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Abstract

Joint extraction of entities and relations is
an important task in information extrac-
tion. To tackle this problem, we firstly
propose a novel tagging scheme that can
convert the joint extraction task to a tag-
ging problem. Then, based on our tag-
ging scheme, we study different end-to-
end models to extract entities and their re-
lations directly, without identifying enti-
ties and relations separately. We conduct
experiments on a public dataset produced
by distant supervision method and the ex-
perimental results show that the tagging
based methods are better than most of the
existing pipelined and joint learning meth-
ods. What’s more, the end-to-end model
proposed in this paper, achieves the best
results on the public dataset.

1 Introduction

Joint extraction of entities and relations is to de-
tect entity mentions and recognize their semantic
relations simultaneously from unstructured text, as
Figure 1 shows. Different from open information
extraction (Open IE) (Banko et al., 2007) whose
relation words are extracted from the given sen-
tence, in this task, relation words are extracted
from a predefined relation set which may not ap-
pear in the given sentence. It is an important issue
in knowledge extraction and automatic construc-
tion of knowledge base.

Traditional methods handle this task in a
pipelined manner, i.e., extracting the entities
(Nadeau and Sekine, 2007) first and then recog-
nizing their relations (Rink, 2010). This separated
framework makes the task easy to deal with, and
each component can be more flexible. But it ne-
glects the relevance between these two sub-tasks

The [United States]E-loc President  [Trump]E-per will visit the [Apple Inc]E-Org .

Country-President 

None
None

Extracted Results

{United States, Country-President, Trump}

Figure 1: A standard example sentence for the
task. “Country-President” is a relation in the pre-
defined relation set.

and each subtask is an independent model. The
results of entity recognition may affect the perfor-
mance of relation classification and lead to erro-
neous delivery (Li and Ji, 2014).

Different from the pipelined methods, join-
t learning framework is to extract entities togeth-
er with relations using a single model. It can ef-
fectively integrate the information of entities and
relations, and it has been shown to achieve bet-
ter results in this task. However, most existing
joint methods are feature-based structured system-
s (Li and Ji, 2014; Miwa and Sasaki, 2014; Yu
and Lam, 2010; Ren et al., 2017). They need
complicated feature engineering and heavily re-
ly on the other NLP toolkits, which might also
lead to error propagation. In order to reduce the
manual work in feature extraction, recently, (Mi-
wa and Bansal, 2016) presents a neural network-
based method for the end-to-end entities and rela-
tions extraction. Although the joint models can
represent both entities and relations with shared
parameters in a single model, they also extract the
entities and relations separately and produce re-
dundant information. For instance, the sentence in
Figure 1 contains three entities: “United States”,
“Trump” and “Apple Inc”. But only “United S-
tates” and “Trump” hold a fix relation “Country-
President”. Entity “Apple Inc” has no obvious
relationship with the other entities in this sen-
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tence. Hence, the extracted result from this sen-
tence is {United Statese1, Country-Presidentr,
Trumpe2}, which called triplet here.

In this paper, we focus on the extraction of
triplets that are composed of two entities and one
relation between these two entities. Therefore, we
can model the triplets directly, rather than extract-
ing the entities and relations separately. Based on
the motivations, we propose a tagging scheme ac-
companied with the end-to-end model to settle this
problem. We design a kind of novel tags which
contain the information of entities and the rela-
tionships they hold. Based on this tagging scheme,
the joint extraction of entities and relations can be
transformed into a tagging problem. In this way,
we can also easily use neural networks to model
the task without complicated feature engineering.

Recently, end-to-end models based on LSTM
(Hochreiter and Schmidhuber, 1997) have been
successfully applied to various tagging tasks:
Named Entity Recognition (Lample et al., 2016),
CCG Supertagging (Vaswani et al., 2016), Chunk-
ing (Zhai et al., 2017) et al. LSTM is capable of
learning long-term dependencies, which is benefi-
cial to sequence modeling tasks. Therefore, based
on our tagging scheme, we investigate different
kinds of LSTM-based end-to-end models to joint-
ly extract the entities and relations. We also modi-
fy the decoding method by adding a biased loss to
make it more suitable for our special tags.

The method we proposed is a supervised learn-
ing algorithm. In reality, however, the process
of manually labeling a training set with a large
number of entity and relation is too expensive and
error-prone. Therefore, we conduct experiments
on a public dataset1 which is produced by distant
supervision method (Ren et al., 2017) to validate
our approach. The experimental results show that
our tagging scheme is effective in this task. In ad-
dition, our end-to-end model can achieve the best
results on the public dataset.

The major contributions of this paper are: (1) A
novel tagging scheme is proposed to jointly extrac-
t entities and relations, which can easily transfor-
m the extraction problem into a tagging task. (2)
Based on our tagging scheme, we study different
kinds of end-to-end models to settle the problem.
The tagging-based methods are better than most
of the existing pipelined and joint learning meth-
ods. (3) Furthermore, we also develop an end-to-

1https://github.com/shanzhenren/CoType

end model with biased loss function to suit for the
novel tags. It can enhance the association between
related entities.

2 Related Works

Entities and relations extraction is an importan-
t step to construct a knowledge base, which can
be benefit for many NLP tasks. Two main frame-
works have been widely used to solve the problem
of extracting entity and their relationships. One
is the pipelined method and the other is the joint
learning method.

The pipelined method treats this task as two sep-
arated tasks, i.e., named entity recognition (NER)
(Nadeau and Sekine, 2007) and relation classifica-
tion (RC) (Rink, 2010). Classical NER models are
linear statistical models, such as Hidden Markov
Models (HMM) and Conditional Random Fields
(CRF) (Passos et al., 2014; Luo et al., 2015). Re-
cently, several neural network architectures (Chi-
u and Nichols, 2015; Huang et al., 2015; Lam-
ple et al., 2016) have been successfully applied
to NER, which is regarded as a sequential to-
ken tagging task. Existing methods for relation
classification can also be divided into handcraft-
ed feature based methods (Rink, 2010; Kambhat-
la, 2004) and neural network based methods (Xu,
2015a; Zheng et al., 2016; Zeng, 2014; Xu, 2015b;
dos Santos, 2015).

While joint models extract entities and relations
using a single model. Most of the joint method-
s are feature-based structured systems (Ren et al.,
2017; Yang and Cardie, 2013; Singh et al., 2013;
Miwa and Sasaki, 2014; Li and Ji, 2014). Recent-
ly, (Miwa and Bansal, 2016) uses a LSTM-based
model to extract entities and relations, which can
reduce the manual work.

Different from the above methods, the method
proposed in this paper is based on a special tag-
ging manner, so that we can easily use end-to-
end model to extract results without NER and RC.
end-to-end method is to map the input sentence
into meaningful vectors and then back to produce
a sequence. It is widely used in machine transla-
tion (Kalchbrenner and Blunsom, 2013; Sutskever
et al., 2014) and sequence tagging tasks (Lample
et al., 2016; Vaswani et al., 2016). Most meth-
ods apply bidirectional LSTM to encode the input
sentences, but the decoding methods are always d-
ifferent. For examples, (Lample et al., 2016) use
a CRF layers to decode the tag sequence, while
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Input Sentence:  The United States President  Trump will visit the Apple Inc  founded by Steven  Paul   Jobs

{Apple Inc, Company-Founder, Steven Paul Jobs}Final Results:

Tags:  O   B-CP-1   E-CP-1       O         S-CP-2   O     O     O B-CF-1 E-CF-1  O        O   B-CF-2  I-CF-2 E-CF-2 

{United States, Country-President, Trump}

Figure 2: Gold standard annotation for an example sentence based on our tagging scheme, where “CP”
is short for “Country-President” and “CF” is short for “Company-Founder”.

(Vaswani et al., 2016; Katiyar and Cardie, 2016)
apply LSTM layer to produce the tag sequence.

3 Method

We propose a novel tagging scheme and an end-to-
end model with biased objective function to jointly
extract entities and their relations. In this section,
we firstly introduce how to change the extraction
problem to a tagging problem based on our tag-
ging method. Then we detail the model we used
to extract results.

3.1 The Tagging Scheme
Figure 2 is an example of how the results are
tagged. Each word is assigned a label that con-
tributes to extract the results. Tag “O” represents
the “Other” tag, which means that the correspond-
ing word is independent of the extracted result-
s. In addition to “O”, the other tags consist of
three parts: the word position in the entity, the
relation type, and the relation role. We use the
“BIES” (Begin, Inside, End,Single) signs to rep-
resent the position information of a word in the
entity. The relation type information is obtained
from a predefined set of relations and the relation
role information is represented by the numbers “1”
and “2”. An extracted result is represented by a
triplet: (Entity1, RelationType,Entity2). “1”
means that the word belongs to the first entity in
the triplet, while “2” belongs to second entity that
behind the relation type. Thus, the total number of
tags is Nt = 2 ∗ 4 ∗ |R|+ 1, where |R| is the size
of the predefined relation set.

Figure 2 is an example illustrating our tag-
ging method. The input sentence contains t-
wo triplets: {United States, Country-President,
Trump} and {Apple Inc, Company-Founder,
Steven Paul Jobs}, where “Country-President”
and “Company-Founder” are the predefined re-
lation types. The words “United”,“States”,“
Trump”,“Apple”,“Inc” ,“Steven”, “Paul” and

“Jobs” are all related to the final extracted result-
s. Thus they are tagged based on our special tags.
For example, the word of “United” is the first word
of entity “United States” and is related to the rela-
tion “Country-President”, so its tag is “B-CP-1”.
The other entity “ Trump”, which is correspond-
ing to “United States”, is labeled as “S-CP-2”. Be-
sides, the other words irrelevant to the final result
are labeled as “O”.

3.2 From Tag Sequence To Extracted Results

From the tag sequence in Figure 2, we know that
“ Trump” and “United States” share the same re-
lation type “Country-President”, “Apple Inc” and
“Steven Paul Jobs” share the same relation type
“Company-Founder”. We combine entities with
the same relation type into a triplet to get the fi-
nal result. Accordingly, “ Trump” and “United S-
tates” can be combined into a triplet whose rela-
tion type is “Country-President”. Because, the re-
lation role of “ Trump” is “2” and “United States”
is “1”, the final result is {United States, Country-
President, Trump}. The same applies to {Apple
Inc, Company-Founder, Steven Paul Jobs}.

Besides, if a sentence contains two or more
triplets with the same relation type, we combine
every two entities into a triplet based on the n-
earest principle. For example, if the relation type
“Country-President” in Figure 2 is “Company-
Founder”, then there will be four entities in the
given sentence with the same relation type. “U-
nited States” is closest to entity “ Trump” and
the “Apple Inc” is closest to “Jobs”, so the re-
sults will be {United States, Company-Founder,
Trump} and {Apple Inc, Company-Founder,
Steven Paul Jobs}.

In this paper, we only consider the situation
where an entity belongs to a triplet, and we leave
identification of overlapping relations for future
work.
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Figure 3: An illustration of our model. (a): The architecture of the end-to-end model, (b): The LSTM
memory block in Bi-LSTM encoding layer, (c): The LSTM memory block in LSTMd decoding layer.

3.3 The End-to-end Model

In recent years, end-to-end model based on neural
network is been widely used in sequence tagging
task. In this paper, we investigate an end-to-end
model to produce the tags sequence as Figure 3
shows. It contains a bi-directional Long Short Ter-
m Memory (Bi-LSTM) layer to encode the input
sentence and a LSTM-based decoding layer with
biased loss. The biased loss can enhance the rele-
vance of entity tags.

The Bi-LSTM Encoding Layer. In sequence tag-
ging problems, the Bi-LSTM encoding layer has
been shown the effectiveness to capture the se-
mantic information of each word. It contains for-
ward lstm layer, backward lstm layer and the con-
catenate layer. The word embedding layer con-
verts the word with 1-hot representation to an em-
bedding vector. Hence, a sequence of words can
be represented as W = {w1, ...wt, wt+1...wn},
where wt ∈ Rd is the d-dimensional word vector
corresponding to the t-th word in the sentence and
n is the length of the given sentence. After word
embedding layer, there are two parallel LSTM lay-
ers: forward LSTM layer and backward LSTM
layer. The LSTM architecture consists of a set of
recurrently connected subnets, known as memory
blocks. Each time-step is a LSTM memory block.
The LSTM memory block in Bi-LSTM encoding
layer is used to compute current hidden vector ht
based on the previous hidden vector ht−1, the pre-
vious cell vector ct−1 and the current input word
embedding wt. Its structure diagram is shown in
Figure 3 (b), and detail operations are defined as

follows:

it = δ(Wwiwt +Whiht−1 +Wcict−1 + bi), (1)

ft = δ(Wwfwt+Whfht−1+Wcfct−1+bf ), (2)

zt = tanh(Wwcwt +Whcht−1 + bc), (3)

ct = ftct−1 + itzt, (4)

ot = δ(Wwowt +Whoht−1 +Wcoct + bo), (5)

ht = ottanh(ct), (6)

where i, f and o are the input gate, forget gate
and output gate respectively, b is the bias term, c
is the cell memory, and W(.) are the parameters.
For each word wt, the forward LSTM layer will
encode wt by considering the contextual informa-
tion from wordw1 towt, which is marked as

−→
ht . In

the similar way, the backward LSTM layer will en-
code wt based on the contextual information from
wn to wt, which is marked as

←−
ht . Finally, we con-

catenate
←−
ht and

−→
ht to represent word t’s encoding

information, denoted as ht = [
−→
ht ,
←−
ht ].

The LSTM Decoding Layer. We also adopt a L-
STM structure to produce the tag sequence. When
detecting the tag of word wt, the inputs of decod-
ing layer are: ht obtained from Bi-LSTM encod-
ing layer, former predicted tag embedding Tt−1,
former cell value c(2)t−1, and the former hidden vec-

tor in decoding layer h(2)t−1. The structure diagram
of the memory block in LSTMd is shown in Figure
3 (c), and detail operations are defined as follows:

i
(2)
t = δ(W

(2)
wi ht +W

(2)
hi h

(2)
t−1 +WtiTt−1 + b

(2)
i ),

(7)
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f
(2)
t = δ(W

(2)
wf ht +W

(2)
hf h

(2)
t−1 +WtfTt−1 + b

(2)
f ),

(8)

z
(2)
t = tanh(W (2)

wc ht+W
(2)
hc h

(2)
t−1+WtcTt−1+b(2)c ),

(9)

c
(2)
t = f

(2)
t c

(2)
t−1 + i

(2)
t z

(2)
t , (10)

o
(2)
t = δ(W (2)

wo ht +W
(2)
ho h

(2)
t−1 +W (2)

co ct + b(2)o ),
(11)

h
(2)
t = o

(2)
t tanh(c

(2)
t ), (12)

Tt = Wtsh
(2)
t + bts. (13)

The final softmax layer computes normalized enti-
ty tag probabilities based on the tag predicted vec-
tor Tt:

yt = WyTt + by, (14)

pit =
exp(yit)

Nt∑
j=1

exp(yjt )

, (15)

where Wy is the softmax matrix, Nt is the total
number of tags. Because T is similar to tag em-
bedding and LSTM is capable of learning long-
term dependencies, the decoding manner can mod-
el tag interactions.
The Bias Objective Function. We train our mod-
el to maximize the log-likelihood of the data and
the optimization method we used is RMSprop pro-
posed by Hinton in (Tieleman and Hinton, 2012).
The objective function can be defined as:

L =max

|D|∑

j=1

Lj∑

t=1

(log(p
(j)
t = y

(j)
t |xj ,Θ) · I(O)

+α · log(p
(j)
t = y

(j)
t |xj ,Θ) · (1− I(O))),

where |D| is the size of training set, Lj is the
length of sentence xj , y

(j)
t is the label of word t

in sentence xj and p(j)t is the normalized probabil-
ities of tags which defined in Formula 15. Besides,
I(O) is a switching function to distinguish the loss
of tag ’O’ and relational tags that can indicate the
results. It is defined as follows:

I(O) =

{
1, if tag = ′O′

0, if tag 6= ′O′.

α is the bias weight. The larger α is, the greater
influence of relational tags on the model.

4 Experiments

4.1 Experimental setting
Dataset To evaluate the performance of our meth-
ods, we use the public dataset NYT 2 which is pro-
duced by distant supervision method (Ren et al.,
2017). A large amount of training data can be
obtained by means of distant supervision method-
s without manually labeling. While the test set is
manually labeled to ensure its quality. In total, the
training data contains 353k triplets, and the test set
contains 3, 880 triplets. Besides, the size of rela-
tion set is 24.
Evaluation We adopt standard Precision (Prec),
Recall (Rec) and F1 score to evaluate the result-
s. Different from classical methods, our method
can extract triplets without knowing the informa-
tion of entity types. In other words, we did not use
the label of entity types to train the model, there-
fore we do not need to consider the entity types
in the evaluation. A triplet is regarded as correct
when its relation type and the head offsets of two
corresponding entities are both correct. Besides,
the ground-truth relation mentions are given and
“None” label is excluded as (Ren et al., 2017; Li
and Ji, 2014; Miwa and Bansal, 2016) did. We
create a validation set by randomly sampling 10%
data from test set and use the remaining data as e-
valuation based on (Ren et al., 2017)’s suggestion.
We run 10 times for each experiment then report
the average results and their standard deviation as
Table 1 shows.
Hyperparameters Our model consists of a Bi-
LSTM encoding layer and a LSTM decoding layer
with bias objective function. The word embed-
dings used in the encoding part are initialed by
running word2vec3 (Mikolov et al., 2013) on NYT
training corpus. The dimension of the word em-
beddings is d = 300. We regularize our network
using dropout on embedding layer and the dropout
ratio is 0.5. The number of lstm units in encoding
layer is 300 and the number in decoding layer is
600. The bias parameter α corresponding to the
results in Table 1 is 10.

2The dataset can be downloaded at: http-
s://github.com/shanzhenren/CoType. There are three
data sets in the public resource and we only use the NYT
dataset. Because more than 50% of the data in BioInfer
has overlapping relations which is beyond the scope of this
paper. As for dataset Wiki-KBP, the number of relation type
in the test set is more than that of the train set, which is also
not suitable for a supervised training method. Details of the
data can be found in Ren’s(Ren et al., 2017) paper.

3https://code.google.com/archive/p/word2vec/
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Methods Prec. Rec. F1
FCM 0.553 0.154 0.240

DS+logistic 0.258 0.393 0.311
LINE 0.335 0.329 0.332

MultiR 0.338 0.327 0.333
DS-Joint 0.574 0.256 0.354
CoType 0.423 0.511 0.463

LSTM-CRF 0.693± 0.008 0.310± 0.007 0.428± 0.008
LSTM-LSTM 0.682± 0.007 0.320± 0.006 0.436± 0.006

LSTM-LSTM-Bias 0.615± 0.008 0.414± 0.005 0.495± 0.006

Table 1: The predicted results of different methods on extracting both entities and their relations. The
first part (from row 1 to row 3) is the pipelined methods and the second part (row 4 to 6) is the jointly
extracting methods. Our tagging methods are shown in part three (row 7 to 9). In this part, we not only
report the results of precision, recall and F1, we also compute their standard deviation.

Baselines We compare our method with sever-
al classical triplet extraction methods, which can
be divided into the following categories: the
pipelined methods, the jointly extracting method-
s and the end-to-end methods based our tagging
scheme.

For the pipelined methods, we follow (Ren
et al., 2017)’s settings: The NER results are ob-
tained by CoType (Ren et al., 2017) then sever-
al classical relation classification methods are ap-
plied to detect the relations. These methods are:
(1) DS-logistic (Mintz et al., 2009) is a distant su-
pervised and feature based method, which com-
bines the advantages of supervised IE and unsu-
pervised IE features; (2) LINE (Tang et al., 2015)
is a network embedding method, which is suit-
able for arbitrary types of information networks;
(3) FCM (Gormley et al., 2015) is a compositional
model that combines lexicalized linguistic context
and word embeddings for relation extraction.

The jointly extracting methods used in this pa-
per are listed as follows: (4) DS-Joint (Li and Ji,
2014) is a supervised method, which jointly ex-
tracts entities and relations using structured per-
ceptron on human-annotated dataset; (5) MultiR
(Hoffmann et al., 2011) is a typical distant super-
vised method based on multi-instance learning al-
gorithms to combat the noisy training data; (6) Co-
Type (Ren et al., 2017) is a domain independent
framework by jointly embedding entity mention-
s, relation mentions, text features and type labels
into meaningful representations.

In addition, we also compare our method with
two classical end-to-end tagging models: LSTM-
CRF (Lample et al., 2016) and LSTM-LSTM

(Vaswani et al., 2016). LSTM-CRF is proposed
for entity recognition by using a bidirectional L-
STM to encode input sentence and a conditional
random fields to predict the entity tag sequence.
Different from LSTM-CRF, LSTM-LSTM uses a
LSTM layer to decode the tag sequence instead
of CRF. They are used for the first time to jointly
extract entities and relations based on our tagging
scheme.

4.2 Experimental Results

We report the results of different methods as
shown in Table 1. It can be seen that our method,
LSTM-LSTM-Bias, outperforms all other meth-
ods in F1 score and achieves a 3% improvement
in F1 over the best method CoType (Ren et al.,
2017). It shows the effectiveness of our proposed
method. Furthermore, from Table 1, we also can
see that the jointly extracting methods are better
than pipelined methods, and the tagging methods
are better than most of the jointly extracting meth-
ods. It also validates the validity of our tagging
scheme for the task of jointly extracting entities
and relations.

When compared with the traditional methods,
the precisions of the end-to-end models are signifi-
cantly improved. But only LSTM-LSTM-Bias can
be better to balance the precision and recall. The
reason may be that these end-to-end models all use
a Bi-LSTM encoding input sentence and different
neural networks to decode the results. The meth-
ods based on neural networks can well fit the da-
ta. Therefore, they can learn the common features
of the training set well and may lead to the lower
expansibility. We also find that the LSTM-LSTM
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Elements E1 E2 (E1,E2)
PRF Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

LSTM-CRF 0.596 0.325 0.420 0.605 0.325 0.423 0.724 0.341 0.465
LSTM-LSTM 0.593 0.342 0.434 0.619 0.334 0.434 0.705 0.340 0.458

LSTM-LSTM-Bias 0.590 0.479 0.529 0.597 0.451 0.514 0.645 0.437 0.520

Table 2: The predicted results of triplet’s elements based on our tagging scheme.

model is better than LSTM-CRF model based on
our tagging scheme. Because, LSTM is capable of
learning long-term dependencies and CRF (Laf-
ferty et al., 2001) is good at capturing the joint
probability of the entire sequence of labels. The
related tags may have a long distance from each
other. Hence, LSTM decoding manner is a little
better than CRF. LSTM-LSTM-Bias adds a bias
weight to enhance the effect of entity tags and
weaken the effect of invalid tag. Therefore, in this
tagging scheme, our method can be better than the
common LSTM-decoding methods.

5 Analysis and Discussion

5.1 Error Analysis
In this paper, we focus on extracting triplets com-
posed of two entities and a relation. Table 1 has
shown the predict results of the task. It treats an
triplet is correct only when the relation type and
the head offsets of two corresponding entities are
both correct. In order to find out the factors that af-
fect the results of end-to-end models, we analyze
the performance on predicting each element in the
triplet as Table 2 shows. E1 and E2 represent the
performance on predicting each entity, respective-
ly. If the head offset of the first entity is correct,
then the instance of E1 is correct, the same to E2.
Regardless of relation type, if the head offsets of
two corresponding entities are both correct, the in-
stance of (E1, E2) is correct.

As shown in Table 2, (E1, E2) has higher pre-
cision when compared with E1 and E2. But its
recall result is lower than E1 and E2. It means
that some of the predicted entities do not form a
pair. They only obtain E1 and do not find its cor-
responding E2, or obtain E2 and do not find its
corresponding E1. Thus it leads to the prediction
of more single E and less (E1, E2) pairs. There-
fore, entity pair (E1, E2) has higher precision and
lower recall than single E. Besides, the predict-
ed results of (E1, E2) in Table 2 have about 3%
improvement when compared predicted results in
Table 1, which means that 3% of the test data is

predicted to be wrong because the relation type is
predicted to be wrong.

5.2 Analysis of Biased Loss

Different from LSTM-CRF and LSTM-LSTM,
our approach is biased towards relational labels to
enhance links between entities. In order to further
analyze the effect of the bias objective function,
we visualize the ratio of predicted single entities
for each end-to-end method as Figure 4. The s-
ingle entities refer to those who cannot find their
corresponding entities. Figure 4 shows whether it
is E1 or E2, our method can get a relatively low ra-
tio on the single entities. It means that our method
can effectively associate two entities when com-
pared LSTM-CRF and LSTM-LSTM which pay
little attention to the relational tags.
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Figure 4: The ratio of predicted single entities for
each method. The higher of the ratio the more en-
tities are left.

Besides, we also change the Bias Parameter α
from 1 to 20, and the predicted results are shown
in Figure 5. If α is too large, it will affect the
accuracy of prediction and if α is too small, the
recall will decline. When α = 10, LSTM-LSTM-
Bias can balance the precision and recall, and can
achieve the best F1 scores.
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Standard S1
[Panama City Beach]E2contain has condos , but the area was one of only two
in [Florida]E1contain where sales rose in March , compared with a year earlier.

LSTM-LSTM
Panama City Beach has condos , but the area was one of only two in
[Florida]E1contain where sales rose in March , compared with a year earlier.

LSTM-LSTM-Bias
[Panama City Beach]E2contain has condos , but the area was one of only two
in [Florida]E1contain where sales rose in March , compared with a year earlier.

Standard S2
All came from [Nuremberg]E2contain , [Germany]E1contain , a center of brass
production since the Middle Ages.

LSTM-LSTM
All came from Nuremberg , [Germany]E1contain , a center of brass production
since the [Middle Ages]E2contain.

LSTM-LSTM-Bias
All came from Nuremberg , [Germany]E1contain , a center of brass production
since the [Middle Ages]E2contain.

Standard S3
[Stephen A.]E2CF , the co-founder of the [Blackstone Group]E1CF , which
is in the process of going public , made $ 400 million last year.

LSTM-LSTM
[Stephen A.]E1CF , the co-founder of the [Blackstone Group]E1CF , which
is in the process of going public , made $ 400 million last year.

LSTM-LSTM-Bias
[Stephen A.]E1CF , the co-founder of the [Blackstone Group]E2CF , which
is in the process of going public , made $ 400 million last year.

Table 3: Output from different models. Standard Si represents the gold standard of sentence i. The
blue part is the correct result, and the red one is the wrong one. E1CF in case ’3’ is short for
E1Company−Founder.
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Figure 5: The results predicted by LSTM-LSTM-
Bias on different bias parameter α.

5.3 Case Study

In this section, we observe the prediction results of
end-to-end methods, and then select several repre-
sentative examples to illustrate the advantages and
disadvantages of the methods as Table 3 shows.
Each example contains three row, the first row is
the gold standard, the second and the third rows
are the extracted results of model LSTM-LSTM
and LSTM-LSTM-Bias respectively.
S1 represents the situation that the distance be-

tween the two interrelated entities is far away

from each other, which is more difficult to detect
their relationships. When compared with LSTM-
LSTM, LSTM-LSTM-Bias uses a bias objective
function which enhance the relevance between en-
tities. Therefore, in this example, LSTM-LSTM-
Bias can extract two related entities, while LSTM-
LSTM can only extract one entity of “Florida” and
can not detect entity “Panama City Beach”.

S2 is a negative example that shows these meth-
ods may mistakenly predict one of the entity.
There are no indicative words between entities
Nuremberg and Germany. Besides, the patten
“a * of *” between Germany and MiddleAges
may be easy to mislead the models that there ex-
ists a relation of “Contains” between them. The
problem can be solved by adding some samples
of this kind of expression patterns to the training
data.

S3 is a case that models can predict the enti-
ties’ head offset right, but the relational role is
wrong. LSTM-LSTM treats both “Stephen A.
Schwarzman” and “Blackstone Group” as entity
E1, and can not find its corresponding E2. Al-
though, LSTM-LSMT–Bias can find the entities
pair (E1, E2), it reverses the roles of “Stephen A.
Schwarzman” and “Blackstone Group”. It shows
that LSTM-LSTM-Bias is able to better on pre-
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dicting entities pair, but it remains to be improved
in distinguishing the relationship between the two
entities.

6 Conclusion

In this paper, we propose a novel tagging scheme
and investigate the end-to-end models to joint-
ly extract entities and relations. The experimen-
tal results show the effectiveness of our proposed
method. But it still has shortcoming on the identi-
fication of the overlapping relations. In the future
work, we will replace the softmax function in the
output layer with multiple classifier, so that a word
can has multiple tags. In this way, a word can ap-
pear in multiple triplet results, which can solve the
problem of overlapping relations. Although, our
model can enhance the effect of entity tags, the as-
sociation between two corresponding entities still
requires refinement in next works.
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