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Abstract

We propose a local coherence model based
on a convolutional neural network that op-
erates over the entity grid representation of
a text. The model captures long range en-
tity transitions along with entity-specific
features without loosing generalization,
thanks to the power of distributed repre-
sentation. We present a pairwise ranking
method to train the model in an end-to-end
fashion on a task and learn task-specific
high level features. Our evaluation on
three different coherence assessment tasks
demonstrates that our model achieves state
of the art results outperforming existing
models by a good margin.

1 Introduction and Motivation

What distinguishes a coherent text from a random
sequence of sentences is that it binds the sentences
together to express a meaning as a whole — the in-
terpretation of a sentence usually depends on the
meaning of its neighbors. Coherence models that
can distinguish a coherent from incoherent texts
have a wide range of applications in text genera-
tion, summarization, and coherence scoring.
Several formal theories of coherence have been
proposed (Mann and Thompson, 1988a; Grosz
etal., 1995; Asher and Lascarides, 2003), and their
principles have inspired development of many
existing coherence models (Barzilay and Lap-
ata, 2008; Lin et al., 2011; Li and Hovy, 2014).
Among these models, the entity grid (Barzilay and
Lapata, 2008), which is based on Centering The-
ory (Grosz et al., 1995), is arguably the most pop-
ular, and has seen a number of improvements over
the years. As shown in Figure 1, the entity grid
model represents a text by a grid that captures how
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grammatical roles of different entities change from
sentence to sentence. The grid is then converted
into a feature vector containing probabilities of
local entity transitions, which enables machine
learning models to learn the degree of text coher-
ence. Extensions of this basic grid model incorpo-
rate entity-specific features (Elsner and Charniak,
2011), multiple ranks (Feng and Hirst, 2012), and
coherence relations (Feng et al., 2014).

While the entity grid and its extensions have
been successful in many applications, they are
limited in several ways. First, they use discrete
representation for grammatical roles and features,
which prevents the model from considering suffi-
ciently long transitions (Bengio et al., 2003). Sec-
ond, feature vector computation in existing models
is decoupled from the target task, which limits the
model’s capacity to learn task-specific features.

In this paper, we propose a neural architecture
for coherence assessment that can capture long
range entity transitions along with arbitrary entity-
specific features. Our model obtains generaliza-
tion through distributed representations of entity
transitions and entity features. We also present an
end-to-end training method to learn task-specific
high level features automatically in our model.

We evaluate our approach on three different
evaluation tasks: discrimination, insertion, and
summary coherence rating, proposed previously
for evaluating coherence models (Barzilay and La-
pata, 2008; Elsner and Charniak, 2011). Discrim-
ination and insertion involve identifying the right
order of the sentences in a text with different lev-
els of difficulty. In the summary coherence rat-
ing task, we compare the rankings, given by the
model, against human judgments of coherence.

The experimental results show that our neu-
ral models consistently improve over the non-
neural counterparts (i.e., existing entity grid mod-
els) yielding absolute gains of about 4% on dis-
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crimination, up to 2.5% on insertion, and more
than 4% on summary coherence rating. Further-
more, our model achieves state of the art results in
all these tasks. We have released our source code
for research purposes.'

The remainder of this paper is organized as fol-
lows. We describe entity grid, its extensions, and
its limitations in Section 2. In Section 3, we
present our neural model. We describe evaluation
tasks and results in Sections 4 and 5. We give a
brief account of related work in Section 6. Finally,
we conclude with future directions in Section 7.

2 Entity Grid and Its Extensions

Motivated by Centering Theory (Grosz et al.,
1995), Barzilay and Lapata (2008) proposed an
entity-based model for representing and assessing
text coherence. Their model represents a text by a
two-dimensional array called entity grid that cap-
tures transitions of discourse entities across sen-
tences. As shown in Figure 1, the rows of the grid
correspond to sentences, and the columns corre-
spond to discourse entities appearing in the text.
They consider noun phrases (NP) as entities, and
employ a coreference resolver to detect mentions
of the same entity (e.g., Obama, the president).
Each entry G, ; in the entity grid represents the
syntactic role that entity e; plays in sentence s;,
which can be one of: subject (S), object (O), or
other (X). In addition, entities not appearing in a
sentence are marked by a special symbol (-). If an
entity appears more than once with different gram-
matical roles in the same sentence, the role with
the highest rank (S > O > X) is considered.

To represent the entity grid using a feature vec-
tor, Barzilay and Lapata (2008) compute proba-
bility for each local entity transition of length k
(.e., {S,0,X,—}*), and represent each grid by
a vector of 4% transitions probabilities. To dis-
tinguish between transitions of important entities
from unimportant ones, they consider the salience
of the entities, which they quantify by their oc-
currence frequency in the document. Assessment
of text coherence is then formulated as a ranking
problem in an SVM preference ranking framework
(Joachims, 2002).

Subsequent studies proposed to extend the ba-
sic entity grid model. Filippova and Strube (2007)
attempted to improve the model by grouping en-

'nttps://github.com/datienguyen/cnn_
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so: Eaton Corp. said it sold its Pacific Sierra Research unit
to a company formed by employees of that unit.

s1: Terms were not disclosed.

s2: Pacific Sierra, based in Los Angeles, has 200 employ-
ees and supplies professional services and advanced
products to industry.

s3: Eaton is an automotive parts, controls and aerospace
electronics concern.

Figure 1: Entity grid representation (top) for a
document (below) from wWSJ (id: 0079).

tities based on semantic relatedness, but did not
get significant improvement. Elsner and Charniak
(2011) proposed a number of improvements. They
initially show significant improvement by includ-
ing non-head nouns (i.e., nouns that do not head
NPs) as entities in the grid.> Then, they extend
the grid to distinguish between entities of different
types by incorporating entity-specific features like
named entity, noun class, modifiers, etc. These ex-
tensions led to the best results reported so far.

The Entity grid and its extensions have been
successfully applied to many downstream tasks
including coherence rating (Barzilay and Lapata,
2008), essay scoring (Burstein et al., 2010), story
generation (Mclntyre and Lapata, 2010), and read-
ability assessment (Pitler et al., 2010; Barzilay and
Lapata, 2008). They have also been critical com-
ponents in state-of-the-art sentence ordering mod-
els (Soricut and Marcu, 2006; Elsner and Char-
niak, 2011; Lin et al., 2011).

2.1 Limitations of Entity Grid Models

Despite its success, existing entity grid models are
limited in several ways.

e Existing models use discrete representation for
grammatical roles and features, which leads to the
so-called curse of dimensionality problem (Ben-
gio et al., 2003). In particular, to model transitions
of length k with ‘R different grammatical roles, the
basic entity grid model needs to compute R* tran-

2They match the nouns to detect coreferent entities.
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sition probabilities from a grid. One can imagine
that the estimated distribution becomes sparse as k
increases. This prevents the model from consider-
ing longer transitions — existing models use & < 3.
This problem is exacerbated when we want to in-
clude entity-specific features, as the number of pa-
rameters grows exponentially with the number of
features (Elsner and Charniak, 2011).

e Existing models compute feature representa-
tions from entity grids in a task-agnostic way. In
other words, feature extraction is decoupled from
the target downstream tasks. This can limit the
model’s capacity to learn task-specific features.
Therefore, models that can be trained in an end-to-
end fashion on different target tasks are desirable.

In the following section, we present a neural ar-
chitecture that allows us to capture long range en-
tity transitions along with arbitrary entity-specific
features without loosing generalization. We also
present an end-to-end training method to learn
task-specific features automatically.

3 The Neural Coherence Model

Figure 2 summarizes our neural architecture for
modeling local coherence, and how it can be
trained in a pairwise fashion. The architecture
takes a document as input, and first extracts its en-
tity grid.> The first layer of the neural network
transforms each grammatical role in the grid into
a distributed representation, a real-valued vector.
The second layer computes high-level features by
going over each column (transitions) of the grid.
The following layer selects the most important
high-level features, which are in turn used for co-
herence scoring. The features computed at differ-
ent layers of the network are automatically trained
by backpropagation to be relevant to the task. In
the following, we elaborate on the layers of the
neural network model.

(I) Transforming grammatical roles into fea-
ture vectors: Grammatical roles are fed to our
model as indices taken from a finite vocabulary V.
In the simplest scenario, V contains {S, O, X, —}.
However, we will see in Section 3.1 that as we in-
clude more entity-specific features, V can contain
more symbols. The first layer of our network maps
each of these indices into a distributed representa-
tion R by looking up a shared embedding matrix

3For clarification, pairwise input as shown in the figure is
required only to train the model.

E € RVIX4 We consider E a model parameter
to be learned by backpropagation on a given task.
We can initialize £ randomly or using pretrained
vectors trained on a general coherence task.
Given an entity grid G with columns represent-
ing entity transitions over sentences in a docu-
ment, the lookup layer extracts a d-dimensional
vector for each entry G; ; from E. More formally,

L(G) = (B(G1y) -+ E(Giy) -+ E(Gun) )

(1
where E(G, ;) refers to the row in E' that corre-
sponds to the grammatical role G; ; € V; m is the
total number of sentences and n is the total num-
ber of entities in the document. The output £(G)
is a tensor in R™*"*4_ which is fed to the next

layer of the network as we describe below.

(IT) Modeling entity transitions: The vectors
produced by the lookup layer are combined by
subsequent layers of the network to generate a
coherence score for the document. To compose
higher-level features from the embedding vectors,
we make the following modeling assumptions:

e Similar to existing entity grid models, we as-
sume there is no spatio-temporal relation between
the entities in a document. In other words,
columns in a grid are treated independently.

e We are interested in modeling entity transitions
of arbitrary lengths in a location-invariant way.
This means, we aim to compose local patches of
entity transitions into higher-level representations,
while treating the patches independently of their
position in the entity grid.

Under these assumptions, the natural choice to
tackle this problem is to use a convolutional ap-
proach, used previously to solve other NLP tasks
(Collobert et al., 2011; Kim, 2014).

Convolution layer: A convolution operation in-
volves applying a filter w € R*< (i.e., a vector
of weight parameters) to each entity transition of
length £ to produce a new abstract feature

hy = f(WTﬁt:t-s-k:—l,j +by) ()

where L;.;41—1,; denotes the concatenation of £
vectors in the lookup layer representing a transi-
tion of length k for entity e; in the grid, b; is a bias
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A shared CNN
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Figure 2: Neural architecture for modeling local coherence and the pairwise training method.

term, and f is a nonlinear activation function, e.g.,
ReLU (Nair and Hinton, 2010) in our model.

We apply this filter to each possible k-length
transitions of different entities in the grid to gener-
ate a feature map, h* = [h1,- -,y pik_1]. We
repeat this process /N times with /V different filters
to get N different feature maps (Figure 2). No-
tice that we use a wide convolution (Kalchbrenner
et al., 2014), as opposed to narrow, to ensure that
the filters reach entire columns of a grid, including
the boundary entities. This is done by performing
zero-padding, where out-of-range (i.e., for t < 0
ort > {m, n}) vectors are assumed to be zero.

Convolutional filters learn to compose local
transition features of a grid into higher-level rep-
resentations automatically. Since it operates over
the distributed representation of grid entries, com-
pared to traditional grid models, the transition
length k£ can be sufficiently large (e.g., 5 — 8
in our experiments) to capture long-range tran-
sitional dependencies without overfitting on the
training data. Moreover, unlike existing grid mod-
els that compute transition probabilities from a
single document, embedding vectors and convo-
lutional filters are learned from all training docu-
ments, which helps the neural framework to obtain
better generalization and robustness.

Pooling layer: After the convolution, we apply
a max-pooling operation to each feature map.

m = [up(h'), -, (0] (3)

where y1,,(h?) refers to the max operation applied

to each non-overlapping* window of p features in
the feature map h’. Max-pooling reduces the out-
put dimensionality by a factor of p, and it drives
the model to capture the most salient local features
from each feature map in the convolutional layer.

Coherence scoring: Finally, the max-pooled
features are used in the output layer of the network
to produce a coherence score y € R.

y=vim+b 4)
where v is the weight vector and b is a bias term.

Why it works: Intuitively, each filter detects a
specific transition pattern (e.g., ‘SS-O-X’ for a co-
herent text), and if this pattern occurs somewhere
in the grid, the resulting feature map will have a
large value for that particular region and small val-
ues for other regions. By applying max pooling on
this feature map, the network then discovers that
the transition appeared in the grid.

3.1 Incorporating Entity-Specific Features

Our model as described above neuralizes the basic
entity grid model that considers only entity transi-
tions without distinguishing between types of the
entities. However, as Elsner and Charniak (2011)
pointed out entity-specific features could be cru-
cial for modeling local coherence. One simple
way to incorporate entity-specific features into our
model is to attach the feature value (e.g., named
entity type) with the grammatical role in the grid.

“We set the stride size to be the same as the pooling length
p to get non-overlapping regions.
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For example, if an entity e; of type PERSON ap-
pears as a subject (S) in sentence s;, the grid entry
G, j can be encoded as PERSON-S.

3.2 Training

Our neural model assigns a coherence score to
an input document d based on the degree of lo-
cal coherence observed in its entity grid G. Let
y = ¢(G|0) define our model that transforms an
input grid G to a coherence score y through a se-
quence of lookup, convolutional, pooling, and lin-
ear projection layers with parameter set §. The
parameter set 6 includes the embedding matrix F,
the filter matrix W, the weight vector v, and the
biases. We use a pairwise ranking approach (Col-
lobert et al., 2011) to learn 6.

The training set comprises ordered pairs
(di, d;), where document d; exhibits a higher de-
gree of coherence than document d;. As we will
see in Section 4 such orderings can be obtained
automatically or through manual annotation. In
training, we seek to find 6 that assigns a higher
coherence score to d; than to d;. We minimize the
following ranking objective with respect to 6:

T (6) = max{0,1 - 6(Gil6) + #(G,10)}  (5)

where G; and G are the entity grids correspond-
ing to documents d; and d;, respectively. Notice
that (also shown in Figure 2) the network shares
its layers (and hence ) to obtain ¢(G;|f) and
¢(G;16) from a pair of input grids (G;, G;).
Barzilay and Lapata (2008) adopted a similar
ranking criterion using an SVM preference kernel
learner as they argue coherence assessment is best
seen as a ranking problem as opposed to classifi-
cation (coherent vs. incoherent). Also, the ranker
gives a scoring function ¢ that a text generation
system can use to compare alternative hypotheses.

4 Evaluation Tasks

We evaluate the effectiveness of our coherence
models on two different evaluation tasks: sentence
ordering and summary coherence rating.

4.1 Sentence Ordering

Following Elsner and Charniak (2011), we eval-
uate our models on two sentence ordering tasks:
discrimination and insertion.

In the discrimination task (Barzilay and Lapata,
2008), a document is compared to a random per-

‘ Sections ‘ #Doc. #Pairs Avg. # Sen.

26,422 21.5
20,411 223

00-13
14-24

TRAIN
TEST

1,378
1,053

Table 1: Statistics on the WSJ dataset.

mutation of its sentences, and the model is con-
sidered correct if it scores the original document
higher than the permuted one. We use 20 permu-
tations of each document in the test set in accor-
dance with previous work.

In the insertion task (Elsner and Charniak,
2011), we evaluate models based on their ability
to locate the original position of a sentence pre-
viously removed from a document. To measure
this, each sentence in the document is removed in
turn, and an insertion place is located for which
the model gives the highest coherence score to the
document. The insertion score is then computed
as the average fraction of sentences per document
reinserted in their actual position.

Discrimination can be easier for longer docu-
ments, since a random permutation is likely to be
different than the original one. Insertion is a much
more difficult task since the candidate documents
differ only by the position of one sentence.

Dataset: For sentence ordering tasks, we use
the Wall Street Journal (WSJ) portion of Penn
Treebank, as used by Elsner and Charniak (2008,
2011); Linetal. (2011); Feng et al. (2014). Table 1
gives basic statistics about the dataset. Following
previous works, we use 20 random permutations
of each article, and we exclude permutations that
match the original document.’ The fourth column
(# Pairs) in Table 1 shows the resulting number
of (original, permuted) pairs used for training our
model and for testing in the discrimination task.

Some previous studies (Barzilay and Lapata,
2008; Li and Hovy, 2014) used the AIRPLANES
and the EARTHQUAKES corpora, which contain re-
ports on airplane crashes and earthquakes, respec-
tively. Each of these corpora contains 100 articles
for training and 100 articles for testing. The av-
erage number of sentences per article in these two
corpora is 10.4 and 11.5, respectively.

We preferred the WSJ corpus for several rea-
sons. First and most importantly, the WSJ cor-
pus is larger than other corpora (see Table 1). A
large training set is crucial for learning effective

3Short articles may produce many matches.
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deep learning models (Collobert et al., 2011), and
a large enough test set is necessary to make a gen-
eral comment about model performance. Second,
as Elsner and Charniak (2011) pointed out, texts in
AIRPLANES and EARTHQUAKES are constrained
in style, whereas WSJ documents are more like
normal informative articles. Third, we could re-
produce results on this dataset for the competing
systems (e.g., entity grid and its extensions) using
the publicly available Brown coherence toolkit.

4.2 Summary Coherence Rating

We further evaluate our models on the summary
coherence rating task proposed by Barzilay and
Lapata (2008), where we compare rankings given
by a model to a pair of summaries against rankings
elicited from human judges.

Dataset: The summary dataset was extracted
from the Document Understanding Conference
(DUC’03), which contains 6 clusters of multi-
document summaries produced by human experts
and 5 automatic summarization systems. Each
cluster has 16 summaries of a document with pair-
wise coherence rankings given by humans judges;
see (Barzilay and Lapata, 2008) for details on the
annotation method. There are 144 pairs of sum-
maries for training and 80 pairs for testing.

5 Experiments

In this section, we present our experiments — the
models we compare, their settings, and the results.

5.1 Models Compared

We compare our coherence model against a ran-
dom baseline and several existing models.

Random: The Random baseline makes a ran-
dom decision for the evaluation tasks.

Graph-based Model: This is the graph-based
unsupervised model proposed by Guinaudeau and
Strube (2013). We use the implementation from
the cohere’ toolkit (Smith et al., 2016), and run it
on the test set with syntactic projection (command
line option ‘projection=3") for graph construction.
This setting yielded best scores for this model.

Distributed Sentence Model: Li and Hovy
(2014) proposed this neural model for measuring

Shttps://bitbucket.org/melsner/browncoherence
"https://github.com/karins/CoherenceFramework

text coherence. The model first encodes each sen-
tence in a document into a fixed-length vector us-
ing a recurrent or a recursive neural network. Then
it computes the coherence score of the document
by aggregating the scores estimated for each win-
dow of three sentences in the document. We used
the implementation made publicly available by the
authors.® We trained the model on our WSJ cor-
pus with 512, 1024 and 1536 minibatch sizes for
a maximum of 25 epochs.” The model that used
minibatch size of 512 and completed 23 epochs
achieved the best accuracy on the DEV set. We ap-
plied this model to get the scores on the TEST set.

Grid-all nouns (E&C): This is the simple ex-
tension of the original entity grid model, where all
nouns are considered as entities. Elsner and Char-
niak (2011) report significant gains by considering
all nouns as opposed to only head-nouns. Results
for this model were obtained by training the base-
line entity grid model (command line option ‘-n’)
in the Brown coherence toolkit on our dataset.

Extended grid (E&C): This represents the ex-
tended entity grid model of Elsner and Charniak
(2011) that uses 9 entity-specific features; 4 of
them were computed from external corpora. This
model considers all nouns as entities. For this sys-
tem, we train the extended grid model (command
line option ‘-f’) in the Brown coherence toolkit.

Grid-CNN: This is our proposed neural exten-
sion of the basic entity grid (all nouns), where we
only consider entity transitions as input.

Extended Grid-CNN: This corresponds to our
neural model that incorporates entity-specific fea-
tures following the method described in Section
3.1. To keep the model simple, we include
only three entity-specific features from (Elsner
and Charniak, 2011) that are easy to compute and
do not require any external corpus. The features
are: (i) named entity type, (ii) salience as deter-
mined by occurrence frequency of the entity, and

8http://cs.stanford.edu/ bdlijiwei/code/

°Our WSJ corpus is about 14 times larger than their AC-
CIDENT or EARTHQUAKE corpus (1378 vs. 100 training arti-
cles), and the articles in our corpus are generally longer than
the articles in their corpus (on average 22 vs. 10 sentences per
article). Also, the vocabulary in our corpus is much larger
than their vocabulary (45462 vs. 4758). Considering these
factors and the fact that their Java-based implementation does
not support GPU and parallelization, it takes quite long to
train and to validate their model on our dataset. In our ex-
periments, depending on the minibatch size, it took approxi-
mately 3-5 days to complete only one epoch of training!
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‘Batch Emb. Dropout Filter Win. Pool

Grid-CNN 128 100 0.5 150 6 6
Ext. Grid-CNN | 32 100 0.5 150 5 6

Table 2: Optimal hyper-parameter setting for our
neural models based on development set accuracy.

(iii) whether the entity has a proper mention.

5.2 Settings for Neural Models

We held out 10% of the training documents to
form a development set (DEV) on which we tune
the hyper-parameters of our neural models. For
discrimination and insertion tasks, the resulting
DEV set contains 138 articles and 2,678 pairs af-
ter removing the permutations that match the orig-
inal documents. For the summary rating task, DEV
contains 14 pairs of summaries.

We implement our models in Theano (Theano
Development Team, 2016). We use rectified lin-
ear units (ReLU) as activations (f). The embed-
ding matrix is initialized with samples from uni-
form distribution ¢/(—0.01,0.01), and the weight
matrices are initialized with samples from glorot-
uniform distribution (Glorot and Bengio, 2010).

We train the models by optimizing the pair-
wise ranking loss in Equation 5 using the gradient-
based online learning algorithm RMSprop with
parameters (p and €) set to the values suggested
by Tieleman and Hinton (2012).1° We use up to
25 epochs. To avoid overfitting, we use dropout
(Srivastava et al., 2014) of hidden units, and do
early stopping by observing accuracy on the DEV
set — if the accuracy does not increase for 10
consecutive epochs, we exit with the best model
recorded so far. We search for optimal minibatch
size in {16,32,64,128}, embedding size in
{80,100, 200}, dropout rate in {0.2,0.3,0.5},
filter number in {100, 150,200,300}, window
size in {2,3,4,5,6,7,8}, and pooling length in
{3,4,5,6,7}. Table 2 shows the optimal hyper-
parameter setting for our models. The best model
on DEV is then used for the final evaluation on the
TEST set. We run each experiment five times, each
time with a different random seed, and we report
the average of the runs to avoid any randomness
in results. Statistical significance tests are done
using an approximate randomization test based on
the accuracy. We used SIGF V.2 (Padé, 2006) with

00ther adaptive algorithms, e.g., ADAM (Kingma and
Ba, 2014), ADADELTA (Zeiler, 2012) gave similar results.

Discr. Ins.
Acc Fi
Random | 500 500 | 12.60
Graph-based (G&S) 64.23  65.01 11.93
Dist. sentence (L&H) | 77.54 77.54 | 19.32
Grid-all nouns (E&C) | 81.58 81.60 | 22.13
Extended Grid (E&C) | 84.95 84.95 | 23.28
Grid-CNN 85.571 85.57t1 | 23.12
Extended Grid-CNN | 88.691 88.697 | 25.957

Table 3: Coherence evaluation results on
Discrimination and Insertion tasks. t indicates a
neural model is significantly superior to its non-
neural counterpart with p-value < 0.01.

10,000 iterations.

5.3 Results on Sentence Ordering

Table 3 shows the results on discrimination and
insertion tasks. The graph-based model gets the
lowest scores. This is not surprising considering
that this model works in an unsupervised way. The
distributed sentence model surprisingly performed
poorly on our dataset. Among the existing mod-
els, the grid models get the best scores on both
tasks. This demonstrates that entity transition, as
a method to capture local coherence, is more ef-
fective than the sentence representation method.

Neuralization of the existing grid models yields
significant improvements in most cases. The Grid-
CNN model delivers absolute improvements of
about 4% in discrimination and 1% in insertion
over the basic grid model. When we compare our
Extended Grid-CNN with its non-neural counter-
part Extended Grid, we observe similar gains in
discrimination and more gains (2.5%) in insertion.
Note that the Extended Grid-CNN yields these im-
provements considering only a subset of the Ex-
tended Grid features. This demonstrates the effec-
tiveness of distributed representation and convolu-
tional feature learning method.

Compared to the discrimination task, gain in the
insertion task is less verbose. There could be two
reasons for this. First, as mentioned before, inser-
tion is a harder task than discrimination. Second,
our models were not trained specifically on the in-
sertion task. The model that is trained to distin-
guish an original document from its random per-
mutation may learn features that are not specific
enough to distinguish documents when only one
sentence differs. In the future, it will be interesting
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‘ Acc K
Random | 50.0 50.0
Graph-based (G&S) | 80.0 815
Grid (B&L) | 838 -
Grid-CNN 85.0 85.0
Extended Grid-CNN 86.3 86.3
Pre-trained Grid-CNN 86.3 86.3
Pre-trained Ext. Grid-CNN | 87.5 87.5

Table 4: Evaluation results on the Summary Co-
herence Rating task.

to see how the model performs when it is trained
on the insertion task directly.

5.4 Results on Summary Coherence Rating

Table 4 presents the results on the summary co-
herence rating task, where we compare our mod-
els with the reported results of the graph-based
method (Guinaudeau and Strube, 2013) and the
initial entity grid model (Barzilay and Lapata,
2008) on the same experimental setting.!! The ex-
tended grid model does not use pairwise training,
therefore could not be trained on the summariza-
tion dataset. Since there are not many training in-
stances, our neural models may not learn well for
this task. Therefore, we also present versions of
our model, where we use pre-trained models from
discrimination task on WSJ corpus (last two rows
in the table ). The pre-trained models are then fine-
tuned on the summary rating task.

We can observe that even without pre-training
our models outperform existing models, and pre-
training gives further improvements. Specifically,
Pre-trained Grid-CNN gives an improvement of
2.5% over the Grid model, and including entity
features pushes the improvement further to 3.7%.

6 Related Work

Barzilay and Lapata (2005, 2008) introduced the
entity grid representation of discourse to model lo-
cal coherence that captures the distribution of dis-
course entities across sentences in a text. They
also introduced three tasks to evaluate the perfor-
mance of coherence models: discrimination, sum-
mary coherence rating, and readability.

"Since we do not have access to the output of their sys-
tems, we could not do a significance test for this task.

A number of extensions of the basic entity grid
model has been proposed. Elsner and Charniak
(2011) included entity-specific features to distin-
guish between entities. Feng and Hirst (2012)
used the basic grid representation, but improved
its learning to rank scheme. Their model learns
not only from original document and its permuta-
tions but also from ranking preferences among the
permutations themselves. Guinaudeau and Strube
(2013) convert a standard entity grid into a bi-
partite graph representing entity occurrences in
sentences. To model local entity transition, the
method constructs a directed projection graph rep-
resenting the connection between adjacent sen-
tences. Two sentences have a connected edge if
they share at least one entity in common. The co-
herence score of the document is then computed
as the average out-degree of sentence nodes.

In addition, there are some approaches that
model text coherence based on coreferences and
discourse relations. Elsner and Charniak (2008)
proposed the discourse-new model by taking into
account mentions of all referring expression (i.e.,
NPs) whether they are first mention (discourse-
new) or subsequent (discourse-old) mentions.
Given a document, they run a maximum-entropy
classifier to detect each NP as a label L,, €
{new,old}. The coherence score of the docu-
ment is then estimated by [[,,,.xps P(Lnp|np).
In this work, they also estimate text coherence
through pronoun coreference modeling. Lin et al.
(2011) assume that a coherent text has certain dis-
course relation patterns. Instead of modeling en-
tity transitions, they model discourse role transi-
tions between sentences. In a follow up work,
Feng et al. (2014) trained the same model but us-
ing features derived from deep discourse struc-
tures annotated with Rhetorical Structure Theory
or RST (Mann and Thompson, 1988b) relations.
Louis and Nenkova (2012) introduced a coher-
ence model based on syntactic patterns in text by
assuming that sentences in a coherent discourse
should share the same structural syntactic patterns.

In recent years, there has been a growing in-
terest in neuralizing traditional NLP approaches —
language modeling (Bengio et al., 2003), sequence
tagging (Collobert et al., 2011), syntactic parsing
(Socher et al., 2013), and discourse parsing (Li
et al., 2014), etc. Following this tradition, in this
paper we propose to neuralize the popular entity
grid models. Li and Hovy (2014) also proposed a
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neural framework to compute the coherence score
of a document by estimating coherence probability
for every window of L sentences (in their experi-
ments, L = 3). First, they use a recurrent or a
recursive neural network to compute the represen-
tation for each sentence in L from its words and
their pre-trained embeddings. Then the concate-
nated vector is passed through a non-linear hidden
layer, and finally the output layer decides if the
window of sentences is a coherent text or not. Our
approach is fundamentally different from their ap-
proach; our model operates over entity grids, and
we use convolutional architecture to model suffi-
ciently long entity transitions.

7 Conclusion and Future Work

We presented a local coherence model based on
a convolutional neural network that operates over
the distributed representation of entity transitions
in the grid representation of a text. Our architec-
ture can model sufficiently long entity transitions,
and can incorporate entity-specific features with-
out loosing generalization power. We described a
pairwise ranking approach to train the model on
a target task and learn task-specific features. Our
evaluation on discrimination, insertion and sum-
mary coherence rating tasks demonstrates the ef-
fectiveness of our approach yielding the best re-
sults reported so far on these tasks.

In future, we would like to include other sources
of information in our model. Our initial plan is to
include rhetorical relations, which has been shown
to benefit existing grid models (Feng et al., 2014).
We would also like to extend our model to other
forms of discourse, especially, asynchronous con-
versations, where participants communicate with
each other at different times (e.g., forum, email).
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