015) which was used
to model dialog as a sequence of actions sentences which
are themselves sequences of words. The original model was
proposed to compose words into query sequences but we use
it to compose characters into word sequences.

only be repeated with very low probability. How-
ever, since the HCLM is not merely generating
sentences as a sequence of characters, but also seg-
menting them into words, we may add a word-
based cache to which we add words keyed by the
hidden state being used to generate them (§2.2).
This cache mechanism is similar to the model pro-
posed by Merity et al. (2017).

Notation. Our model assigns probabilities to se-
quences of words w = w1, . . . , w|w|, where |w| is
the length, and where each word wi is represented
by a sequence of characters ci = ci,1, . . . , ci,|ci| of
length |ci|.

2.1 Hierarchical Character-level Language
Model (HCLM)

This hierarchical model satisfies our linguistic intu-
ition that written language has (at least) two differ-
ent units, characters and words.

The HCLM consists of four components, three
LSTMs (Hochreiter and Schmidhuber, 1997):
a character encoder, a word-level context en-
coder, and a character decoder (denoted LSTMenc,
LSTMctx, and LSTMdec, respectively), and a soft-
max output layer over the character vocabulary.
Fig. 1 illustrates an unrolled HCLM.

Suppose the model reads word wt−1 and pre-
dicts the next word wt. First, the model reads the
character sequence representing the word wt−1 =
ct−1,1, . . . , ct−1,|ct−1| where |ct−1| is the length
of the word generated at time t − 1 in charac-
ters. Each character is represented as a vector
vct−1,1 , . . . ,vct−1,|ct−1|

and fed into the encoder
LSTMenc . The final hidden state of the encoder
LSTMenc is used as the vector representation of
the previously generated word wt−1,

henc
t = LSTMenc(vct−1,1 , . . . ,vct−1,|ct|

).

Then all the vector representations of words
(vw1 , . . . ,vw|w|) are processed with a context
LSTMctx . Each of the hidden states of the con-
text LSTMctx are considered representations of the
history of the word sequence.

hctx
t = LSTMctx(h

enc
1 , . . . ,henc

t )

Finally, the initial state of the decoder LSTM
is set to be hctx

t and the decoder LSTM reads a
vector representation of the start symbol v〈S〉 and
generates the next word wt+1 character by charac-
ter. To predict the j-th character in wt, the decoder
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Figure 1: Description of Hierarchical Character Language Model with Cache.

LSTM reads vector representations of the previous
characters in the word, conditioned on the context
vector hctx

t and a start symbol.

hdec
t,j = LSTMdec(vct,1 , . . . ,vct,j−1 ,h

ctx
t ,v〈S〉).

The character generation probability is defined
by a softmax layer for the corresponding hidden
representation of the decoder LSTM .

p(ct,j | w<t, ct,<j) = softmax(Wdech
dec
t,j + bdec)

Thus, a word generation probability from
HCLM is defined as follows.

plm(wt | w<t) =

|ct|∏

j=1

p(ct,j | w<t, ct,<j)

2.2 Continuous cache component

The cache component is an external memory struc-
ture which store K elements of recent history. Sim-
ilarly to the memory structure used in Grave et al.
(2017), a word is added to a key-value memory
after each generation of wt. The key at position
i ∈ [1,K] is ki and its value mi. The memory slot
is chosen as follows: if the wt exists already in the
memory, its key is updated (discussed below). Oth-
erwise, if the memory is not full, an empty slot is
chosen or the least recently used slot is overwritten.
When writing a new word to memory, the key is
the RNN representation that was used to generate

the word (ht) and the value is the word itself (wt).
In the case when the word already exists in the
cache at some position i, the ki is updated to be
the arithmetic average of ht and the existing ki.

To define the copy probability from the cache
at time t, a distribution over copy sites is defined
using the attention mechanism of Bahdanau et al.
(2015). To do so, we construct a query vector (rt)
from the RNN’s current hidden state ht,

rt = tanh(Wqht + bq),

then, for each element i of the cache, a ‘copy score,’
ui,t is computed,

ui,t = vT tanh(Wuki + rt).

Finally, the probability of generating a word via
the copying mechanism is:

pmem(i | ht) = softmaxi(ut)

pptr(wt | ht) = pmem(i | ht)[mi = wt],

where [mi = wt] is 1 if the ith value in memory
is wt and 0 otherwise. Since pmem defines a distri-
bution of slots in the cache, pptr translates it into
word space.

2.3 Character-level Neural Cache Language
Model

The word probability p(wt | w<t) is defined as a
mixture of the following two probabilities. The first
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one is a language model probability, plm(wt | w<t)
and the other is pointer probability , pptr(wt | w<t).
The final probability p(wt | w<t) is

λtplm(wt | w<t) + (1− λt)pptr(wt | w<t),

where λt is computed by a multi-layer perceptron
with two non-linear transformations using ht as its
input, followed by a transformation by the logistic
sigmoid function:

γt = MLP(ht), λt =
1

1− e−γt .

We remark that Grave et al. (2017) use a clever trick
to estimate the probability, λt of drawing from the
LM by augmenting their (closed) vocabulary with
a special symbol indicating that a copy should be
used. This enables word types that are highly pre-
dictive in context to compete with the probability of
a copy event. However, since we are working with
an open vocabulary, this strategy is unavailable in
our model, so we use the MLP formulation.

2.4 Training objective
The model parameters as well as the character pro-
jection parameters are jointly trained by maximiz-
ing the following log likelihood of the observed
characters in the training corpus,

L = −
∑

log p(wt | w<t).

3 Datasets

We evaluate our model on a range of datasets, em-
ploying preexisting benchmarks for comparison to
previous published results, and a new multilingual
corpus which specifically tests our model’s perfor-
mance across a range of typological settings.

3.1 Penn Tree Bank (PTB)
We evaluate our model on the Penn Tree Bank.
For fair comparison with previous works, we fol-
lowed the standard preprocessing method used
by Mikolov et al. (2010). In the standard prepro-
cessing, tokenization is applied, words are lower-
cased, and punctuation is removed. Also, less fre-
quent words are replaced by unknown an token
(UNK),2 constraining the word vocabulary size to
be 10k. Because of this preprocessing, we do not
expect this dataset to benefit from the modeling
innovations we have introduced in the paper. Fig.1
summarizes the corpus statistics.

2When the unknown token is used in character-level model,
it is treated as if it were a normal word (i.e. UNK is the

Train Dev Test

Character types 50 50 48
Word types 10000 6022 6049
OOV rate - 0.00% 0.00%
Word tokens 0.9M 0.1M 0.1M
Characters 5.1M 0.4M 0.4M

Table 1: PTB Corpus Statistics.

3.2 WikiText-2
Merity et al. (2017) proposed the WikiText-2 Cor-
pus as a new benchmark dataset.3 They pointed out
that the preprocessed PTB is unrealistic for real lan-
guage use in terms of word distribution. Since the
vocabulary size is fixed to 10k, the word frequency
does not exhibit a long tail. The wikiText-2 corpus
is constructed from 720 articles. They provided
two versions. The version for word level language
modeling was preprocessed by discarding infre-
quent words. But, for character-level models, they
provided raw documents without any removal of
word or character types or lowercasing, but with
tokenization. We make one change to this corpus:
since Wikipedia articles make extensive use of char-
acters from other languages; we replaced character
types that occur fewer than 25 times were replaced
with a dummy character (this plays the role of the
〈UNK〉 token in the character vocabulary). Tab. 2
summarizes the corpus statistics.

Train Dev Test

Character types 255 128 138
Word types 76137 19813 21109
OOV rate - 4.79% 5.87%
Word tokens 2.1M 0.2M 0.2M
Characters 10.9M 1.1M 1.3M

Table 2: WikiText-2 Corpus Statistics.

3.3 Multilingual Wikipedia Corpus (MWC)
Languages differ in what word formation processes
they have. For character-level modeling it is there-
fore interesting to compare a model’s performance

sequence U, N, and K). This is somewhat surprising modeling
choice, but it has become conventional (Chung et al., 2017).

3http://metamind.io/research/the-
wikitext-long-term-dependency-language-
modeling-dataset/
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across languages. Since there is at present no stan-
dard multilingual language modeling dataset, we
created a new dataset, the Multilingual Wikipedia
Corpus (MWC), a corpus of the same Wikipedia
articles in 7 languages which manifest a range of
morphological typologies. The MWC contains En-
glish (EN), French (FR), Spanish (ES), German
(DE), Russian (RU), Czech (CS), and Finnish (FI).

To attempt to control for topic divergences across
languages, every language’s data consists of the
same articles. Although these are only comparable
(rather than true translations), this ensures that the
corpus has a stable topic profile across languages.4

Construction & Preprocessing We constructed
the MWC similarly to the WikiText-2 corpus. Arti-
cles were selected from Wikipedia in the 7 target
languages. To keep the topic distribution to be
approximately the same across the corpora, we ex-
tracted articles about entities which explained in
all the languages. We extracted articles which ex-
ist in all languages and each consist of more than
1,000 words, for a total of 797 articles. These cross-
lingual articles are, of course, not usually transla-
tions, but they tend to be comparable. This filtering
ensures that the topic profile in each language is
similar. Each language corpus is approximately the
same size as the WikiText-2 corpus.

Wikipedia markup was removed with WikiEx-
tractor,5 to obtain plain text. We used the
same thresholds to remove rare characters in the
WikiText-2 corpus. No tokenization or other nor-
malization (e.g., lowercasing) was done.

Statistics After the preprocessing described
above, we randomly sampled 360 articles. The
articles are split into 300, 30, 30 sets and the first
300 articles are used for training and the rest are
used for dev and test respectively. Table 3 summa-
rizes the corpus statistics.

Additionally, we show in Fig. 2 the distribution
of frequencies of OOV word types (relative to the
training set) in the dev+test portions of the corpus,
which shows a power-law distribution, which is
expected for the burstiness of rare words found in
prior work. Curves look similar for all languages
(see Appendix A).

4The Multilingual Wikipedia Corpus (MWC) is avail-
able for download from http://k-kawakami.com/
research/mwc

5https://github.com/attardi/
wikiextractor

Figure 2: Histogram of OOV word frequencies in
the dev+test part of the MWC Corpus (EN).

4 Experiments

We now turn to a series of experiments to show
the value of our hierarchical character-level cache
language model. For each dataset we trained the
model with LSTM units. To compare our results
with a strong baseline, we also train a model with-
out the cache.

Model Configuration For HCLM and HCLM
with cache models, We used 600 dimensions for
the character embeddings and the LSTMs have 600
hidden units for all the experiments. This keeps the
model complexity to be approximately the same as
previous works which used an LSTM with 1000
dimension. Our baseline LSTM have 1000 dimen-
sions for embeddings and reccurence weights.

For the cache model, we used cache size 100
in every experiment. All the parameters includ-
ing character projection parameters are randomly
sampled from uniform distribution from −0.08
to 0.08. The initial hidden and memory state of
LSTMenc and LSTMctx are initialized with zero.
Mini-batches of size 25 are used for PTB experi-
ments and 10 for WikiText-2, due to memory lim-
itations. The sequences were truncated with 35
words. Then the words are decomposed to charac-
ters and fed into the model. A Dropout rate of 0.5
was used for all but the recurrent connections.

Learning The models were trained with the
Adam update rule (Kingma and Ba, 2015) with
a learning rate of 0.002. The maximum norm of
the gradients was clipped at 10.

Evaluation We evaluated our models with bits-
per-character (bpc) a standard evaluation metric

1496



Char. Types Word Types OOV rate Tokens Characters

Train Valid Test Train Valid Test Valid Test Train Valid Test Train Valid Test

EN 307 160 157 193808 38826 35093 6.60% 5.46% 2.5M 0.2M 0.2M 15.6M 1.5M 1.3M
FR 272 141 155 166354 34991 38323 6.70% 6.96% 2.0M 0.2M 0.2M 12.4M 1.3M 1.6M
DE 298 162 183 238703 40848 41962 7.07% 7.01% 1.9M 0.2M 0.2M 13.6M 1.2M 1.3M
ES 307 164 176 160574 31358 34999 6.61% 7.35% 1.8M 0.2M 0.2M 11.0M 1.0M 1.3M
CS 238 128 144 167886 23959 29638 5.06% 6.44% 0.9M 0.1M 0.1M 6.1M 0.4M 0.5M
FI 246 123 135 190595 32899 31109 8.33% 7.39% 0.7M 0.1M 0.1M 6.4M 0.7M 0.6M
RU 273 184 196 236834 46663 44772 7.76% 7.20% 1.3M 0.1M 0.1M 9.3M 1.0M 0.9M

Table 3: Summary of MWC Corpus.

for character-level language models. Following the
definition in Graves (2013), bits-per-character is
the average value of − log2 p(wt | w<t) over the
whole test set,

bpc = − 1

|c| log2 p(w),

where |c| is the length of the corpus in characters.

4.1 Results

PTB Tab. 4 summarizes results on the PTB
dataset.6 Our baseline HCLM model achieved
1.276 bpc which is better performance than the
LSTM with Zoneout regularization (Krueger et al.,
2017). And HCLM with cache outperformed the
baseline model with 1.247 bpc and achieved com-
petitive results with state-of-the-art models with
regularization on recurrence weights, which was
not used in our experiments.

Expressed in terms of per-word perplexity (i.e.,
rather than normalizing by the length of the corpus
in characters, we normalize by words and expo-
nentiate), the test perplexity on HCLM with cache
is 94.79. The performance of the unregularized
2-layer LSTM with 1000 hidden units on word-
level PTB dataset is 114.5 and the same model
with dropout achieved 87.0. Considering the fact
that our character-level models are dealing with
an open vocabulary without unknown tokens, the
results are promising.

WikiText-2 Tab. 5 summarizes results on the
WikiText-2 dataset. Our baseline, LSTM achieved
1.803 bpc and HCLM model achieved 1.670 bpc.
The HCLM with cache outperformed the baseline
models and achieved 1.500 bpc. The word level
perplexity is 227.30, which is quite high compared
to the reported word level baseline result 100.9

6Models designated with a * have more layers and more
parameters.

Method Dev Test

CW-RNN (Koutnik et al., 2014) - 1.46
HF-MRNN (Mikolov et al., 2012) - 1.41
MI-RNN (Wu et al., 2016) - 1.39
ME n-gram (Mikolov et al., 2012) - 1.37
RBN (Cooijmans et al., 2017) 1.281 1.32
Recurrent Dropout (Semeniuta et al., 2016) 1.338 1.301
Zoneout (Krueger et al., 2017) 1.362 1.297
HM-LSTM (Chung et al., 2017) - 1.27
HyperNetwork (Ha et al., 2017) 1.296 1.265
LayerNorm HyperNetwork (Ha et al., 2017) 1.281 1.250
2-LayerNorm HyperLSTM (Ha et al., 2017)* - 1.219
2-Layer with New Cell (Zoph and Le, 2016)* - 1.214

LSTM (Our Implementation) 1.369 1.331
HCLM 1.308 1.276
HCLM with Cache 1.266 1.247

Table 4: Results on PTB Corpus (bits-per-
character). HCLM augmented with a cache obtains
the best results among models which have approx-
imately the same numbers of parameter as single
layer LSTM with 1,000 hidden units.

with LSTM with ZoneOut and Variational Dropout
regularization (Merity et al., 2017). However, the
character-level model is dealing with 76,136 types
in training set and 5.87% OOV rate where the word
level models only use 33,278 types without OOV
in test set. The improvement rate over the HCLM
baseline is 10.2% which is much higher than the
improvement rate obtained in the PTB experiment.

Method Dev Test

LSTM 1.758 1.803
HCLM 1.625 1.670
HCLM with Cache 1.480 1.500

Table 5: Results on WikiText-2 Corpus .

Multilingual Wikipedia Corpus (MWC)
Tab. 6 summarizes results on the MWC dataset.
Similarly to WikiText-2 experiments, LSTM
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is strong baseline. We observe that the cache
mechanism improve performance in every lan-
guages. In English, HCLM with cache achieved
1.538 bpc where the baseline is 1.622 bpc. It
is 5.2% improvement. For other languages,
the improvement rates were 2.7%, 3.2%, 3.7%,
2.5%, 4.7%, 2.7% in FR, DE, ES, CS, FI, RU
respectively. The best improvement rate was
obtained in Finnish.

5 Analysis

In this section, we analyse the behavior of proposed
model qualitatively. To analyse the model, we com-
pute the following posterior probability which tell
whether the model used the cache given a word and
its preceding context. Let zt be a random variable
that says whether to use the cache or the LM to gen-
erate the word at time t. We would like to know,
given the text w, whether the cache was used at
time t. This can be computed as follows:

p(zt | w) =
p(zt, wt | ht, cachet)
p(wt | ht, cachet)

=
(1− λt)pptr(wt | ht, cachet)

p(wt | ht, cachet)
,

where cachet is the state of the cache at time t. We
report the average posterior probability of cache
generation excluding the first occurrence of w,
p(z | w).

Tab. 7 shows the words in the WikiText-2 test
set that occur more than 1 time that are most/least
likely to be generated from cache and character
language model (words that occur only one time
cannot be cache-generated). We see that the model
uses the cache for proper nouns: Lesnar, Gore, etc.,
as well as very frequent words which always stored
somewhere in the cache such as single-token punc-
tuation, the, and of. In contrast, the model uses the
language model to generate numbers (which tend
not to be repeated): 300, 770 and basic content
words: sounds, however, unable, etc. This pattern
is similar to the pattern found in empirical distri-
bution of frequencies of rare words observed in
prior wors (Church and Gale, 1995; Church, 2000),
which suggests our model is learning to use the
cache to account for bursts of rare words.

To look more closely at rare words, we also in-
vestigate how the model handles words that oc-
curred between 2 and 100 times in the test set, but
fewer than 5 times in the training set. Fig. 3 is a
scatter plot of p(z | w) vs the empirical frequency

in the test set. As expected, more frequently re-
peated words types are increasingly likely to be
drawn from the cache, but less frequent words show
a range of cache generation probabilities.

Figure 3: Average p(z | w) of OOV words in test
set vs. term frequency in the test set for words
not obsered in the training set. The model prefers
to copy frequently reused words from cache com-
ponent, which tend to names (upper right) while
character level generation is used for infrequent
open class words (bottom left).

Tab. 8 shows word types with the highest and
lowest average p(z | w) that occur fewer than
5 times in the training corpus. The pattern here
is similar to the unfiltered list: proper nouns are
extremely likely to have been cache-generated,
whereas numbers and generic (albeit infrequent)
content words are less likely to have been.

6 Discussion

Our results show that the HCLM outperforms a
basic LSTM. With the addition of the caching
mechanism, the HCLM becomes consistently more
powerful than both the baseline HCLM and the
LSTM. This is true even on the PTB, which
has no rare or OOV words in its test set (because
of preprocessing), by caching repetitive common
words such as the. In true open-vocabulary settings
(i.e., WikiText-2 and MWC), the improvements are
much more pronounced, as expected.

Computational complexity. In comparison with
word-level models, our model has to read and gen-
erate each word character by character, and it also
requires a softmax over the entire memory at ev-
ery time step. However, the computation is still
linear in terms of the length of the sequence, and
the softmax over the memory cells and character
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EN FR DE ES CS FI RU

dev test dev test dev test dev test dev test dev test dev test

LSTM 1.793 1.736 1.669 1.621 1.780 1.754 1.733 1.667 2.191 2.155 1.943 1.913 1.942 1.932
HCLM 1.683 1.622 1.553 1.508 1.666 1.641 1.617 1.555 2.070 2.035 1.832 1.796 1.832 1.810
HCLM with Cache 1.591 1.538 1.499 1.467 1.605 1.588 1.548 1.498 2.010 1.984 1.754 1.711 1.777 1.761

Table 6: Results on MWC Corpus (bits-per-character).

Word p(z | w) ↓ Word p(z | w) ↑
. 0.997 300 0.000
Lesnar 0.991 act 0.001
the 0.988 however 0.002
NY 0.985 770 0.003
Gore 0.977 put 0.003
Bintulu 0.976 sounds 0.004
Nerva 0.976 instead 0.005
, 0.974 440 0.005
UB 0.972 similar 0.006
Nero 0.967 27 0.009
Osbert 0.967 help 0.009
Kershaw 0.962 few 0.010
Manila 0.962 110 0.010
Boulter 0.958 Jersey 0.011
Stevens 0.956 even 0.011
Rifenburg 0.952 y 0.012
Arjona 0.952 though 0.012
of 0.945 becoming 0.013
31B 0.941 An 0.013
Olympics 0.941 unable 0.014

Table 7: Word types with the highest/lowest av-
erage posterior probability of having been copied
from the cache while generating the test set. The
probability tells whether the model used the cache
given a word and its context. Left: Cache is
used for frequent words (the, of ) and proper nouns
(Lesnar, Gore). Right: Character level generation
is used for basic words and numbers.

vocabulary are much smaller than word-level vo-
cabulary. On the other hand, since the recurrent
states are updated once per character (rather than
per word) in our model, the distribution of opera-
tions is quite different. Depending on the hardware
support for these operations (repeated updates of
recurrent states vs. softmaxes), our model may be
faster or slower. However, our model will have
fewer parameters than a word-based model since
most of the parameters in such models live in the
word projection layers, and we use LSTMs in place
of these.

Non-English languages. For non-English lan-
guages, the pattern is largely similar for non-
English languages. This is not surprising since
morphological processes may generate forms that
are related to existing forms, but these still have

Word p(z | w) ↓ Word p(z | w) ↑
Gore 0.977 770 0.003
Nero 0.967 246 0.037
Osbert 0.967 Lo 0.074
Kershaw 0.962 Pitcher 0.142
31B 0.941 Poets 0.143
Kirby 0.935 popes 0.143
CR 0.926 Yap 0.143
SM 0.924 Piso 0.143
impedance 0.923 consul 0.143
Blockbuster 0.900 heavyweight 0.143
Superfamily 0.900 cheeks 0.154
Amos 0.900 loser 0.164
Steiner 0.897 amphibian 0.167
Bacon 0.893 squads 0.167
filters 0.889 los 0.167
Lim 0.889 Keenan 0.167
Selfridge 0.875 sculptors 0.167
filter 0.875 Gen. 0.167
Lockport 0.867 Kipling 0.167
Germaniawerft 0.857 Tabasco 0.167

Table 8: Same as Table 7, except filtering for word
types that occur fewer than 5 times in the training
set. The cache component is used as expected even
on rare words: proper nouns are extremely likely
to have been cache-generated, whereas numbers
and generic content words are less likely to have
been; this indicates both the effectiveness of the
prior at determining whether to use the cache and
the burstiness of proper nouns.

slight variations. Thus, they must be generated by
the language model component (rather than from
the cache). Still, the cache demonstrates consistent
value in these languages.

Finally, our analysis of the cache on English
does show that it is being used to model word
reuse, particularly of proper names, but also of
frequent words. While empirical analysis of rare
word distributions predicts that names would be
reused, the fact that cache is used to model frequent
words suggests that effective models of language
should have a means to generate common words as
units. Finally, our model disfavors copying num-
bers from the cache, even when they are available.
This suggests that it has learnt that numbers are not
generally repeated (in contrast to names).
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7 Related Work

Caching language models were proposed to ac-
count for burstiness by Kuhn and De Mori (1990),
and recently, this idea has been incorporated to
augment neural language models with a caching
mechanism (Merity et al., 2017; Grave et al., 2017).

Open vocabulary neural language models have
been widely explored (Sutskever et al., 2011;
Mikolov et al., 2012; Graves, 2013, inter alia). At-
tempts to make them more aware of word-level
dynamics, using models similar to our hierarchical
formulation, have also been proposed (Chung et al.,
2017).

The only models that are open vocabulary lan-
guage modeling together with a caching mech-
anism are the nonparametric Bayesian language
models based on hierarchical Pitman–Yor pro-
cesses which generate a lexicon of word types us-
ing a character model, and then generate a text
using these (Teh, 2006; Goldwater et al., 2009;
Chahuneau et al., 2013). These, however, do not
use distributed representations on RNNs to capture
long-range dependencies.

8 Conclusion

In this paper, we proposed a character-level lan-
guage model with an adaptive cache which selec-
tively assign word probability from past history
or character-level decoding. And we empirically
show that our model efficiently model the word
sequences and achieved better perplexity in every
standard dataset. To further validate the perfor-
mance of our model on different languages, we
collected multilingual wikipedia corpus for 7 typo-
logically diverse languages. We also show that our
model performs better than character-level models
by modeling burstiness of words in local context.

The model proposed in this paper assumes the
observation of word segmentation. Thus, the model
is not directly applicable to languages, such as Chi-
nese and Japanese, where word segments are not
explicitly observable. We will investigate a model
which can marginalise word segmentation as latent
variables in the future work.
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A Corpus Statistics

Fig. 4 show distribution of frequencies of OOV
word types in 6 languages.

1501



FR DE

ES CS

FI RU

Figure 4: Histogram of OOV word frequencies in MWC Corpus in different languages.
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