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Abstract

Parsing sentences to linguistically-
expressive semantic representations is a
key goal of Natural Language Process-
ing. Yet statistical parsing has focussed
almost exclusively on bilexical depen-
dencies or domain-specific logical forms.
We propose a neural encoder-decoder
transition-based parser which is the first
full-coverage semantic graph parser for
Minimal Recursion Semantics (MRS).
The model architecture uses stack-based
embedding features, predicting graphs
jointly with unlexicalized predicates
and their token alignments. Our parser
is more accurate than attention-based
baselines on MRS, and on an additional
Abstract Meaning Representation (AMR)
benchmark, and GPU batch processing
makes it an order of magnitude faster
than a high-precision grammar-based
parser. Further, the 86.69% Smatch score
of our MRS parser is higher than the
upper-bound on AMR parsing, making
MRS an attractive choice as a semantic
representation.

1 Introduction

An important goal of Natural Language Under-
standing (NLU) is to parse sentences to structured,
interpretable meaning representations that can be
used for query execution, inference and reasoning.
Recently end-to-end models have outperformed
traditional pipeline approaches, predicting syntac-
tic or semantic structure as intermediate steps, on
NLU tasks such as sentiment analysis and seman-
tic relatedness (Le and Mikolov, 2014; Kiros et al.,
2015), question answering (Hermann et al., 2015)
and textual entailment (Rocktischel et al., 2015).

However the linguistic structure used in applica-
tions has predominantly been shallow, restricted
to bilexical dependencies or trees.

In this paper we focus on robust parsing into
linguistically deep representations. The main rep-
resentation that we use is Minimal Recursion Se-
mantics (MRS) (Copestake et al., 1995, 2005),
which serves as the semantic representation of the
English Resource Grammar (ERG) (Flickinger,
2000). Existing parsers for full MRS (as op-
posed to bilexical semantic graphs derived from,
but simplifying MRS) are grammar-based, per-
forming disambiguation with a maximum entropy
model (Toutanova et al., 2005; Zhang et al., 2007);
this approach has high precision but incomplete
coverage.

Our main contribution is to develop a fast and
robust parser for full MRS-based semantic graphs.
We exploit the power of global conditioning en-
abled by deep learning to predict linguistically
deep graphs incrementally. The model does not
have access to the underlying ERG or syntac-
tic structures from which the MRS analyses were
originally derived. We develop parsers for two
graph-based conversions of MRS, Elementary De-
pendency Structure (EDS) (Oepen and Lgnning,
2006) and Dependency MRS (DMRS) (Copes-
take, 2009), of which the latter is inter-convertible
with MRS.

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a graph-based semantic
representation that shares the goals of MRS. Aside
from differences in the choice of which linguis-
tic phenomena are annotated, MRS is a compo-
sitional representation explicitly coupled with the
syntactic structure of the sentence, while AMR
does not assume compositionality or alignment
with the sentence structure. Recently a number
of AMR parsers have been developed (Flanigan
et al., 2014; Wang et al., 2015b; Artzi et al., 2015;
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Damonte et al., 2017), but corpora are still un-
der active development and low inter-annotator
agreement places on upper bound of 83% F1 on
expected parser performance (Banarescu et al.,
2013). We apply our model to AMR parsing by
introducing structure that is present explicitly in
MRS but not in AMR (Buys and Blunsom, 2017).

Parsers based on RNNs have achieved state-of-
the-art performance for dependency parsing (Dyer
et al., 2015; Kiperwasser and Goldberg, 2016)
and constituency parsing (Vinyals et al., 2015b;
Dyer et al., 2016; Cross and Huang, 2016b). One
of the main reasons for the prevalence of bilex-
ical dependencies and tree-based representations
is that they can be parsed with efficient and well-
understood algorithms. However, one of the key
advantages of deep learning is the ability to make
predictions conditioned on unbounded contexts
encoded with RNNs; this enables us to predict
more complex structures without increasing algo-
rithmic complexity. In this paper we show how to
perform linguistically deep parsing with RNNGs.

Our parser is based on a transition system for
semantic graphs. However, instead of generat-
ing arcs over an ordered, fixed set of nodes (the
words in the sentence), we generate the nodes and
their alignments jointly with the transition actions.
We use a graph-based variant of the arc-eager
transition-system. The sentence is encoded with a
bidirectional RNN. The transition sequence, seen
as a graph linearization, can be predicted with
any encoder-decoder model, but we show that us-
ing hard attention, predicting the alignments with
a pointer network and conditioning explicitly on
stack-based features improves performance. In or-
der to deal with data sparsity candidate lemmas
are predicted as a pre-processing step, so that the
RNN decoder predicts unlexicalized node labels.

We evaluate our parser on DMRS, EDS and
AMR graphs. We show that our model ar-
chitecture improves performance from 79.68%
to 84.16% F1 over an attention-based encoder-
decoder baseline. Although our parser is less ac-
curate that a high-precision grammar-based parser
on a test set of sentences parsable by that gram-
mar, incremental prediction and GPU batch pro-
cessing enables it to parse 529 tokens per sec-
ond, against 7 tokens per second for the grammar-
based parser. On AMR parsing our model obtains
60.11% Smatch, an improvement of 8% over an
existing neural AMR parser.

_want_v_1

ARG2

ARGI _meet_v_1
every_q proper_q
BV BV

person named
CARG

“John”

Everybody wants to meet John .
want meet John

Figure 1: Semantic representation of the sentence
“Everybody wants to meet John.” The graph is
based on the Elementary Dependency Structure
(EDS) representation of Minimal Recursion Se-
mantics (MRS). The alignments are given together
with the corresponding tokens, and lemmas of sur-
face predicates and constants.

2 Meaning Representations

We define a common framework for semantic
graphs in which we can place both MRS-
based graph representations (DMRS and EDS)
and AMR. Sentence meaning is represented
with rooted, labelled, connected, directed
graphs (Kuhlmann and Oepen, 2016). An
example graph is visualized in Figure 1. represen-
tations. Node labels are referred to as predicates
(concepts in AMR) and edge labels as arguments
(AMR relations). In addition constants, a special
type of node modifiers, are used to denote the
string values of named entities and numbers
(including date and time expressions). Every
node is aligned to a token or a continuous span of
tokens in the sentence the graph corresponds to.
Minimal Recursion Semantics (MRS) is a
framework for computational semantics that can
be used for parsing or generation (Copestake et al.,
2005). Instances and eventualities are represented
with logical variables. Predicates take arguments
with labels from a small, fixed set of roles. Ar-
guments are either logical variables or handles,
designated formalism-internal variables. Handle
equality constraints support scope underspecifi-
cation; multiple scope-resolved logical represen-
tations can be derived from one MRS structure.
A predicate corresponds to its intrinsic argument
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and is aligned to a character span of the (unto-
kenized) input sentence. Predicates representing
named entities or numbers are parameterized by
strings. Quantification is expressed through pred-
icates that bound instance variables, rather than
through logical operators such as 3 or V. MRS was
designed to be integrated with feature-based gram-
mars such as Head-driven Phrase Structure Gram-
mar (HPSG) (Pollard and Sag, 1994) or Lexical
Functional Grammar (LFG) (Kaplan and Bresnan,
1982). MRS has been implement the English
Resource Grammar (ERG) (Flickinger, 2000), a
broad-coverage high-precision HPSG grammar.

Oepen and Lgnning (2006) proposed Elemen-
tary Dependency Structure (EDS), a conversion of
MRS to variable-free dependency graphs which
drops scope underspecification. Copestake (2009)
extended this conversion to avoid information loss,
primarily through richer edge labels. The result-
ing representation, Dependency MRS (DMRS),
can be converted back to the original MRS, or
used directly in MRS-based applications (Copes-
take et al., 2016). We are interested in the em-
pirical performance of parsers for both of these
representations: while EDS is more interpretable
as an independent semantic graph representation,
DMRS can be related back to underspecified log-
ical forms. A bilexical simplification of EDS
has previously been used for semantic dependency
parsing (Oepen et al., 2014, 2015). Figure 1 illus-
trates an EDS graph.

MRS makes an explicit distinction between sur-
face and abstract predicates (by convention surface
predicates are prefixed by an underscore). Surface
predicates consist of a lemma followed by a coarse
part-of-speech tag and an optional sense label.
Predicates absent from the ERG lexicon are rep-
resented by their surface forms and POS tags. We
convert the character-level predicate spans given
by MRS to token-level spans for parsing purposes,
but the representation does not require gold tok-
enization. Surface predicates usually align with
the span of the token(s) they represent, while ab-
stract predicates can span longer segments. In full
MRS every predicate is annotated with a set of
morphosyntactic features, encoding for example
tense, aspect and number information; we do not
currently model these features.

AMR (Banarescu et al., 2013) graphs can be
represented in the same framework, despite a num-
ber of linguistic differences with MRS. Some in-

troot ( <2> _v_1
:ARG1 ( <1> person
:BV-of ( <1> every_qgq ) )
:ARG2 <4> _v_1
:ARGlx ( <1> person
:ARG2 ( <5> named_CARG
:BV-0of ( <5> proper_qgq ) ) )

Figure 2: A top-down linearization of the EDS
graph in Figure 1, using unlexicalized predicates.

formation annotated explicitly in MRS is latent
in AMR, including alignments and the distinction
between surface (lexical) and abstract concepts.
AMR predicates are based on PropBank (Palmer
et al., 2005), annotated as lemmas plus sense la-
bels, but they form only a subset of concepts.
Other concepts are either English words or spe-
cial keywords, corresponding to overt lexemes in
some cases but not others.

3 Incremental Graph Parsing

We parse sentences to their meaning repre-
sentations by incrementally predicting semantic
graphs together with their alignments. Let e =
e1,e2,...,er be a tokenized English sentence,
t =t1,19,...,t s asequential representation of its
graph derivation and a = a1, as, ..., ay an align-
ment sequence consisting of integers in the range
1,...,1. We model the conditional distribution
p(t, ale) which decomposes as

J
H p(ajl(a, t)l;j—la e)p(tjlaij, tij-1,e).
j=1

We also predict the end-of-span alignments as a
seperate sequence a(®).

3.1 Top-down linearization

We now consider how to linearize the semantic
graphs, before defining the neural models to pa-
rameterize the parser in section 4. The first ap-
proach is to linearize a graph as the pre-order
traversal of its spanning tree, starting at a desig-
nated root node (see Figure 2). Variants of this ap-
proach have been proposed for neural constituency
parsing (Vinyals et al., 2015b), logical form pre-
diction (Dong and Lapata, 2016; Jia and Liang,
2016) and AMR parsing (Barzdins and Gosko,
2016; Peng et al., 2017).

In the linearization, labels of edges whose direc-
tion are reversed in the spanning tree are marked
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by adding —of. Edges not included in the span-
ning tree, referred to as reentrancies, are rep-
resented with special edges whose dependents
are dummy nodes pointing back to the original
nodes. Our potentially lossy representation repre-
sents these edges by repeating the dependent node
labels and alignments, which are recovered heuris-
tically. The alignment does not influence the lin-
earized node ordering.

3.2 Transition-based parsing

Figure 1 shows that the semantic graphs we
work with can also be interpreted as dependency
graphs, as nodes are aligned to sentence tokens.
Transition-based parsing (Nivre, 2008) has been
used extensively to predict dependency graphs in-
crementally. We apply a variant of the arc-eager
transition system that has been proposed for graph
(as opposed to tree) parsing (Sagae and Tsujii,
2008; Titov et al., 2009; Gémez-Rodriguez and
Nivre, 2010) to derive a transition-based parser for
deep semantic graphs. In dependency parsing the
sentence tokens also act as nodes in the graph, but
here we need to generate the nodes incrementally
as the transition-system proceeds, conditioning the
generation on the given sentence. Damonte et al.
(2017) proposed an arc-eager AMR parser, but
their transition system is more narrowly restricted
to AMR graphs.

The transition system consists of a stack of
graph nodes being processed and a buffer, holding
a single node at a time. The main transition ac-
tions are shift, reduce, left-arc, right-arc. Figure 3
shows an example transition sequence together
with the stack and buffer after each step. The shift
transition moves the element on the buffer to the
top of the stack, and generates a predicate and its
alignment as the next node on the buffer. Left-arc
and right-arc actions add labeled arcs between the
buffer and stack top (for DMRS a transition for
undirected arcs is included), but do not change the
state of the stack or buffer. Finally, reduce pops the
top element from the stack, and predicts its end-of-
span alignment (if included in the representation).
To predict non-planar arcs, we add another transi-
tion, which we call cross-arc, which first predicts
the stack index of a node which is not on top of
the stack, adding an arc between the head of the
buffer and that node. Another special transition
designates the buffer node as the root.

To derive an oracle for this transition system,

it is necessary to determine the order in which the
nodes are generated. We consider two approaches.
The first ordering is obtained by performing an
in-order traversal of the spanning tree, where the
node order is determined by the alignment. In the
resulting linearization the only non-planar arcs are
reentrancies. The second approach lets the order-
ing be monotone (non-decreasing) with respect to
the alignments, while respecting the in-order or-
dering for nodes with the same alignment. In an
arc-eager oracle arcs are added greedily, while a
reduce action can either be performed as soon as
the stack top node has been connected to all its de-
pendents, or delayed until it has to reduce to allow
the correct parse tree to be formed. In our model
the oracle delays reduce, where possible, until the
end alignment of the stack top node spans the node
on the buffer. As the span end alignments often
cover phrases that they head (e.g. for quantifiers)
this gives a natural interpretation to predicting the
span end together with the reduce action.

3.3 Delexicalization and lemma prediction

Each token in MRS annotations is aligned to at
most one surface predicate. We decompose sur-
face predicate prediction by predicting candidate
lemmas for input tokens, and delexicalized predi-
cates consisting only of sense labels. The full sur-
face predicates are then recovered through the pre-
dicted alignments.

We extract a dictionary mapping words to lem-
mas from the ERG lexicon. Candidate lemmas
are predicted using this dictionary, and where no
dictionary entry is available with a lemmatizer.
The same approach is applied to predict constants,
along with additional normalizations such as map-
ping numbers to digit strings.

We use the Stanford CoreNLP toolkit (Manning
et al., 2014) to tokenize and lemmatize sentences,
and tag tokens with the Stanford Named Entity
Recognizer (Finkel et al., 2005). The tokenization
is customized to correspond closely to the ERG
tokenization; hyphens are removed pre-processing
step. For AMR we use automatic alignments and
the graph topology to classify concepts as surface
or abstract (Buys and Blunsom, 2017). The lexi-
con is restricted to Propbank (Palmer et al., 2005)
predicates; for other concepts we extract a lexicon
from the training data.
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Action Stack Buffer Arc added
init(1, person) | [ ] (1, 1, person) -

sh(1, every_q) | [(1, 1, person)] (2, 1, every_q) -
la(BV) [(1, 1, person)] (2, 1, every_q) 2,BV, 1)
sh(2, v_1) [(1, 1, person), (2, 1, every_q)] | (2,1, -v_1) -

re [(1, 1, person)] 3,2,_v.1) -
lIa(ARG1) [(1, 1, person)] 3,2,_v.1) (3, ARG1, 1)

Figure 3: Start of the transition sequence for parsing the graph in Figure 1. The transitions are shift
(sh), reduce (re), left arc (1a) and right arc (ra). The action taken at each step is given, along with the
state of the stack and buffer after the action is applied, and any arcs added. Shift transitions generate the
alignments and predicates of the nodes placed on the buffer. Items on the stack and buffer have the form
(node index, alignment, predicate label), and arcs are of the form (head index, argument label, dependent

index).

4 Encoder-Decoder Models

4.1 Sentence encoder

The sentence e is encoded with a bidirectional
RNN. We use a standard LSTM architecture
without peephole connections (Jozefowicz et al.,
2015). For every token e we embed its word, POS
tag and named entity (NE) tag as vectors x,,, T¢
and x,,, respectively.

The embeddings are concatenated and passed
through a linear transformation

gle) = W [Tws 24 2] + b7,

such that g(e) has the same dimension as the
LSTM. Each input position ¢ is represented by a
hidden state h;, which is the concatenation of its
forward and backward LSTM state vectors.

4.2 Hard attention decoder

We model the alignment of graph nodes to sen-
tence tokens, a, as a random variable. For the arc-
eager model, a; corresponds to the alignment of
the node of the buffer after action ¢; is executed.
The distribution of ¢; is over all transitions and
predicates (corresponding to shift transitions), pre-
dicted with a single softmax.

The parser output is predicted by an RNN de-
coder. Let s; be the decoder hidden state at output
position 7. We initialize sg with the final state of
the backward encoder. The alignment is predicted
with a pointer network (Vinyals et al., 2015a).

The logits are computed with an MLP scoring
the decoder hidden state against each of the en-
coder hidden states (for: =1,...,1),

u; = w” tanh(WMh; + W(Q)sj).

The alignment distribution is then estimated by
plaj = ilai;j—1,t1,5-1,€) = softmax(u}).
To predict the next transition ¢;, the output vec-
tor is conditioned on the encoder state vector hyg;,
corresponding to the alignment:

0j = W(?’)sj + W(4)haj
’Uj = R(d)O] + b(d),

where R(® and b(9) are the output representation
matrix and bias vector, respectively.
The transition distribution is then given by

p(tjlaij, t1;j—1,€) = softmax(v;).

Let e(t) be the embedding of decoder symbol ¢.
The RNN state at the next time-step is computed
as

djr1 = We(t;) + WOh,,
sj+1 = RNN(dj11,55).

The end-of-span alignment age) for MRS-based
graphs is predicted with another pointer network.
The end alignment of a token is predicted only
when a node is reduced from the stack, therefore
this alignment is not observed at each time-step; it
is also not fed back into the model.

The hard attention approach, based on super-
vised alignments, can be contrasted to soft atten-
tion, which learns to attend over the input without
supervision. The attention is computed as with
hard attention, as aé = softmax(ué.). However
instead of making a hard selection, a weighted
average over the encoder vectors is computed as
qj = Ei{ oz} h;. This vector is used instead of
hq; for prediction and feeding to the next time-
step.
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4.3 Stack-based model

We extend the hard attention model to include fea-
tures based on the transition system stack. These
features are embeddings from the bidirectional
RNN encoder, corresponding to the alignments of
the nodes on the buffer and on top of the stack.
This approach is similar to the features proposed
by Kiperwasser and Goldberg (2016) and Cross
and Huang (2016a) for dependency parsing, al-
though they do not use RNN decoders.

To implement these features the layer that com-
putes the output vector is extended to

0j = W®s; + WWhg, + WDhg,,

where sty is the sentence alignment index of the
element on top of the stack. The input layer to the
next RNN time-step is similarly extended to

djs1 = WOe(t;) + WO hpye + WS h,,

where buf is the buffer alignment after ¢; is exe-
cuted.

Our implementation of the stack-based model
enables batch processing in static computation
graphs, similar to Bowman et al. (2016). We main-
tain a stack of alignment indexes for each element
in the batch, which is updated inside the computa-
tion graph after each parsing action. This enables
minibatch SGD during training as well as efficient
batch decoding.

We perform greedy decoding. For the stack-
based model we ensure that if the stack is empty,
the next transition predicted has to be shift. For
the other models we ensure that the output is well-
formed during post-processing by robustly skip-
ping over out-of-place symbols or inserting miss-
ing ones.

5 Related Work

Prior work for MRS parsing predominantly pre-
dicts structures in the context of grammar-based
parsing, where sentences are parsed to HPSG
derivations consistent with the grammar, in this
case the ERG (Flickinger, 2000). The nodes in the
derivation trees are feature structures, from which
MRS is extracted through unification. This ap-
proach fails to parse sentences for which no valid
derivation is found. Maximum entropy models are
used to score the derivations in order to find the
most likely parse (Toutanova et al., 2005). This

approach is implemented in the PET (Callmeier,
2000) and ACE! parsers.

There have also been some efforts to develop
robust MRS parsers. One proposed approach
learns a PCFG grammar to approximate the HPSG
derivations (Zhang and Krieger, 2011; Zhang
et al.,, 2014). MRS is then extracted with ro-
bust unification to compose potentially incompati-
ble feature structures, although that still fails for
a small proportion of sentences. The model is
trained on a large corpus of Wikipedia text parsed
with the grammar-based parser. Ytrestgl (2012)
proposed a transition-based approach to HPSG
parsing that produces derivations from which both
syntactic and semantic (MRS) parses can be ex-
tracted. The parser has an option not to be re-
stricted by the ERG. However, neither of these ap-
proaches have results available that can be com-
pared directly to our setup, or generally available
implementations.

Although AMR parsers produce graphs that are
similar in structure to MRS-based graphs, most of
them make assumptions that are invalid for MRS,
and rely on extensive external AMR-specific re-
sources. Flanigan et al. (2014) proposed a two-
stage parser that first predicts concepts or sub-
graphs corresponding to sentence segments, and
then parses these concepts into a graph structure.
However MRS has a large proportion of abstract
nodes that cannot be predicted from short seg-
ments, and interact closely with the graph struc-
ture. Wang et al. (2015b,a) proposed a custom
transition-system for AMR parsing that converts
dependency trees to AMR graphs, relying on as-
sumptions on the relationship between these. Pust
et al. (2015) proposed a parser based on syntax-
based machine translation (MT), while AMR has
also been integrated into CCG Semantic Pars-
ing (Artzi et al., 2015; Misra and Artzi, 2016). Re-
cently Damonte et al. (2017) and Peng et al. (2017)
proposed AMR parsers based on neural networks.

6 Experiments

6.1 Data

DeepBank (Flickinger et al., 2012) is an HPSG
and MRS annotation of the Penn Treebank Wall
Street Journal (WSJ) corpus. It was developed fol-
lowing an approach known as dynamic treebank-
ing (Oepen et al., 2004) that couples treebank an-
notation with grammar development, in this case

"http://sweaglesw.org/linguistics/ace/
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of the ERG. This approach has been shown to lead
to high inter-annotator agreement: 0.94 against
0.71 for AMR (Bender et al., 2015). Parses are
only provided for sentences for which the ERG
has an analysis acceptable to the annotator — this
means that we cannot evaluate parsing accuracy
for sentences which the ERG cannot parse (ap-
proximately 15% of the original corpus).

We use Deepbank version 1.1, corresponding to
ERG 12142, following the suggested split of sec-
tions 0 to 19 as training data data, 20 for develop-
ment and 21 for testing. The gold-annotated train-
ing data consists of 35,315 sentences. We use the
LOGON environment® and the pyDelphin library*
to extract DMRS and EDS graphs.

For AMR parsing we use LDC2015E86, the
dataset released for the SemEval 2016 AMR pars-
ing Shared Task (May, 2016). This data includes
newswire, weblog and discussion forum text. The
training set has 16,144 sentences. We obtain align-
ments using the rule-based JAMR aligner (Flani-
gan et al., 2014).

6.2 Evaluation

Dridan and Oepen (2011) proposed an evaluation
metric called Elementary Dependency Matching
(EDM) for MRS-based graphs. EDM computes
the F1-score of tuples of predicates and arguments.
A predicate tuple consists of the label and charac-
ter span of a predicate, while an argument tuple
consists of the character spans of the head and de-
pendent nodes of the relation, together with the ar-
gument label. In order to tolerate subtle tokeniza-
tion differences with respect to punctuation, we al-
low span pairs whose ends differ by one character
to be matched.

The Smatch metric (Cai and Knight, 2013), pro-
posed for evaluating AMR graphs, also measures
graph overlap, but does not rely on sentence align-
ments to determine the correspondences between
graph nodes. Smatch is instead computed by per-
forming inference over graph alignments to esti-
mate the maximum Fl-score obtainable from a
one-to-one matching between the predicted and
gold graph nodes.

http://svn.delph-in.net/erg/tags/
1214/

*http://moin.delph-in.net/LogonTop

*https://github.com/delph-in/pydelphin

Model | EDM | EDMp | EDMy

TD lex 81.44 | 8520 | 76.87
TD unlex | 81.72 | 85.59 77.04
AE lex 81.35 | 85.79 | 76.02
AE unlex | 82.56 | 86.76 | 77.54
Table 1: DMRS development set results for

attention-based encoder-decoder models with
alignments encoded in the linearization, for top-
down (TD) and arc-eager (AE) linearizations, and
lexicalized and unlexicalized predicate prediction.

6.3 Model setup

Our parser is implemented in TensorFlow (Abadi

et al., 2015). For training we use Adam (Kingma
and Ba, 2015) with learning rate 0.01 and batch-
size 64. Gradients norms are clipped to 5.0 (Pas-
canu et al., 2013). We use single-layer LSTMs
with dropout of 0.3 (tuned on the development set)
on input and output connections. We use encoder
and decoder embeddings of size 256, and POS and
NE tag embeddings of size 32, For DMRS and
EDS graphs the hidden units size is set to 256, for
AMR it is 128. This configuration, found using
grid search and heuristic search within the range
of models that fit into a single GPU, gave the best
performance on the development set under mul-
tiple graph linearizations. Encoder word embed-
dings are initialized (in the first 100 dimensions)
with pre-trained order-sensitive embeddings (Ling
et al.,, 2015). Singletons in the encoder input
are replaced with an unknown word symbol with
probability 0.5 for each iteration.

6.4 MRS parsing results

We compare different linearizations and model ar-
chitectures for parsing DMRS on the development
data, showing that our approach is more accurate
than baseline neural approaches. We report EDM
scores, including scores for predicate (EDM p) and
argument (EDM 4) prediction.

First we report results using standard attention-
based encoder-decoders, with the alignments en-
coded as token strings in the linearization. (Ta-
ble 1). We compare the top-down (TD) and arc-
eager (AE) linearizations, as well as the effect of
delexicalizing the predicates (factorizing lemmas
out of the linearization and predicting them sepa-

SCode and data preparation scripts are avail-
able at https://github.com/janmbuys/
DeepDeepParser.
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Model | EDM | EDMp | EDMy

TD soft | 81.53 | 8532 | 76.94
TD hard | 82.75 | 86.37 | 78.37
AE hard | 84.65 | 87.77 | 80.85
AE stack | 85.28 | 88.38 | 81.51
Table 2: DMRS development set results of

encoder-decoder models with pointer-based align-
ment prediction, delexicalized predicates and hard
or soft attention.

rately.) In both cases constants are predicted with
a dictionary lookup based on the predicted spans.
A special label is predicted for predicates not in
the ERG lexicon — the words and POS tags that
make up those predicates are recovered through
the alignments during post-processing.

The arc-eager unlexicalized representation
gives the best performance, even though the
model has to learn to model the transition system
stack through the recurrent hidden states without
any supervision of the transition semantics. The
unlexicalized models are more accurate, mostly
due to their ability to generalize to sparse or
unseen predicates occurring in the lexicon. For
the arc-eager representation, the oracle EDM
is 99% for the lexicalized representation and
98.06% for the delexicalized representation. The
remaining errors are mostly due to discrepancies
between the tokenization used by our system and
the ERG tokenization. The unlexicalized models
are also faster to train, as the decoder’s output
vocabulary is much smaller, reducing the expense
of computing softmaxes over large vocabularies.

Next we consider models with delexicalized lin-
earizations that predict the alignments with pointer
networks, contrasting soft and hard attention mod-
els (Table 2). The results show that the arc-eager
models performs better than those based on top-
down representation. For the arc-eager model we
use hard attention, due to the natural interpreta-
tion of the alignment prediction corresponding to
the transition system. The stack-based architec-
ture gives further improvements.

When comparing the effect of different predi-
cate orderings for the arc-eager model, we find that
the monotone ordering performs 0.44 EDM better
than the in-order ordering, despite having to parse
more non-planar dependencies.

We also trained models that only predict pred-
icates (in monotone order) together with their

Model TD RNN | AERNN | ACE
EDM 79.68 84.16 89.64
EDMp 83.36 87.54 92.08
EDM 4 75.16 80.10 86.77
Start EDM 84.44 87.81 91.91
Start EDM 4 80.93 85.61 89.28
Smatch 85.28 86.69 93.50

Table 3: DMRS parsing test set results, compar-
ing the standard top-down attention-based and arc-
eager stack-based RNN models to the grammar-
based ACE parser.

start spans. The hard attention model obtains
91.36% F1 on predicates together with their start
spans with the unlexicalized model, compared to
88.22% for lexicalized predicates and 91.65% for
the full parsing model.

Table 3 reports test set results for various eval-
uation metrics. Start EDM is calculated by requir-
ing only the start of the alignment spans to match,
not the ends. We compare the performance of our
baseline and stack-based models against ACE, the
ERG-based parser.

Despite the promising performance of the
model a gap remains between the accuracy of our
parser and ACE. One reason for this is that the test
set sentences will arguably be easier for ACE to
parse as their choice was restricted by the same
grammar that ACE uses. EDM metrics exclud-
ing end-span prediction (Start EDM) show that
our parser has relatively more difficulty in pars-
ing end-span predictions than the grammar-based
parser.

We also evaluate the speed of our model com-
pared with ACE. For the unbatched version of
our model, the stack-based parser parses 41.63 to-
kens per second, while the batched implementa-
tion parses 529.42 tokens per second using a batch
size of 128. In comparison, the setting of ACE for
which we report accuracies parses 7.47 tokens per
second. By restricting the memory usage of ACE,
which restricts its coverage, we see that ACE can
parse 11.07 tokens per second at 87.7% coverage,
and 15.11 tokens per second at 77.8% coverage.

Finally we report results for parsing EDS (Ta-
ble 4). The EDS parsing task is slightly simpler
than DMRS, due to the absence of rich argument
labels and additional graph edges that allow the
recovery of full MRS. We see that for ACE the ac-
curacies are very similar, while for our model EDS
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Model | AERNN | ACE
EDM 85.48 89.58
EDMp 88.14 91.82
EDM 4 82.20 86.92
Smatch 86.50 93.52

Table 4: EDS parsing test set results.

Model Concept F1 | Smatch
TD no pointers 70.16 57.95
TD soft 71.25 59.39
TD soft unlex 72.62 59.88
AE hard unlex 76.83 59.83
AE stack unlex 77.93 61.21

Table 5: Development set results for AMR pars-
ing. All the models except the first predict align-
ments with pointer networks.

parsing is more accurate on the EDM metrics. We
hypothesize that most of the extra information in
DMRS can be obtained through the ERG, to which
ACE has access but our model doesn’t.

An EDS corpus which consists of about 95% of
the DeepBank data has also been released®, with
the goal of enabling comparison with other se-
mantic graph parsing formalisms, including CCG
dependencies and Prague Semantic Dependencies,
on the same data set (Kuhlmann and Oepen, 2016).
On this corpus our model obtains 85.87 EDM and
85.49 Smatch.

6.5 AMR parsing

We apply the same approach to AMR parsing. Re-
sults on the development set are given in Table 5.
The arc-eager-based models again give better per-
formance, mainly due to improved concept pre-
diction accuracy. However, concept prediction re-
mains the most important weakness of the model;
Damonte et al. (2017) reports that state-of-the-art
AMR parsers score 83% on concept prediction.
We report test set results in Table 6. Our
best neural model outperforms the baseline JAMR
parser (Flanigan et al., 2014), but still lags behind
the performance of state-of-the-art AMR parsers
such as CAMR (Wang et al., 2016) and AMR
Eager (Damonte et al., 2017). These models
make extensive use of external resources, includ-
ing syntactic parsers and semantic role labellers.
Our attention-based encoder-decoder model al-
ready outperforms previous sequence-to-sequence

*http://sdp.delph-in.net/osdp-12.tgz

Model Smatch
Flanigan et al. (2014) 56
Wang et al. (2016) 66.54
Damonte et al. (2017) 64
Peng and Gildea (2016) 55
Peng et al. (2017) 52
Barzdins and Gosko (2016) 433
TD no pointers 56.56
AE stack delex 60.11

Table 6: AMR parsing test set results (Smatch F1
scores). Published results follow the number of
decimals which were reported.

AMR parsers (Barzdins and Gosko, 2016; Peng
et al., 2017), and the arc-eager model boosts ac-
curacy further. Our model also outperforms a
Synchronous Hyperedge Replacement Grammar
model (Peng and Gildea, 2016) which is compa-
rable as it does not make extensive use of external
resources.

7 Conclusion

In this paper we advance the state of parsing by
employing deep learning techniques to parse sen-
tence to linguistically expressive semantic repre-
sentations that have not previously been parsed
in an end-to-end fashion. We presented a robust,
wide-coverage parser for MRS that is faster than
existing parsers and amenable to batch process-
ing. We believe that there are many future av-
enues to explore to further increase the accuracy
of such parsers, including different training ob-
jectives, more structured architectures and semi-
supervised learning.
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