Can Syntax Help? Improving an LSTM-based
Sentence Compression Model for New Domains

Liangguo Wang'*, Jing Jiang*, Hai Leong Chieu*, Chen Hui Ong*, Dandan Song', Lejian Liao'

chenwangliangguo @bit.edu.cn, jingjiang @smu.edu.sg
{chaileon, ochenhui } @dso.org.sg, {sdd, liaolj} @bit.edu.cn
T School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
* School of Information Systems, Singapore Management University, Singapore
* DSO National Laboratories, Singapore

Abstract

In this paper, we study how to improve the
domain adaptability of a deletion-based
Long Short-Term Memory (LSTM) neu-
ral network model for sentence compres-
sion. We hypothesize that syntactic in-
formation helps in making such models
more robust across domains. We propose
two major changes to the model: using
explicit syntactic features and introducing
syntactic constraints through Integer Lin-
ear Programming (ILP). Our evaluation
shows that the proposed model works bet-
ter than the original model as well as a tra-
ditional non-neural-network-based model
in a cross-domain setting.

1 Introduction

Sentence compression is the task of compress-
ing long, verbose sentences into short, concise
ones. It can be used as a component of a text
summarization system. Figure 1 shows two ex-
ample input sentences and the compressed sen-
tences written by human. The task has been stud-
ied for almost two decades. Early work on this
task mostly relies on syntactic information such
as constituency-based parse trees to help decide
what to prune from a sentence or how to re-write
a sentence (Jing, 2000; Knight and Marcu, 2000).
Recently, there has been much interest in apply-
ing neural network models to solve the problem,
where little or no linguistic analysis is performed
except for tokenization (Filippova et al., 2015;
Rush et al., 2015; Chopra et al., 2016).

Although neural network-based models have
achieved good performance on this task recently,
they tend to suffer from two problems: (1) They
require a large amount of data for training. For ex-
ample, Filippova et al. (2015) used close to two

In-domain
Input: The southern Chinese city of Guangzhou has set
up a special zone allowing foreign consulates to build per-
manent offices and residences and avoid prohibitive local
rents, the china daily reported Tuesday.
Compressed (by human): Guangzhou opens new consulate
area.
Compressed (by machine): Guangzhou sets up special
zone for foreign consulates.

Out-of-domain
Input: Wherever she was, she helped other loyal and flexi-
ble wives cope.
Compressed (by human): she helped other wives cope.
Compressed (by machine): wives and flexible wives

Figure 1: Examples of in-domain and out-of-
domain results by a standard abstractive sequence-
to-sequence model trained on the Gigaword cor-
pus. The first input sentence comes from the Gi-
gaword corpus while the second input sentence
comes from the written news corpus used by
Clarke and Lapata (2008).

million sentence pairs to train an LSTM-based
sentence compression model. Rush et al. (2015)
used about four million title-article pairs from the
Gigaword corpus (Napoles et al., 2012) as train-
ing data. Although it may be easy to automati-
cally obtain such training data in some domains
(e.g., the news domain), for many other domains,
it is not possible to obtain such a large amount of
training data. (2) These neural network models
trained on data from one domain may not work
well on out-of-domain data. For example, when
we trained a standard neural sequence-to-sequence
model' on 3.8 million title-article pairs from the
Gigaword corpus and applied it to both in-domain
data and out-of-domain data, we found that the
performance on in-domain data was good but the
performance on out-of-domain data could be very

"http://opennmt .net/

1385

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1385-1393
Vancouver, Canada, July 30 - August 4, 2017. (©2017 Association for Computational Linguistics
https://doi.org/10.18653/v1/P17-1127

https://doi.org/10.18653/v1/P17-1127
https://doi.org/10.18653/v1/P17-1127

poor. Two example compressed sentences by this
trained model are shown in Figure 1 to illustrate
the comparison between in-domain and out-of-
domain performance.

The two limitations above imply that these neu-
ral network-based models may not be good at
learning generalizable patterns, or in other words,
they tend to overfit the training data. This is not
surprising because these models do not explicitly
use much syntactic information, which is more
general than lexical information.

In this paper, we aim to study how syntactic in-
formation can be incorporated into neural network
models for sentence compression to improve their
domain adaptability. We hope to train a model
that performs well on both in-domain and out-of-
domain data. To this end, we extend the deletion-
based LSTM model for sentence compression by
Filippova et al. (2015). Although deletion-based
sentence compression is not as flexible as abstrac-
tive sentence compression, we chose to work on
deletion-based sentence compression for the fol-
lowing reason. Abstractive sentence compression
allows new words to be used in a compressed sen-
tence, i.e., words that do not occur in the input sen-
tence. Oftentimes these new words serve as para-
phrases of some words or phrases in the source
sentence. But to generate such paraphrases, the
model needs to have seen them in the training data.
Because we are interested in a cross-domain set-
ting, the paraphrases learned in one domain may
not work well in another domain if the two do-
mains have very different vocabularies. On the
other hand, a deletion-based method does not face
such a problem in a cross-domain setting.

Specifically, we propose two major changes to
the model by Filippova et al. (2015): (1) We
explicitly introduce POS embeddings and depen-
dency relation embeddings into the neural network
model. (2) Inspired by a previous method (Clarke
and Lapata, 2008), we formulate the final pre-
dictions as an Integer Linear Programming prob-
lem to incorporate constraints based on syntactic
relations between words and expected lengths of
the compressed sentences. In addition to the two
major changes above, we also use bi-directional
LSTM to include contextual information from
both directions into the model.

We evaluate our method using around 10,000
sentence pairs released by Filippova et al. (2015)
and two other data sets representing out-of-

domain data. We test both in-domain and out-
of-domain performance. The experimental results
showed that our proposed method can achieve
competitive performance compared with the origi-
nal method in the single-domain setting but with
much less training data (around 8,000 sentence
pairs for training instead of close to two mil-
lion sentence pairs). In the cross-domain setting,
our proposed method can clearly outperform the
original method. We also compare our method
with a traditional ILP-based method using syntac-
tic structures of sentences but not based on neural
networks (Clarke and Lapata, 2008). We find that
our method can outperform this baseline for both
in-domain and out-of-domain data.

2 Method

In this section, we present our sentence compres-
sion method that is aimed at working in a cross-
domain setting.

2.1 Problem Definition

Recall that we focus on deletion-based sentence
compression. Our problem setup is the same
as that by Filippova et al. (2015). Let us use
s = (wy,ws,...,w,) to denote an input sen-
tence, which consists of a sequence of words. Here
w; € V, where V is the vocabulary. We would like
to delete some of the words in s to obtain a com-
pressed sentence that still contains the most im-
portant information in s. To represent such a com-
pressed sentence, we can use a sequence of binary
labels y = (y1,¥2,---,Yn), where y; € {0,1}.
Here y; = 0 indicates that w; is deleted, and
y; = 1 indicates that w; is retained.

We assume that we have a set of training sen-
tences and their corresponding deletion/retention
labels, denoted as D = {(s;, yj)}é\]:1 Our goal is
to learn a sequence labeling model from D so that
for any unseen sentence s we can predict its label
sequence y and thus compress the sentence.

2.2 Our Base Model

We first introduce our base model, which uses
LSTM to perform sequence labeling. This base
model is largely based on the model by Filippova
et al. (2015) with some differences, which will be
explained below.

We assume that each word in the vocabulary has
a d-dimensional embedding vector. For input sen-
tence s, let us use (w1, wo, ..., w,) to denote the

1386

Right LSTM{

Y1

hy

i
Left LSTM

OO wee =

Figure 2: Our three-layered bi-LSTM model.
Word embeddings, POS tag embeddings and de-
pendency type embeddings are concatenated in the
input layer.

= o

Word Pos Dep

sequence of the word embedding vectors, where
w; € R% We use a standard bi-directional LSTM
model to process these embedding vectors sequen-
tially from both directions to obtain a sequence of
hidden vectors (hy, hs, ..., h,), where h; € R”.
We omit the details of the bi-LSTM and refer the
interested readers to the work by Graves et al.
(2013) for further explanation. Following Filip-
pova et al. (2015), our bi-LSTM has three layers,
as shown in Figure 2.

We then use the hidden vectors to predict the
label sequence. Specifically, label y; is predicted
from h; as follows:

p(yi | hy) =

where W € R?*" and b € R? are a weight matrix
and a weight vector to be learned.

There are some differences between our base
model and the LSTM model by Filippova et al.
(2015). (1) Filippova et al. (2015) first encoded
the input sentence in its reverse order using the
same LSTM before processing the sentence for
sequence labeling. (2) Filippova et al. (2015)
used only a single-directional LSTM while we
use bi-LSTM to capture contextual information
from both directions. (3) Although Filippova et al.
(2015) did not use any syntactic information in
their basic model, they introduced some features
based on dependency parse trees in their advanced
models. Here we follow their basic model be-
cause later we will introduce more explicit syntax-
based features. (4) Filippova et al. (2015) com-

softmax(Wh; + b), (1)

bined the predicted y;_; with w; to help predict
y;. This adds some dependency between consecu-
tive labels. We do not do this because later we will
introduce an ILP layer to introduce dependencies
among labels.

2.3 Incorporation of Syntactic Features

Note that in the base model that we presented
above, there is no explicit use of any syntactic in-
formation such as the POS tags of the words or the
parse tree structures of the sentences. Because we
believe that syntactic information is important for
learning a generalizable model for sentence com-
pression, we would like to introduce syntactic fea-
tures into our model.

First, we perform part-of-speech tagging on
the input sentences. For sentence s, let us use
(t1,t2,...,t,) to denote the POS tags of the
words inside, where t; € 7 and 7T is a POS
tag set. We further assume that each ¢ € 7 has
an embedding vector (to be learned). Let us use
(t1,t2,...,tn) (t; € RP, p < |T]) to denote the
sequence of POS embedding vectors of this sen-
tence. We can then simply concatenate w; with t;
as a new vector to be processed by the bi-LSTM
model.

Next, we perform dependency parsing on the in-
put sentences. For each word w; in sentence s, let
r; € R denote the dependency relation between
w; and its parent word in the sentence, where R is
the set of all dependency relation types. We then
assume that each » € R has an embedding vec-
tor (to be learned). Let (r1,ra,...,r,) (r € RY,
q < |R|) denote corresponding dependency em-
bedding vectors of this sentence. We can also con-
catenate w; with r; and feed the new vector to the
bi-LSTM model.

In our model, we combine the word embedding,
POS embedding and dependency embedding into
a single vector to be processed by the bi-LSTM
model:

X; = wW;0t; Dry,

— —

h; = LSTMg(h; 1,xi),

(Hi = LSTM@((HH-M X;),
%

h; = h;® %z’,

where @ represents concatenation of vectors, and

© and © are parameters of the bi-LSTM model.
The complete model is shown in Figure 2.

1387

2.4 Global Inference through ILP

Although the method above has explicitly incor-
porated some syntactic information into the bi-
LSTM model, the syntactic information is used in
a soft manner through the learned model weights.
We hypothesize that there are also hard constraints
we can impose on the compressed sentences. For
example, the method above as well as the origi-
nal method by Filippova et al. (2015) cannot im-
pose any length constraint on the compressed sen-
tences. This is because the labels y1,y2,...,yn
are not jointly predicted.

We propose to use Integer Linear Programming
(ILP) to find an optimal combination of the la-
bels y1, 2, . . .,y for a sentence, subject to some
constraints. Specifically, the ILP problem consists
of two parts: the objective function, and the con-
straints.

The Objective Function

Recall that the trained bi-LSTM model above pro-
duces a probability distribution for each label y;,
as defined in Eqn. (1). Let us use o; to denote the
probability of yy; = 1 as estimated by the bi-LSTM
model. Intuitively, we would like to set y; to 1 if
«; is large.

Besides the probability estimated by the bi-
LSTM model, here we also consider the depth of
the word w; in the dependency parse tree of the
sentence. Intuitively, a word closer to the root of
the tree is more likely to be retained. In order to
incorporate this observation, we define dep(w;) to
be the depth of the word w; in the dependency
parse tree of the sentence. The root node of the
tree has a depth of 0, an immediate child of the
root has a depth of 1, and so on. For example,
the dependency parse tree of an example sentence
together with the depth of each word is shown in
Figure 3. We can see that some of the words that
are deleted according to the ground truth have a
relatively larger depth, such as the first “she” (with
a depth of 4) and the word “flexible” (with a depth
of 5).

Based on these considerations, we define the
objective function to be the following:

max Y yi(oi — A-dep(wy)), (2)
=1

where A is a positive parameter to be manually set,
and y; is the same as defined before, which is ei-
ther O or 1 to indicate whether w; is deleted or not.

Constraints

We further introduce some constraints to capture
tow considerations. The first consideration is re-
lated to the syntactic structure of a sentence, and
the second consideration is related to the length of
the compressed sentence. Some of the constraints
are inspired by Clarke and Lapata (2008).

Our constraints are listed below: (1) No miss-
ing parent: Generally, we believe that if a word is
retained in the compressed sentence, its parent in
the dependency parse tree should also be retained.
(2) No missing child: For some dependency rela-
tions such as nsubj, if the parent word is retained,
it makes sense to also keep the child word; oth-
erwise the sentence may become ungrammatical.
(3) Max length: Since we are trying to compress
a sentence, we may need to impose a minimum
compression rate. This could be achieved by set-
ting a maximum value of the sum of y;. (4) Min
length: We observe that the original model some-
times produces very short compressed sentences.
We therefore believe that it is also important to
maintain a mininum length of the compressed sen-
tence. This can be achieved by setting a minimum
value of the sum of y;.

Formally, the constraints are listed as follows:

n
Zyz <= 6”7
=1

n
Z Yi >= n,
=1

Vy; - Yi
Vr; € T Ui

ypi)
ypi)

(AVARVAY

where wy, is the parent word of w; in the depen-
dency parse tree, r; is the dependency relation type
between w; and wy,, and 7’ is a set of depen-
dency relations for which the child word is often
retained when the parent word is retained in the
compressed sentence.

The set 7' is derived as follows. For each
dependency relation type, based on the training
data, we compute the conditional probability of
the child word being retained given that the parent
word is retained. If this probability is higher than
90%, we include this dependency relation type in

T

1388

ccomp
ccomp
nsm' nsubj
c’ N
Root she helped
2 4 3 2 1

other

wives cope.

Figure 3: Dependency parse tree of an example sentence. The numbers below the words indicate the
depths of the words in the tree. Words in gray are supposed to be deleted based on the ground truth.

3 Experiments

3.1 Datasets and Experiment Settings

Because we are mostly interested in a cross-
domain setting where the model is trained on one
domain and test on a different domain, we need
data from different domains for our evaluation.
Here we use three datasets.

Google News: The first dataset contains 10,000
sentence pairs collected and released by Filippova
et al. (2015)%. The sentences were automatically
acquired from the web through Google News us-
ing a method introduced by Filippova and Altun
(2013). The news articles were from 2013 and
2014.

BNC News: The second dataset contains around
1,500 sentence pairs collected by Clarke and Lap-
ata (2008)°. The sentences were from British Na-
tional Corpus (BNC) and the American News Text
corpus before 2008.

Research Papers: The last dataset contains 100
sentences taken from 10 randomly selected papers
published at the ACL conference in 2016.

For Google News and BNC News, we have
the ground truth compressed sentences, which are
deletion-based compressions, i.e., subsequences
of the original sentences. For Research Papers,
we use it only for manual evaluation in terms of
readability and informativeness, as we will explain
below.

We evaluate three settings of our method:
BiLSTM: In this setting, we use only the base bi-
LSTM model without incorporating any syntactic
feature.

BiLSTM+SynFeat: In this setting, we combine
word embeddings with POS embeddings and de-

ZAvailable at http://storage.googleapis.
com/sentencecomp/compression—-data. json.

3 Available at http://jamesclarke.net/
research/resources/.

pendency embeddings as input to the bi-LSTM
model and use the predictions of y from the bi-
LSTM model.

BiLSTM+SynFeat+ILP: In this setting, on top of
BiLSTM+SynFeat, we solve the ILP problem as
described in Section 2.4 to predict the final label
sequence y.

In the experiments, our model was trained us-
ing the Adam (Kingma and Ba, 2015) algorithm
with a learning rate initialized at 0.001. The di-
mension of the hidden layers of bi-LSTM is 100.
Word embeddings are initialized from GloVe 100-
dimensional pre-trained embeddings (Pennington
et al., 2014). POS and dependency embeddings
are randomly initialized with 40-dimensional vec-
tors. The embeddings are all updated during train-
ing. Dropping probability for dropout layers be-
tween stacked LSTM layers is 0.5. The batch size
is set as 30. For the ILP part, A is set to 0.5, 5 and
~ are turned by the validation data and finally they
are set to 0.7 and 0.2, respectively. We utilize an
open source ILP solver* in our method.

We compare our methods with a few baselines:
LSTM: This is the basic LSTM-based deletion
method proposed by (Filippova et al., 2015). We
report both the performance they achieved using
close to two million training sentence pairs and
the performance of our re-implementation of their
model trained on the 8,000 sentence pairs.
LSTM+: This is advanced version of the model
proposed by Filippova et al. (2015), where the au-
thors incorporated some dependency parse tree in-
formation into the LSTM model and used the pre-
diction on the previous word to help the prediction
on the current word.

Traditional ILP: This is the ILP-based method
proposed by Clarke and Lapata (2008). This
method does not use neural network models and

‘gnu.org/software/glpk

1389

is an unsupervised method that relies heavily on
the syntactic structures of the input sentences>.

Abstractive seq2seq: This is an abstractive
sequence-to-sequence model trained on 3.8 mil-
lion Gigaword title-article pairs as described in

Section 1.

3.2 Automatic Evaluation

With the two datasets Google News and BNC News
that have the ground truth compressed sentences,
we can perform automatic evaluation. We first
split the Google News dataset into a training set,
a validation set and a test set. We took the first
1,000 sentence pairs from Google News as the
test set, following the same practice as Filippova
et al. (2015). We then use 8,000 of the remain-
ing sentence pairs for training and the other 1,000
sentence pairs for validation. For the NBC News
dataset, we use it only as a test set, applying
the sentence compression models trained from the
8,000 sentence pairs from Google News.

We use the ground truth compressed sentences
to compute accuracy and F1 scores. Accuracy is
defined as the percentage of tokens for which the
predicted label y; is correct. F1 scores are derived
from precision and recall values, where precision
is defined as the percentage of retained words that
overlap with the ground truth, and recall is de-
fined as the percentage of words in the ground
truth compressed sentences that overlap with the
generated compressed sentences.

We report both in-domain performance and
cross-domain performance in Table 1. From the
table, we have the following observations: (1)
For the abstractive sequence-to-sequence model,
it was trained on the Gigaword data, so for
both Google News and NBC News, the perfor-
mance shown is cross-domain performance. We
can see that indeed this abstractive method per-
formed poorly in cross-domain settings. (2) In
the in-domain setting, with the same amount of
training data (8,000), our BiLSTM method with
syntactic features (BiLSTM+SynFeat and Bil-
STM+SynFeat+ILP) performs similarly to or bet-
ter than the LSTM+ method proposed by Filip-
pova et al. (2015), in terms of both F1 and accu-
racy. This shows that our method is comparable to
the LSTM+ method in the in-domain setting. (3)
In the in-domain setting, even compared with the

SWe use an open source implementation: https://
github.com/cnap/sentence-compression.

In-domain data

A “ A 1
@0 LSTM+(Filippova et al.)
A-A Bi_LSTM

0.65¢ — - Bi_LSTM+SynFeat

0.60 - B8 Bi_LSTM+SynFeat+ILP
*— Traditional ILP

F1 value

1000 2000 3000 4000 5000 6000 7000 8000
Out-of-domain data
. T

F1 value

0.40
1000 2000 3000 4000 5000 6000 7000 8000

training size

Figure 4: F1 scores with different sizes of training
data for in-domain and cross-domain settings.

performance of LSTM+ trained on 2 million sen-
tence pairs, our method trained on 8,000 sentence
pairs does not perform substantially worse. (4) In
the out-of-domain setting, our BILSTM+SynFeat
and BiLSTM+SynFeat+ILP methods clearly out-
perform the LSTM and LSTM+ methods. This
shows that by incorporating more syntactic fea-
tures, our methods learn a sentence compression
model that is less domain-dependent. (5) The Tra-
ditional ILP method also works better than the
LSTM and LSTM+ methods in the out-of-domain
setting. This is probably because the Traditional
ILP method relies heavily on syntax, which is less
domain-dependent compared with lexical patterns.
But the Traditional ILP method performs worse
in the in-domain setting than both the LSTM and
LSTM+ methods and our methods.

Overall, Table 1 shows that our proposed
method combines both the strength of neural net-
work models in the in-domain setting and the
strength of the syntax-based methods in the cross-
domain setting. Therefore, our method works
reasonably well for both in-domain and out-of-
domain data.

We also notice that on Google News, adding the
ILP layer decreased the sentence compression per-
formance. After some analysis, we think the rea-
son is that some of the constraints used in the ILP
layer have led to less deletion but the ground truth
compressed sentences in the Google News data
tend to be shorter compared with those in the NBC
News data.

We also conduct additional experiments to see
the effect of the training data size on our meth-

1390

size of Google News NBC News

training data | F1 Acc CR F1 Acc CR
LSTM (Filippova et al., 2015) 2 million 0.80 - 0.39 - - -
LSTM+ (Filippova et al., 2015) 2 million 0.82 - 0.38 - - -
Traditional ILP (Clarke and Lapata, 2008) N/A 054 056 0.62 | 0.64 056 0.56
Abstractive seq2seq 3.8M 0.09 0.02 0.16 | 0.14 0.06 0.21
LSTM (our implementation) 8000 0.74 075 045 | 051 048 0.37
LSTM+ (our implementation) 8000 0.77 078 047 | 054 0.51 0.38
BiLSTM 8000 075 076 043 | 052 050 0.34
BiLSTM+SynFeat 8000 0.80 0.82 043 | 057 054 037
BiLSTM+SynFeat+ILP 8000 0.78 0.78 0.57 | 0.66 0.58 0.53

Table 1: Automatic evaluation of our sentence compression methods. CR standards for compression rate
and is defined as the average percentage of words that are retained after compression.

ods and the LSTM+ method. Figure 4 shows the
F1 scores on the in-domain Google News data and
the out-of-domain NBC News data when we train
the models using different amounts of sentence
pairs. We can see that in the in-domain setting,
our method does not have any advantage over the
LSTM+ method. But in the cross-domain setting,
our method that uses ILP to impose syntax-based
constraints clearly performs better than LSTM+
when the amount of training data is relatively
small.

3.3 Manual Evaluation

The evaluation above does not look at the readabil-
ity of the compressed sentences. In order to eval-
uate whether sentences generated by our method
are readable, we adopt the manual evaluation pro-
cedure by Filippova et al. (2015) to compare our
method with LSTM+ and Traditional ILP in terms
of readability and informativeness. We asked two
raters to score a randomly selected set of 100 sen-
tences from the Research Papers dataset. The
compressed sentences were randomly ordered and
presented to the human raters to avoid any bias.
The raters were asked to score the sentences on
a five-point scale in terms of both readability and
informativeness. We show the average scores of
the three methods we compare in Table 3. We
can see that our BiILSTM+SynFeat+ILP method
clearly outperforms the two baseline methods in
the manual evaluation.

We also show a small sample of input sentences
from the Research Papers dataset and the automat-
ically compressed sentences by different methods
in Table 2. As we can see from the table, a gen-

eral weakness of the LSTM+ method is that the
compressed sentences may not be grammatical. In
comparison, our method does better in terms of
preserving grammaticality.

4 Related Work

Sentence compression can be seen as sentence-
level summarization. Similar to document sum-
marization, sentence compression methods can
be divided into extractive compression and ab-
stractive compression methods, based on whether
words in the compressed sentence all come from
the source sentence. In this paper, we focus on
deletion-based sentence compression, which is a
spacial case of extractive sentence compression.
An early work on sentence compression was
done by Jing (2000), who proposed to use sev-
eral resources to decide whether a phrase in a sen-
tence should be removed or not. Knight and Marcu
(2000) proposed to apply a noisy-channel model
from machine translation to the sentence compres-
sion task, but their model encountered the problem
that many SCFG rules have unreliable probability
estimates with inadequate data. Galley and McKe-
own (2007) tried to solve this problem by utilizing
parent annotation, Markovization and lexicaliza-
tion, which have all been shown to improve the
quality of the rule probability estimates. Cohn and
Lapata (2007) formulated sentence compression
as a tree-to-tree rewrite problem. They utilized
a synchronous tree substitution grammar (STSG)
to license the space of all possible rewrites. Each
rule has a weight learned from the training data.
For prediction, an algorithm was used to search
for the best scoring compression using the gram-

1391

Although dynamic oracles are widely used in dependency parsing and available for most standard transition systems , no
dynamic oracle parsing model has yet been proposed for phrase structure grammars
T: Although are used for transition systems model has been proposed for structure grammars .

S: Although dynamic oracles are .

B: Although oracles are used no model has been proposed for structure grammars .

As described above , we used Bayesian Optimization to find optimal hyperparameter configurations in fewer steps than in

regular grid search .

T: As described we used Optimization to find configurations in steps in search .
S: As described above Optimization to find optimal hyperparameter configurations steps than in grid search .
B: As described , we used Bayesian Optimization to find optimal hyperparameter configurations in steps.

Following the phrase structure of a source sentence , we encode the sentence recursively in a bottom-up fashion to produce a
vector representation of the sentence and decode it while aligning the input phrases and words with the output .
T: Following structure of a sentence we encode sentence recursively to produce a representation of the sentence and decode it

while aligning phrases and words with output .

S: Following the structure of a source sentence encode the sentence recursively in a bottom-up fashion .
B: Following the structure , we encode the sentence recursively in a bottom-up fashion to produce a vector representation and

decode it .

Table 2: Some input sentences from the Research Papers dataset and the automatically compressed
sentences using different methods. T: Traditional ILP method. S: LSTM+. B: BiLSTM+SynFeat+ILP.

| readability | informativeness

Traditional ILP 3.94 3.33
LSTM+ 3.69 3.07
BiLSTM+SynFeat+ILP | 4.29 3.46

Table 3: Manual evaluation.

mar rules. Besides, Cohn and Lapata (2008) ex-
tended this model to abstractive sentence compres-
sion, which includes substitution, reordering and
insertion. McDonald (2006) proposed a graph-
based sentence compression method. The general
idea is that each word pair in the original sentence
has a score. The task then becomes how to find a
compressed sentence with a length limit according
word pair scores. Their method is similar to graph-
based dependency parsing. Clarke and Lapata
(2008) first used an ILP framework for sentence
compression. In the paper, the author put forward
three models. The first model is a language model
reformulated by ILP. As the first model treats all
the words equally, the second model uses a corpus
to learn an importance score for each word and
then incorporates it in the ILP model. The Last
model, which is based on (McDonald, 2006), re-
places the decoder with an ILP model and adds
many linguistic constraints such as dependency
parsing compared with the previous two ILP mod-
els. Filippova and Strube (2008) represented sen-
tences with dependency parse trees and an ILP-
based method was used to decide whether the de-
pendencies were preserved or not. Different from
most previous work that treats sentence extrac-

tion and sentence compression separately, Berg-
Kirkpatrick et al. (2011) jointly model the two pro-
cesses in one ILP problem. Bigrams and subtrees
are represented by some features, and feature are
learned on some training data. The ILP problem
maximizes the coverage of weighted bigrams and
deleted subtrees of the summary.

In recent years, neural network models, espe-
cially sequence-to-sequence models, have been
applied to sentence compression. Our work is
based on the deletion-based LSTM model for
sentence compression by Filippova et al. (2015).
There has also been much interest in applying
sequence-to-sequence models for abstractive sen-
tence compression (Rush et al.,, 2015; Chopra
et al., 2016). As we pointed out in Section 1, in
a cross-domain setting, abstractive sentence com-
pression may not be suitable.

5 Conclusions

In this paper, we studied how to modify an LSTM
model for deletion-based sentence compression so
that the model works well in a cross-domain set-
ting. We hypothesized that incorporation of syn-
tactic information into the training of the LSTM
model would help. We thus proposed two ways
to incorporate syntactic information, one through
directly adding POS tag embeddings and depen-
dency type embeddings, and the other through the
objective function and constraints of an Integer
Linear Programming (ILP) model. The experi-
ments showed that our proposed bi-LSTM model
with syntactic features and an ILP layer works

1392

well in both in-domain and cross-domain settings.
In comparison, the original LSTM model does
not work well in the cross-domain setting, and
a traditional ILP method does not work well in
the in-domain setting. Therefore, our proposed
method is relatively more robust than these base-
lines. We also manually evaluated the compressed
sentences generated by our method and found that
the method works better than the baselines in
terms of both readability and informativeness.

Acknowledgment

This work is supported by DSO grant
DSOCL15223. The work was conducted
during the first author’s visit to the Singapore
Management University.

References

Taylor Berg-Kirkpatrick, Dan Gillick, and Dan Klein.
2011. Jointly learning to extract and compress. In
Proceedings of the 49th Annual Meeting of the As-
sociation for Computational Linguistics.

Sumit Chopra, Michael Auli, and Alexander M. Rush.
2016. Abstractive sentence summarization with at-
tentive recurrent neural networks. In Proceedings
the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics.

James Clarke and Mirella Lapata. 2008. Global in-
ference for sentence compression: An integer linear
programming approach. Journal of Artificial Intelli-
gence Research .

Trevor Cohn and Mirella Lapata. 2007. Large margin
synchronous generation and its application to sen-
tence compression. In Joint Meeting of Conference
on Empirical Methods in Natural Language and
Conference on Computational Natural Language
Learning.

Trevor Cohn and Mirella Lapata. 2008. Sentence com-
pression beyond word deletion. In Proceedings
of the 22nd International Conference on Computa-
tional Linguistics.

Katja Filippova, Enrique Alfonseca, Carlos A. Col-
menares, Lukasz Kaiser, and Oriol Vinyals. 2015.
Sentence compression by deletion with LSTMs. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing.

Katja Filippova and Yasemin Altun. 2013. Overcom-
ing the lack of parallel data in sentence compres-
sion. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing.

Katja Filippova and Michael Strube. 2008. Depen-
dency tree based sentence compression. In Proceed-
ings of the Fifth International Natural Language
Generation Conference.

Michel Galley and Kathleen McKeown. 2007. Lexi-
calized markov grammars for sentence compression.
In Proceedings of Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics.

Alex Graves, Navdeep Jaitly, and Abdel-rahman Mo-
hamed. 2013. Hybrid speech recognition with deep
bidirectional Istm. In Automatic Speech Recognition
and Understanding (ASRU), 2013 IEEE Workshop
on.

Hongyan Jing. 2000. Sentence reduction for automatic
text summarization. In Proceedings of the sixth con-
ference on Applied natural language processing.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the International Conference on Learning Repre-
sentations.

Kevin Knight and Daniel Marcu. 2000. Statistics-
based summarization step one: Sentence compres-
sion. In Proceedings of the 17th National Confer-
ence on Artificial Intelligence.

Ryan T McDonald. 2006. Discriminative sentence
compression with soft syntactic evidence. In Pro-
ceedings of European Chapter of the Association for
Computational Linguistics Valencia.

Courtney Napoles, Matthew Gormley, and Benjamin
Van Durme. 2012. Annotated Gigaword. In Pro-
ceedings of the Joint Workshop on Automatic Knowl-
edge Base Construction and Web-scale Knowledge
Extraction.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing.

1393

	Can Syntax Help? Improving an LSTM-based Sentence Compression Model for New Domains

