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Abstract

What prerequisite knowledge should stu-
dents achieve a level of mastery be-
fore moving forward to learn subsequent
coursewares? We study the extent to
which the prerequisite relation between
knowledge concepts in Massive Open On-
line Courses (MOOCs) can be inferred
automatically. In particular, what kinds of
information can be leveraged to uncover
the potential prerequisite relation between
knowledge concepts. We first propose a
representation learning-based method for
learning latent representations of course
concepts, and then investigate how differ-
ent features capture the prerequisite rela-
tions between concepts. Our experiments
on three datasets form Coursera show that
the proposed method achieves significant
improvements (+5.9-48.0% by F1-score)
comparing with existing methods.

1 Introduction

Mastery learning was first formally proposed by
Benjamin Bloom in 1968 (Bloom, 1981), suggest-
ing that students must achieve a level of mastery
(e.g., 90% on a knowledge test) in prerequisite
knowledge before moving forward to learn sub-
sequent knowledge concepts. From then on, pre-
requisite relations between knowledge concepts
become a cornerstone for designing curriculum
in schools and universities. Prerequisite relations
essentially can be considered as the dependency
among knowledge concepts. It is crucial for peo-
ple to learn, organize, apply, and generate knowl-
edge (Laurence and Margolis, 1999). Figure 1
shows a real example from Coursera. The student
wants to learn “Conditional Random Field” (in
video18 of CS229). The prerequisite knowledge
might be “Hidden Markov Model” (in video25 of

Figure 1: An example of prerequisite relations in MOOCs

CS224), whose prerequisite knowledge is “Maxi-
mum Likelihood” (in video12 of Math112).

Organizing the knowledge structure with pre-
requisite relations in education improves tasks
such as curriculum planning (Yang et al., 2015),
automatic reading list generation (Jardine, 2014),
and improving education quality (Rouly et al.,
2015). For example, as shown in Figure 1, with
explicit prerequisite relations among concepts (in
red), a coherent and reasonable learning sequence
can be recommended to the student (in blue).
Before, the prerequisite relationships were pro-
vided by teachers or teaching assistants (Novak,
1990); however in the era of MOOCs, it is
becoming infeasible as the teachers would find
that they are facing with hundreds of thousands
of students with various background. Meanwhile,
the rapid growth of Massive Open Online Courses
has offered thousands of courses, and students are
free to choose any course from the thousands of
candidates. Therefore, there is a clear need for
methods to automatically dig out the prerequisite
relationships among knowledge concepts from the
large course space, so that the students from differ-
ent background can easily explore the knowledge
space and better design their personalized learning
schedule.

There are a few efforts aiming to automati-
cally detect prerequisite relations for knowledge
base. For example, Talukdar and Cohen (2012)
proposed a method for inferring prerequisite rela-
tionships between entities in Wikipedia and Liang
et al. (2015) presented a more general approach
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to predict prerequisite relationships. A few other
works intend to extract prerequisite relationships
from textbooks (Yosef et al., 2011; Wang et al.,
2016). However, it is far from sufficient to directly
apply these methods to the MOOC environments
due to the following reasons. First, the focus
of most previous attempts has been on prereq-
uisite inference of Wikipedia concepts (either
Wikipedia articles or Wikipedia concepts in text-
books). Many course concepts are not included in
Wikipedia (Schweitzer, 2008; Okoli et al., 2014).
We can leverage Wikipedia, in particular the exist-
ing entity relationships in Wikipedia, but cannot
only rely on Wikipedia for detecting prerequisite
relations in MOOCs. Second, with the thousands
of courses from different universities and also
very different disciplinaries, the MOOC scenario
is much more complicated — there are not only
inter-course concept relationships, but also intra-
course and even intra-disciplinary relationships.
Moreover, user interactions with the MOOC sys-
tem might be also helpful to identify the prerequi-
site relations. How to fully leverage the different
information to obtain a better performance for
inferring prerequisite relations in MOOCs is a
challenging issue.

In this paper, we attempt to figure out what
kinds of information in MOOCs can be used to
uncover the prerequisite relations among concepts.
Specifically, we consider it from three aspects,
including course concept semantics, course video
context and course structure. First, semantic
relatedness plays an important role in prerequisite
relations between concepts. If two concepts have
very different semantic meanings (e.g., “matrix”
and “anthropology”), it is unlikely that they have
prerequisite relations. However, statistical fea-
tures in MOOCs do not provide sufficient in-
formation for capturing the concept semantics
because of the short length of course videos in
MOOCs, we propose an embedding-based method
to incorporate external knowledge from Wikipedia
to learn semantic representations of concepts in
MOOCs. Based on it, we propose one seman-
tic feature to calculate the semantic relatedness
between concepts. Second, motivated by the
reference distance (RefD) (Liang et al., 2015),
we propose three new contextual features, i.e.,
Video Reference Distance, Sentence Reference
Distance and Wikipedia Reference Distance, to
infer prerequisite relations in MOOCs based on
context information from different aspects, which

are more general and informative than RefD and
overcome its sparsity problem. Third, we examine
different distributional patterns for concepts in
MOOCs, including appearing position, distribu-
tional asymmetry, video coverage and survival
time. We further propose three structural fea-
tures to utilize these patterns to help prerequisite
inference in MOOCs.

To evaluate the proposed method, we construct
three datasets, each of which consists of multiple
real courses in a specific domain from Coursera
1, the largest MOOC platform in the world. We
also compare our method with the representative
works of prerequisite learning and make a deep
analysis of the feature contribution proposed in
the paper. The experimental results show that
our method achieves the state-of-the-art results in
the prerequisite relation discovery in MOOCs. In
summary, our contributions include: a) the first
attempt, to the best of our knowledge, to detect
prerequisite relations among concepts in MOOCs;
b) proposal of a set of novel features that utilize
contextual, structural and semantic information
in MOOCs to identify prerequisite relations; c)
design of three useful datasets based on real
courses of Coursera to evaluate our method.

2 Problem Formulation

In this section, we first give some necessary
definitions and then formulate the problem of
prerequisite relation learning in MOOCs.

A MOOC corpus is composed by n courses
in the same subject area, denoted as D =
{C1, · · · , Ci, · · · , Cn}, where Ci is one course.
Each course C can be further represented as
a video sequence C = (V1, · · · ,Vi, · · · ,V|C|),
where Vi denotes the i-th teaching video of course
C. Finally, we view each video V as a document
of its video texts (video subtitles or speech script),
i.e., V = (s1 · · · si · · · s|V|), where si is the i-th
sentence of the video texts.

Course concepts are subjects taught in the
course, i.e., the concepts not only mentioned but
also discussed and taught in the course. Let us
denote the course concept set of D as K = K1 ∪
· · · ∪Kn, where Ki is the set of course concepts in
Ci.

Prerequisite relation learning in MOOCs is
formally defined as follows. Given a MOOC
corpus D and its corresponding course concepts

1https://www.coursera.org/
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K, the objective is to learn a function P : K2 →
{0, 1} that maps a concept pair 〈a, b〉, where a, b ∈
K, to a binary class that predicts whether a is a
prerequisite concept of b.

In order to learn this mapping, we need to
answer two crucial questions. How could we
represent a course concept? What information
regarding a concept pair is helpful to capture
their prerequisite relation? We first propose
an embedding-based method to learn appropriate
semantic representations for each course concept
in K. Based on the learned representations, we
propose 7 novel features to capture whether a
concept pair has prerequisite relation. These
features utilize different aspects of information
and can be classified into 1 semantic feature, 3
contextual features and 3 structural features. In the
following section, we first describe the semantic
representations in detail, and then formally intro-
duce our proposed features.

3 Method

3.1 Concept Representation & Semantic
Relatedness

We first learn appropriate representations for
course concepts. Given the course concepts K
as input, we utilize a Wikipedia corpus to learn
semantic representations for concepts in K. A
Wikipedia corpusW is a set of Wikipedia articles
and can be represented as a sequence of words
W = 〈w1 · · ·wi · · ·wm〉, where wi denotes a
word and m is the length of the word sequence.
Our method consists of two steps: (1) entity
annotation, and (2) representation learning.

Entity Annotation. We first automatically
annotate the entities in W to obtain an entity
set E and an entity-annotated Wikipedia corpus
W ′ = 〈x1 · · ·xi · · ·xm′〉, where xi corresponds
to a word w ∈ W or an entity e ∈ E . Note
that m′ < m because multiple adjacent words
could be labeled as one entity. Many entity
linking tools are available for entity annotation,
e.g. TAGME (Ferragina and Scaiella, 2010),
AIDA (Yosef et al., 2011) and TremenRank (Cao
et al., 2015). However, the rich hyperlinks created
by Wiki editors provide a more natural way. In
our experiments, we simply use the hyperlinks in
Wikipedia articles as annotated entities.

Representation Learning. We then learn word
embeddings (Mikolov et al., 2013b,a) on W ′ to
obtain low-dimensional, real-valued vector repre-

sentations for entities in E and words in W . Let
us denote ve and vw as the vector of e ∈ E
and w ∈ W , respectively. For a course concept
a ∈ K, suppose a is a N -gram term 〈g1 · · · gN 〉
and g1, · · · , gN ∈ W , we obtain its semantic
representations va as follows.

va =

{
ve, if a ≡ e and e ∈ E
vg1 + · · ·+ vgN , otherwise

(1)

It means that if a is a Wikipedia entity, we
can directly obtain its semantic representations;
otherwise, we obtain its vector via the vector
addition of its individual word vectors. In this
way, a has no corresponding vector only if any
of its constituent word is absence in the whole
Wikipedia corpus. This case is unusual because a
large online encyclopedia corpus can easily cover
almost all individual words of the vocabulary. Our
experimental results verify that over 98% of the
course concepts have vector representations.

Feature 1: Semantic Relatedness

For a given concept pair 〈a, b〉, the semantic
relatedness between a and b, denoted as ω(a, b),
is our first feature (the only semantic feature).
With learned semantic representations, semantic
relatedness of two concepts can be easily reflected
by their distance in the vector space. We define
ω(a, b) ∈ [0, 1] as the normalized cosine distance
between va and vb, as follows.

ω(a, b) =
1

2
(1 +

va · vb
‖va‖ · ‖vb‖

) (2)

3.2 Contextual Features

Context information in course videos provides
important clues to infer prerequisite relations. In
videos where concept A is taught, if the teacher
also mentions concept B for a lot but not vice
versa, then B is more likely to be a prerequisite of
A than A of B. For example, “gradient descent” is
a prerequisite concept of “back propagation”. In
teaching videos of “back propagation”, the con-
cept “gradient descent” is frequently mentioned
when illustrating the optimization detail of back
propagation. On the contrary, however, “back
propagation” is unlikely to be mentioned when
teaching “gradient descent”. A similar observation
also exists in Wikipedia, based on which Liang
et al. (2015) proposed an indicator, namely
reference distance (RefD), to infer prerequisite
relations among Wikipedia articles. However,
RefD is computed based on the link structure of
Wikipedia, thus is only feasible for Wikipedia
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concepts and is not applicable in plain text. We
overcome the above shortcomings of RefD to pro-
pose three novel features, which utilize different
aspects of context information—course videos,
video sentences and Wikipedia articles—to infer
prerequisite relations in MOOCs.

Feature 2: Video Reference Distance
Given a concept pair 〈a, b〉 where a, b ∈ K,

we propose the video reference weight (V rw) to
quantify how b is referred by videos of a, defined
as follows.

V rw (a, b) =

∑
C∈D

∑
V∈C

f (a,V) · r (V, b)
∑
C∈D

∑
V∈C

f (a,V) (3)

where f (a,V) indicates the term frequency of
concept a in video V , which reflects how im-
portant is concept a to this video. r (V, b) ∈
{0, 1} denotes whether concept b appears in video
V . Intuitively, if b appears in more important
videos of a, V rw (a, b) tends to be larger, and the
range of V rw (a, b) is between 0 and 1. Then,
the video reference distance (V rd) is defined as
the difference of V rw between two concepts, as
follows.

V rd (a, b) = V rw (b, a)− V rw (a, b) (4)

In practice, this feature may be too sparse if
the MOOC corpus is small. For an arbitrary
concept pair, they may have no co-occurrence in
all course videos. We expend the video reference
distance to a more general version by considering
the semantic relatedness among concepts. Besides
the conditions in which A refers to B, we also
consider the cases in which A-related concepts
refer to B. We first define the generalized video
reference weight (GV rw) as follows.

GV rw (a, b) =

∑M
i=1 V rw (ai, b) · ω (ai, b)∑M

i=1 ω (ai, b)
(5)

where a1, · · · , aM ∈ K are the top-M most
similar concepts of a, measured by the semantic
relatedness function ω(·, ·) in feature 1. GV rw
is the weighted average of V rw (ai, b), indicating
how b is referred by a-related concepts in their
corresponding videos. Note that a1 = a, thus
GV rw (a, b) ≡ V rw (a, b) when M = 1. Sim-
ilarly, we define the generalized video reference
distance (GV rd) as follows.

GV rd (a, b) = GV rw (b, a)−GV rw (a, b) (6)

Intuitively, if most of b-related concepts refer
to a but not vice versa, then a is likely to be
a prerequisite of b. For example, it is plausible

for the related concepts of “gradient descent”,
e.g., “steepest descent” and “Newton’s method”,
to mention “matrix” but clearly not vice versa.

Feature 3: Sentence Reference Distance
Sentence reference distance is similar to feature

2, but stands on the sentence level. Following the
same design pattern of feature 2, we define the
sentence reference weight (Srw) and sentence
reference distance (Srd) as follows.

Srw (a, b) =

∑
C∈D

∑
V∈C

∑
s∈V

r(s, a) · r(s, b)
∑
C∈D

∑
V∈C

∑
s∈V

r(s, a)
(7)

Srd (a, b) = Srw (b, a)− Srw (a, b) (8)

where r (s, a) ∈ {0, 1} is an indicator of whether
concept a appears in sentence s. Srw(a, b)
calculates the ratio of B appearing in the sentences
of a. We also define generalized sentence ref-
erence weight (GSrw) and generalized sentence
reference distance (GSrd) as follows.

GSrw (a, b) =

∑M
i=1 Srw (ai, b) · ω (ai, b)∑M

i=1 ω (ai, b)
(9)

GSrd (a, b) = GSrw (b, a)−GSrw (a, b) (10)

Feature 4: Wikipedia Reference Distance
Contextual information of Wikipedia is also

useful for detecting prerequisite relations. As
mention before, RefD is not general enough to
be applied in our settings, because it is limited
to Wikipedia concepts. Therefore, we improve
this indicator to a more general one, which is also
suitable for non-wiki concepts.

Specifically, for a concept a ∈ K, let us
denote the top-M most related wiki entities of a
as Ra = 〈e1, · · · , eM 〉, where e1, · · · , eM ∈ E .
Because concepts in K and entities in E are jointly
embedded in the same vector space in Section
3.1, we can easily obtain Ra with the semantic
relatedness metric ω(·, ·) in Feature 1. We then
define the wikipedia reference weight (Wrw) as
follows.

Wrw (a, b) =

∑
e∈Ra

Erw (e, b) · ω (e, a)

∑
e∈Ra

ω (e, a)
(11)

where Erw(e, a) is a binary indicator, in which
Erw(e, a) = 1 if the Wikipedia article of e refers
to any entity in Ra, and Erw(e, a) = 0 other-
wise. Wrw (a, b) measures how frequently that a-
related wiki entities refer to b-related wiki entities.
Finally, wikipedia reference distance (Wrd) is

1450



defined as the difference of Wrw between a and
b, i.e., Wrd (a, b) =Wrw (b, a)−Wrw (a, b).

3.3 Structural Features

Since course concepts are usually introduced
based on their learning dependencies, the structure
of MOOC courses also significantly contribute
to prerequisite relation inference in MOOCs.
However, structure-based features for prerequisite
detection have not been well-studied in previous
works. In this section, we investigate different
structural information, including appearing posi-
tions of concepts, learning dependencies of videos
and complexity levels of concepts, to propose
three novel features to infer prerequisite relations
in MOOCs. Before introducing these features, let
us define two useful notations as follows. C(a) are
the courses in which a is a course concept, i.e.,
C(a) = {Ci|Ci ∈ D, a ∈ Ki}. I(C, a) are the
video indexes that contain concept a in course C.
For example, if a appears in the first and the 4-th
video of C, then I(C, a) = {1, 4}.

Feature 5: Average Position Distance
In a course, for a specific concept, its pre-

requisite concepts tend to be introduced before
this concept and its subsequent concepts tend to
be introduced after this concept. Based on this
observation, for a concept pair 〈a, b〉, we calculate
the distance of the average appearing position of
a and b as one feature, namely average position
distance (Apd). If C(a) ∩ C(b) 6= ∅, Apd (a, b) is
formally defined as follows.

Apd (a, b) =

∑
C∈C(a)∩C(b)

∣∣∣
∑

i∈I(C,a) i

|I(C,a)| −
∑

j∈I(C,b) j

|I(C,b)|

∣∣∣

|C(a) ∩ C(b)|
(12)

If C(a) ∩ C(b) = ∅, we set Apd (a, b) = 0.

Feature 6: Distributional Asymmetry Distance
We also use the learning dependency of course

videos to help infer learning dependency of course
concepts. Based on our observation, the chance
that a prerequisite concept is frequently mentioned
in its subsequent videos is larger than that a sub-
sequent concept is talked about in its prerequisite
videos. Specifically, if video Va is a precursor
video of Vb, and a is a prerequisite concept of b,
then it is likely that f(b,Va) < f(a,Vb), where
f(a,V) denotes the term frequency of a in video
V . We thus define another feature, namely distri-
butional asymmetry distance (Dad), to calculate
the extent that a given concept pair satisfies this

distributional asymmetry pattern. Formally, in
course C, for a given concept pair 〈a, b〉, we
first define S(C) = {(i, j)|i ∈ I(C, a), j ∈
I(C, b), i < j}, i.e., all possible video pairs
of 〈a, b〉 that have sequential relation. Then,
the distributional asymmetry distance of 〈a, b〉 is
formally defined as follows.

Dad (a, b) =

∑
C∈C(a)∩C(b)

∑
(i,j)∈S(C)

f(a,VC
i )−f(b,VC

j )

|S(C)|

|C(a) ∩ C(b)| (13)

where VCi denotes the i-th video of course C. If
C(a) ∩ C(b) = ∅, we set Dad (a, b) = 0.

Feature 7: Complexity Level Distance
Two related concepts with prerequisite relation-

ship tend to have a difference in their complexity
level, meaning that one concept is basic while
another one is advanced. For example, “data
set” and “training set” have learning dependencies
and the latter concept is more advanced than the
former one. However, “test set” and “training
set” have no such relation when their complexity
levels are similar. Complexity level of a course
concept is implicit in its distribution in courses.
Specifically, we observe that, for a concept in
MOOCs, if it covers more videos in a course
or it survives longer time in a course, then it
is more likely to be a basic concept rather than
an advanced one. We then formally define the
average video coverage (avc) and the average
survival time (ast) of a concept a as follows.

avc (a) =
1

|C(a)|
∑

C∈C(a)

|I(C, a)|
|C| (14)

ast (a) =
1

|C(a)|
∑

C∈C(a)

max(I(C, a))−min(I(C, a)) + 1

|C|
(15)

wheremax/min(I(C, a)) obtains the video index
where a appears the last/first time in course C.
Based on the above equations, we define the
complexity level distance (Cld) between concept
a and b as follows.

Cld (a, b) = avc (a) · ast (a)− avc (b) · ast (b) (16)

4 Experiments

4.1 Data Sets
In order to validate the efficiency of our features,
we conducted experiments on three MOOC cor-
pus with different domains: “Machine Learning”
(ML), “Data Structure and Algorithms” (DSA),
and “Calculus” (CAL). To the best of our knowl-
edge, there is no public data set for mining
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Dataset #courses #videos #concepts #pairs κ

− +

ML 5 548 244 5,676 1,735 0.63
DSA 8 449 201 3,877 1,148 0.65
CAL 7 359 128 1,411 621 0.59

Table 1: Dataset Statistics

prerequisite relations in MOOCs. We created
the experimental data sets through a three-stage
process.

First, for each chosen domain, we select its
relevant courses from Coursera, one of the leading
MOOC platforms, and download all course mate-
rials using coursera-dl 2, a widely-used tool for
automatically downloading Coursera.org videos.
For example, for ML, we select 5 related courses
3 from 5 different universities and obtain a total
of 548 course videos. Then, we manually label
course concepts for each course: (1) Extract
candidate concepts from documents of video sub-
titles following the method of Parameswaran et
al. (2010). (2) Label the candidates as “course
concept” or “not course concept” and obtain a set
of course concepts for this course.

Finally, we manually annotate the prerequisite
relations among the labeled course concepts. If
the number of course concepts is n, the number
of all possible pairs to be checked could reach
n × (n − 1)/2, which requires arduous human
labeling work. Therefore, for each dataset, we
randomly select 25 percent of all possible pairs
for evaluation. For each course concept pair
〈a, b〉, three human annotators majoring in the
corresponding domain were asked to label them
as “a is b’s prerequisite”, “b is a’s prerequisite”
or “no prerequisite relationship” using their own
knowledge background and additional textbook
resources. We take a majority vote of the anno-
tators to create final labels and access the inter-
annotator agreement using the average of pairwise
κ statistics (Landis and Koch, 1981) between all
pairs of the three annotators.

The statistics of the three datasets are listed
in Table 1, where #courses and #videos are the
total number of courses and videos in each dataset
and #concepts is the number of labeled course
concepts. The #pairs denotes the number of
labeled concept pairs for evaluation, in which ‘+’

2https://github.com/coursera-dl/coursera-dl
3These courses are: “Machine Learning (Stanford)”,

“Machine Learning (Washington)”, “Practical Machine
Learning (JHU)”, “Machine Learning With Big Data
(UCSD)” and “Neural Networks for Machine Learning
(UofT)”

Classifier ML DSA CAL
M 1 10 1 10 1 10

SVM
P 63.2 60.1 60.7 62.3 61.1 61.9
R 68.5 72.4 69.3 67.5 67.9 68.3
F1 65.8 65.7 64.7 64.8 64.3 64.9

NB
P 58.0 58.2 62.9 62.6 60.1 60.6
R 58.1 60.5 62.3 61.8 61.2 62.1
F1 58.1 59.4 62.6 62.2 60.6 61.3

LR
P 66.8 67.6 63.1 62.0 62.7 63.3
R 60.8 61.0 64.8 66.8 63.6 64.1
F1 63.7 64.2 63.9 64.3 61.6 62.9

RF
P 68.1 71.4 69.1 72.7 67.3 70.3
R 70.0 73.8 68.4 72.3 67.8 71.9
F1 69.1 72.6 68.7 72.5 67.5 71.1

Table 2: Classification results of the proposed method(%).

denotes the number of positive instances, i.e. pairs
who have prerequisite relations, and ‘−’ denotes
the number of negative instances.

4.2 Evaluation Results

For each dataset, we apply 5-fold cross valida-
tion to evaluate the performance of the proposed
method, i.e., testing our method on one fold while
training the classifier using the other 4 folds.
Usually, there are much fewer positive instances
than negative instances, so we balance the training
set by oversampling the positive instances (Yosef
et al., 2011; Talukdar and Cohen, 2012). In
our experiments, we employ 4 different binary
classifiers, including Naı̈veBayes (NB), Logistic
Regression (LR), SVM with linear kernel (SVM)
and Random Forest (RF). We use precision (P ),
recall (R), and F1-score (F1) to evaluate the pre-
requisite classification results. The experimental
results are presented in Table 2.

Contextual features are shaped by the parameter
M , i.e., the number of related concepts being
considered. In our experiments, we tried different
settings of M and report the results when M=1
and M=10 in Table 2. As for the semantic
representation, we use the latest publicly available
Wikipedia dump 4 and apply the skip-gram model
(Mikolov et al., 2013b) to train word embeddings
using the Python library gensim 5 with default
parameters.

As shown in Table 2, the evaluation results
varies by different classifiers. It turns out that
Naı̈veBayes performs the worst. This seems
to be caused by the fact that the independence
assumption is not satisfied for our features; for

4https://dumps.wikimedia.org/enwiki/20170120/
5http://radimrehurek.com/gensim/
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example, Feature 2 and Feature 3 both utilize
the local context information, only with different
granularity, thus are quite co-related. Random
Forest beats others, with best F1 across all three
datasets. Its average F1 outperforms SVM, NB
and LR by 7.0%, 11.1% and 8.3%, respectively
(M=10). The reason is as follows. Instead of a
simple descriptive feature, each of our proposed
feature determines whether a concept pair has pre-
requisite relation from a specific aspect; its func-
tion is similar to an independent weak classifier.
Therefore, rather than using a linear combination
of features for classification (e.g., SVM and LR),
a boosting model (e.g., Random Forest) is more
suitable for this task. The performance is slightly
better when M=10 for all classifiers, with +0.20%
for SVM, +0.53% for NB, +0.73% for LR and
+3.63% for RF, with respect to the average F1.
The results verify the effectiveness of considering
related concepts in contextual features. We use RF
and set M=10 in the following experiments.

4.3 Comparison with Baselines

We further compare our approach with three rep-
resentative methods for prerequisite inference.

4.3.1 Baseline Approaches
Hyponym Pattern Method (HPM). Prerequi-
site relationships often exists between hyponym-
hypernym concept pairs (e.g., “Machine Learn-
ing” and “Supervised Learning”). As a baseline,
we adopt the 10 lexico-syntactic patterns used by
Wang et al. (2016) to extract hyponym relation-
ships between concepts. If a concept pair matches
at least one of these patterns in the MOOC corpus,
we judge them to have prerequisite relations.
Reference Distance (RD) We also employ the
RefD proposed by Liang et al. (2015) as one
of our baselines. However, this method is only
appliable to Wikipedia concepts. To make it
comparable with our method, for each of our
datasets, we construct a subset of it by picking out
the concept pairs 〈a, b〉 in which a and b are both
Wikipedia concepts. For example, we find 49% of
course concepts in ML have their corresponding
Wikipedia articles and 28% percent of concept
pairs in ML meet the above condition. We use
the new datasets constructed from ML, DSA and
CAL, namely W-ML, W-DSA, and W-CAL, to
compare our method with RefD.
Supervised Relationship Identification (SRI)
Wang et al. (2016) has employed several fea-

Method ML DSA CAL
W-
ML

W-
DSA

W-
CAL

HPM
P 67.3 71.4 69.5 79.9 72.3 73.5
R 18.4 14.8 16.5 25.5 27.3 23.3
F1 29.0 24.5 26.7 38.6 39.6 35.4

RD
P − − − 73.4 77.8 74.4
R − − − 42.8 44.8 43.1
F1 − − − 54.1 56.8 54.6

T-SRI
P 61.4 62.3 62.5 58.1 60.1 62.7
R 62.9 64.6 65.5 67.6 65.3 67.9
F1 62.1 63.4 64.0 62.5 62.6 65.2

F-SRI
P − − − 64.3 64.3 64.8
R − − − 62.1 65.6 65.2
F1 − − − 63.2 64.9 65.0

MOOC
P 71.4 72.7 70.3 72.8 68.4 71.4
R 73.8 72.3 71.9 71.3 72.0 70.8
F1 72.6 72.5 71.1 72.0 70.2 71.1

Table 3: Comparison with baselines(%).

tures to infer prerequisite relations of Wikipedia
concepts in textbooks, including 3 Textbook fea-
tures and 6 Wikipedia features. Based on these
features, they performed a binary classification
using SVM to identify prerequisite relationships
and has achieved state-of-the-art results. Because
the Wikipedia features can only be applied to
Wikipedia concepts, in order to make a compar-
ison, we create two versions of their method: (1)
T-SRI: only textbook features are used to train the
classifier and (2) F-SRI: the original version, all
features are used. We compare the performance
of our method with T-SRI on ML, DSA and CAL
datasets; we also compare our method with F-SRI
on W-ML, W-DSA and W-CAL datasets.

4.3.2 Performance Comparison
In Table 3 we summarize the comparing results
of different methods across different datasets
(“MOOC” refers to our method). We find that our
method outperforms baseline methods across all
six datasets 6. For example, the F1 of our method
on ML outperforms T-SRI and HPM by 10.5%
and 43.6%, respectively. Specifically, we have
the following observations. First, HPM achieves
relatively high precision but low recall. This is
because when A “is a” B, a prerequisite relation
often exists from B to A, but clearly not vise versa.
Second, T-SRI has certain effectiveness for learn-
ing prerequisite relations, with F1 ranging from
62.1 to 65.2%. However, T-SRI only considers
relatively simple features, such as the sequential
and co-occurrence among concepts. With more

6The improvements are all statistically significant tested
with bootstrap re-sampling with 95% confidence.
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comprehensive feature engineering, the F1 of our
method significantly outperforms T-SRI (+10.5%
on ML, +9.1% on DSA and +7.1% on CAL).
Third, incorporating Wikipedia-based features (F-
SRI) achieves certain promotion in performance
(+0.93% comparing with T-SRI in average F1).

4.4 Feature Contribution Analysis

In order to get an insight into the importance
of each feature in our method, we perform a
contribution analysis with different features. Here,
we run our approach 10 times on the ML dataset.
In each of the first 7 times, one feature is removed;
in each of the rest 3 times, one group of features
are removed, e.g., removing contextual features
means removing Gvrd, Gsrd and Wrd at the
same time. We record the decrease of F1-score for
each setting. Table 4 lists the evaluation results
after ignoring different features.

According to the decrement of F1-scores, we
find that all the proposed features are useful in pre-
dicting prerequisite relations. Especially, we ob-
serve that Cld (Feature 7), decreasing our best F1-
score by 7.4%, plays the most important role. This
suggests that most concepts do exist difference in
complexity level. For two concepts, the difference
of their coverage and survival times in courses
are important for prerequisite relation detection.
On the contrary, with 1.9% decrease, Sr (Feature
1) is relatively less important. We may easily
find two concepts which have related semantic
meanings (e.g., “test set” and “training set”) but
have no prerequisite relationship. However, se-
mantic relatedness is critical for the contextual
features because it overcomes the problem of the
sparsity of context in calculation. We experience a
decrease of 5.4% when we further do not consider
related concepts in contextual features, i.e., set
M=1. As for the feature group contribution, we
observe that Structural Features, with a decrease
of 9.2%, has a greater impact than the other two
groups. This is as expected because it includes
Cld. Among the three structural features, Apd
makes relatively less contribution. The reason
is that sometimes the professor may frequently
mention a prerequisite concept after introducing
a subsequent concept orally, for helping students
better understand the concept.

5 Related Works
To the best of our knowledge, there has been no
previous work on mining prerequisite relations

Ignored
Feature(s)

P R F1

Single

Sr 69.6 72.9 71.2(-1.4)
GVrd 68.8 71.4 70.1(-2.5)
GSrd 67.9 71.4 69.6(-3.0)
Wrd 70.1 72.1 71.1(-1.5)
Apd 69.7 70.8 70.2(-2.4)
Dad 69.2 69.5 69.4(-3.2)
Cld 64.9 65.6 65.2(-7.4)

Group
Semantic 69.6 72.9 71.2(-1.4)

Contextual 66.4 68.9 67.6(-5.0)
Structural 63.7 64.2 63.4(-9.2)

Table 4: Contribution analysis of different features(%).

among concepts in MOOCs. Some researchers
have been engaged in detecting other type of
prerequisite relations. For example, Yang et al.
(2015) proposed to induce prerequisite relations
among courses to support curriculum planning.
Liu et al. (2011) studied learning-dependency
between knowledge units, a special text fragment
containing concepts, using a classification-based
method. In the area of education, researchers
have tried to find general prerequisite structures
from students’ test performance (Vuong et al.,
2011; Scheines et al., 2014; Huang et al., 2015).
Different from them, we focus on more fine-
grained prerequisite relations, i.e., the prerequisite
relations among course concepts.

Among the few related works of mining pre-
requisite relations among concepts, Liang et al.
(2015) and Talukdar and Cohen (Talukdar and
Cohen, 2012) studied prerequisite relationships
between Wikipedia articles. They assumed that
hyperlinks between Wikipedia pages indicate a
prerequisite relationship and design several useful
features. Based on these Wikipedia features plus
some textbook features, Wang et al. (Wang et al.,
2016) proposed a method to construct a concept
map from textbooks, which jointly learns the key
concepts and their prerequisite relations. How-
ever, the investigation of only Wikipedia concepts
is also the bottleneck of their studies. In our
work, we propose more general features to infer
prerequisite relations among concepts, regardless
of whether the concept is in Wikipedia or not.
Liang et al. (2017) propose an optimization
based framework to discover concept prerequisite
relations from course dependencies. Gordon et
al. (2016) utilize cross-entropy to learn concept
dependencies in scientific corpus. Besides local
statistical information, our method also utilize
external knowledge to enrich concept semantics,
which is more informativeness.
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Our work is also related to the study of auto-
matic relation extraction. Different research lines
have been proposed around this topic, includ-
ing hypernym-hyponym relation extraction (Ritter
et al., 2009; Wei et al., 2012), entity relation
extraction (Zhou et al., 2006; Fan et al., 2014;
Lin et al., 2015) and open relation extraction
(Fader et al., 2011). However, previous works
mainly focus on factual relations, the extraction of
cognitive relations (e.g. prerequisite relations) has
not been well studied yet.

6 Conclusions and Future Work
We conducted a new investigation on automati-
cally inferring prerequisite relations among con-
cepts in MOOCs. We precisely define the problem
and propose several useful features from different
aspects, i.e., contextual, structural and semantic
features. Moreover, we apply an embedding-
based method that jointly learns the semantic
representations of Wikipedia concepts and MOOC
concepts to help implement the features. Exper-
imental results on online courses with different
domains validate the effectiveness of the proposed
method. Promising future directions would be
to investigate how to utilize user interaction in
MOOCs for better prerequisite learning, as well
as how deep learning models can be used to
automatically learn useful features to help infer
prerequisite relations.
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