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Abstract

Tasks like code generation and semantic
parsing require mapping unstructured (or
partially structured) inputs to well-formed,
executable outputs. We introduce ab-
stract syntax networks, a modeling frame-
work for these problems. The outputs
are represented as abstract syntax trees
(ASTs) and constructed by a decoder with
a dynamically-determined modular struc-
ture paralleling the structure of the output
tree. On the benchmark HEARTHSTONE
dataset for code generation, our model ob-
tains 79.2 BLEU and 22.7% exact match
accuracy, compared to previous state-of-
the-art values of 67.1 and 6.1%. Further-
more, we perform competitively on the
ATIS, JOBS, and GEO semantic parsing
datasets with no task-specific engineering.

1 Introduction

Tasks like semantic parsing and code generation
are challenging in part because they are struc-
tured (the output must be well-formed) but not
synchronous (the output structure diverges from
the input structure).

Sequence-to-sequence models have proven ef-
fective for both tasks (Dong and Lapata, 2016;
Ling et al., 2016), using encoder-decoder frame-
works to exploit the sequential structure on both
the input and output side. Yet these approaches
do not account for much richer structural con-
straints on outputs—including well-formedness,
well-typedness, and executability. The well-
formedness case is of particular interest, since it
can readily be enforced by representing outputs as
abstract syntax trees (ASTs) (Aho et al., 2006), an
approach that can be seen as a much lighter weight

*Equal contribution.

name: [

'p’, "i", ‘'x', te’, " 7,
W', 'o’, '1', 'f/, 7 7,
'Ar, 17, 'p’, 'h'", "a’]
cost: ['27]
type: ['Minion’]
rarity: [’/Common’]
race: [’'Beast’]
class: [’Neutral’
description: [
’Adjacent’, ’'minions’, ’have’,
"+7, '1', 'Attack’, ’.’]
health: ["2']
attack: [72']
durability: [’-1"]

class DireWolfAlpha (MinionCard) :
def __init__ (self):
super () .__init__ (
"Dire Wolf Alpha", 2, CHARACTER_CLASS.ALL,

CARD_RARITY.COMMON, minion_type=MINION_TYPE.BEAST)

def create_minion(self, player):
return Minion (2, 2, auras=|[

Aura (ChangeAttack (1), MinionSelector (Adjacent()))

1)

Figure 1: Example code for the “Dire Wolf Alpha”
Hearthstone card.

show me the fare from ci0O to cil

lambda $0 e
( exists $1 ( and ( from $1 ciO )
( to $1 cil )
(= ( fare $1 ) $0 ) )

Figure 2: Example of a query and its logical form
from the ATIS dataset. The ci0 and cil tokens
are entity abstractions introduced in preprocess-
ing (Dong and Lapata, 2016).

version of CCG-based semantic parsing (Zettle-
moyer and Collins, 2005).

In this work, we introduce abstract syntax
networks (ASNs), an extension of the standard
encoder-decoder framework utilizing a modular
decoder whose submodels are composed to na-
tively generate ASTs in a top-down manner. The
decoding process for any given input follows a dy-
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namically chosen mutual recursion between the
modules, where the structure of the tree being
produced mirrors the call graph of the recursion.
We implement this process using a decoder model
built of many submodels, each associated with a
specific construct in the AST grammar and in-
voked when that construct is needed in the out-
put tree. As is common with neural approaches to
structured prediction (Chen and Manning, 2014;
Vinyals et al., 2015), our decoder proceeds greed-
ily and accesses not only a fixed encoding but
also an attention-based representation of the in-
put (Bahdanau et al., 2014).

Our model significantly outperforms previous
architectures for code generation and obtains com-
petitive or state-of-the-art results on a suite of se-
mantic parsing benchmarks. On the HEARTH-
STONE dataset for code generation, we achieve a
token BLEU score of 79.2 and an exact match ac-
curacy of 22.7%, greatly improving over the pre-
vious best results of 67.1 BLEU and 6.1% exact
match (Ling et al., 2016).

The flexibility of ASNs makes them readily ap-
plicable to other tasks with minimal adaptation.
We illustrate this point with a suite of seman-
tic parsing experiments. On the JOBS dataset,
we improve on previous state-of-the-art, achiev-
ing 92.9% exact match accuracy as compared to
the previous record of 90.7%. Likewise, we per-
form competitively on the ATIS and GEO datasets,
matching or exceeding the exact match reported
by Dong and Lapata (2016), though not quite
reaching the records held by the best previous se-
mantic parsing approaches (Wang et al., 2014).

1.1 Related work

Encoder-decoder architectures, with and without
attention, have been applied successfully both to
sequence prediction tasks like machine translation
and to tree prediction tasks like constituency pars-
ing (Cross and Huang, 2016; Dyer et al., 2016;
Vinyals et al., 2015). In the latter case, work has
focused on making the task look like sequence-to-
sequence prediction, either by flattening the output
tree (Vinyals et al., 2015) or by representing it as
a sequence of construction decisions (Cross and
Huang, 2016; Dyer et al., 2016). Our work dif-
fers from both in its use of a recursive top-down
generation procedure.

Dong and Lapata (2016) introduced a sequence-
to-sequence approach to semantic parsing, includ-

ing a limited form of top-down recursion, but
without the modularity or tight coupling between
output grammar and model characteristic of our
approach.

Neural (and probabilistic) modeling of code, in-
cluding for prediction problems, has a longer his-
tory. Allamanis et al. (2015) and Maddison and
Tarlow (2014) proposed modeling code with a
neural language model, generating concrete syn-
tax trees in left-first depth-first order, focusing on
metrics like perplexity and applications like code
snippet retrieval. More recently, Shin et al. (2017)
attacked the same problem using a grammar-based
variational autoencoder with top-down generation
similar to ours instead. Meanwhile, a separate line
of work has focused on the problem of program
induction from input-output pairs (Balog et al.,
2016; Liang et al., 2010; Menon et al., 2013).

The prediction framework most similar in spirit
to ours is the doubly-recurrent decoder network in-
troduced by Alvarez-Melis and Jaakkola (2017),
which propagates information down the tree using
a vertical LSTM and between siblings using a hor-
izontal LSTM. Our model differs from theirs in
using a separate module for each grammar con-
struct and learning separate vertical updates for
siblings when the AST labels require all siblings
to be jointly present; we do, however, use a hori-
zontal LSTM for nodes with variable numbers of
children. The differences between our models re-
flect not only design decisions, but also differences
in data—since ASTs have labeled nodes and la-
beled edges, they come with additional structure
that our model exploits.

Apart from ours, the best results on the code-
generation task associated with the HEARTH-
STONE dataset are based on a sequence-to-
sequence approach to the problem (Ling et al.,
2016). Abstract syntax networks greatly improve
on those results.

Previously, Andreas et al. (2016) introduced
neural module networks (NMNs) for visual ques-
tion answering, with modules corresponding to
linguistic substructures within the input query.
The primary purpose of the modules in NMNss is
to compute deep features of images in the style of
convolutional neural networks (CNN). These fea-
tures are then fed into a final decision layer. In
contrast to the modules we describe here, NMN
modules do not make decisions about what to gen-
erate or which modules to call next, nor do they
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ClassDef

name

“DireWolfAlpha”

body

FunctionDef

[ identifier ] [ identifier ]

FunctionDef

“create_minion”

“MinionCard” “__init_ "

(a) The root portion of the AST.

[ identifier ] [ Call
func

“Aura” args

[ identifier ] [ Num ] [ identifier ] [ Call ]
“ChangeAttack” “MinionSelector” func args
1

“Adjacent”

(b) Excerpt from the same AST, corresponding to the code snip-
pet Aura (ChangeAttack (1) ,MinionSelector (Adjacent ())).

Figure 3: Fragments from the abstract syntax tree corresponding to the example code in Figure 1. Blue
boxes represent composite nodes, which expand via a constructor with a prescribed set of named children.
Orange boxes represent primitive nodes, with their corresponding values written underneath. Solid black
squares correspond to constructor fields with sequential cardinality, such as the body of a class
definition (Figure 3a) or the arguments of a function call (Figure 3b).

maintain recurrent state.

2 Data Representation

2.1 Abstract Syntax Trees

Our model makes use of the Abstract Syntax
Description Language (ASDL) framework (Wang
et al., 1997), which represents code fragments as
trees with typed nodes. Primitive types correspond
to atomic values, like integers or identifiers. Ac-
cordingly, primitive nodes are annotated with a
primitive type and a value of that type—for in-
stance, in Figure 3a, the identifier node stor-
ing "create_minion" represents a function of
the same name.

Composite types correspond to language con-
structs, like expressions or statements. Each type
has a collection of constructors, each of which
specifies the particular language construct a node
of that type represents. Figure 4 shows con-
structors for the statement (stmt) and expression
(expr) types. The associated language constructs
include function and class definitions, return state-
ments, binary operations, and function calls.

Composite types enter syntax trees via compos-
ite nodes, annotated with a composite type and a
choice of constructor specifying how the node ex-
pands. The root node in Figure 3a, for example, is

'The full grammar can be found online on the
documentation page for the Python ast module:
https://docs.python.org/3/library/ast.
html#abstract-grammar

primitive types: identifier, object,
stmt
= FunctionDef (
identifier name, argx args, stmtx body)
| ClassDef (

identifier name, exprx* bases,
| Return (expr? value)

expr
BinOp (expr left,
Call (expr func,

= operator op,
|

| Str(string s)

|

|

exprx args)

expr right)

Name (identifier id, expr_context ctx)

Figure 4: A simplified fragment of the Python
ASDL grammar.'

a composite node of type stmt that represents a
class definition and therefore uses the ClassDef
constructor. In Figure 3b, on the other hand, the
root uses the Call constructor because it repre-
sents a function call.

Children are specified by named and typed
fields of the constructor, which have cardinalities
of singular, optional, or sequential.
By default, fields have singular cardinality,
meaning they correspond to exactly one child.
For instance, the ClassDef constructor has a
singular name field of type identifier.
Fields of optional cardinality are associ-
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ated with zero or one children, while fields
of sequential cardinality are associated with
zero or more children—these are designated us-
ing ? and * suffixes in the grammar, respectively.
Fields of sequential cardinality are often used
to represent statement blocks, as in the body field
of the ClassDef and FunctionDef construc-
tors.

The grammars needed for semantic parsing can
easily be given ASDL specifications as well, us-
ing primitive types to represent variables, predi-
cates, and atoms and composite types for standard
logical building blocks like lambdas and counting
(among others). Figure 2 shows what the resulting
A-calculus trees look like. The ASDL grammars
for both A-calculus and Prolog-style logical forms
are quite compact, as Figures 9 and 10 in the ap-
pendix show.

2.2 Input Representation

We represent inputs as collections of named com-
ponents, each of which consists of a sequence of
tokens. In the case of semantic parsing, inputs
have a single component containing the query sen-
tence. In the case of HEARTHSTONE, the card’s
name and description are represented as sequences
of characters and tokens, respectively, while cate-
gorical attributes are represented as single-token
sequences. For HEARTHSTONE, we restrict our
input and output vocabularies to values that occur
more than once in the training set.

3 Model Architecture

Our model uses an encoder-decoder architecture
with hierarchical attention. The key idea behind
our approach is to structure the decoder as a col-
lection of mutually recursive modules. The mod-
ules correspond to elements of the AST gram-
mar and are composed together in a manner that
mirrors the structure of the tree being generated.
A vertical LSTM state is passed from module to
module to propagate information during the de-
coding process.

The encoder uses bidirectional LSTMs to em-
bed each component and a feedforward network
to combine them. Component- and token-level at-
tention is applied over the input at each step of the
decoding process.

We train our model using negative log likeli-
hood as the loss function. The likelihood encom-
passes terms for all generation decisions made by

the decoder.

3.1 Encoder

Each component c of the input is encoded using a
component-specific bidirectional LSTM. This re-
sults in forward and backward token encodings
(}T’é, lr<1_c) that are later used by the attention mech-
anism. To obtain an encoding of the input as a
whole for decoder initialization, we concatenate
the final forward and backward encodings of each
component into a single vector and apply a linear
projection.

3.2 Decoder Modules

The decoder decomposes into several classes of
modules, one per construct in the grammar, which
we discuss in turn. Throughout, we let v de-
note the current vertical LSTM state, and use f
to represent a generic feedforward neural network.
LSTM updates with hidden state h and input x are
notated as LSTM (h, x).

Composite type modules Each composite type
T has a corresponding module whose role is to se-
lect among the constructors C for that type. As
Figure 5a exhibits, a composite type module re-
ceives a vertical LSTM state v as input and ap-
plies a feedforward network fr and a softmax out-
put layer to choose a constructor:

p(C|T,v) = [softmax (f (v))]C

Control is then passed to the module associated
with constructor C.

Constructor modules Each constructor C has a
corresponding module whose role is to compute
an intermediate vertical LSTM state v, ¢ for each
of its fields F whenever C is chosen at a composite
node u.

For each field F of the constructor, an embed-
ding er is concatenated with an attention-based
context vector ¢ and fed through a feedforward
neural network f; to obtain a context-dependent
field embedding:

ér = fc(er, C).

An intermediate vertical state for the field F at
composite node v is then computed as

Vufr = LSTM"® (Vu, éF) .

Figure 5b illustrates the process, starting with a
single vertical LSTM state and ending with one
updated state per field.
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@ ClassDef

stmt O If
@ ror
@ while If
@ Assign
@ Return

(a) A composite type module choosing a constructor for
the corresponding type.

stmt*

O stmt

e

(c) A constructor field module (sequential cardinal-
ity) generating children to populate the field. At each
step, the module decides whether to generate a child and
continue (white circle) or stop (black circle).

stmt*

CIR Sy
body
L orelse |-|
(b) A constructor module computing updated vertical
LSTM states.
identifier ® init
@ create _minion
@ add_buff
@ change attack
@ damage
@ ...

(d) A primitive type module choosing a value from a
closed list.

Figure 5: The module classes constituting our decoder. For brevity, we omit the cardinality modules for

singular and optional cardinalities.

Constructor field modules Each field F of a
constructor has a corresponding module whose
role is to determine the number of children asso-
ciated with that field and to propagate an updated
vertical LSTM state to them. In the case of fields
with singular cardinality, the decision and up-
date are both vacuous, as exactly one child is al-
ways generated. Hence these modules forward the
field vertical LSTM state v, r unchanged to the
child w corresponding to F:

Vw = Vuy,F- (1)

Fields with opt 1onal cardinality can have either
zero or one children; this choice is made using a
feedforward network applied to the vertical LSTM
state:

p(zr = 1| vyr) = sigmoid (fE" (vur)) . (2)

If a child is to be generated, then as in (1), the state
is propagated forward without modification.

In the case of sequential fields, a horizon-
tal LSTM is employed for both child decisions and
state updates. We refer to Figure Sc for an illus-
tration of the recurrent process. After being ini-
tialized with a transformation of the vertical state,
sr,0 = WrgVyr, the horizontal LSTM iteratively

decides whether to generate another child by ap-
plying a modified form of (2):

P(ZF,z‘ =1 \ SF,i—1, Vu,F) =

sigmoid (f£" (sp,i—1, Vur))-

If zr; = 0, generation stops and the process ter-
minates, as represented by the solid black circle
in Figure 5c. Otherwise, the process continues as
represented by the white circle in Figure 5c. In
that case, the horizontal state s, ;1 is combined
with the vertical state v, r and an attention-based
context vector cg; using a feedforward network

update 1 obtain a joint context-dependent encod-
ing of the field F and the position ¢:

update

€r; = JF (Vu,Fa Su,i—15 CF,Z’)~

The result is used to perform a vertical LSTM up-
date for the corresponding child w;:

Vu; = LSTMY (v, F, €F;).

Finally, the horizontal LSTM state is updated us-
ing the same field-position encoding, and the pro-
cess continues:

Suﬂ' = LSTMh(Su’Z’,h épﬂ').
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Primitive type modules Each primitive type T
has a corresponding module whose role is to se-
lect among the values y within the domain of that
type. Figure 5d presents an example of the sim-
plest form of this selection process, where the
value y is obtained from a closed list via a soft-
max layer applied to an incoming vertical LSTM
state:
p(y|T,v) = [softmax (fr (V))]y
Some string-valued types are open class, how-
ever. To deal with these, we allow generation both
from a closed list of previously seen values, as in
Figure 5d, and synthesis of new values. Synthesis
is delegated to a character-level LSTM language
model (Bengio et al., 2003), and part of the role
of the primitive module for open class types is to
choose whether to synthesize a new value or not.
During training, we allow the model to use the
character LSTM only for unknown strings but in-
clude the log probability of that binary decision in
the loss in order to ensure the model learns when
to generate from the character LSTM.

3.3 Decoding Process

The decoding process proceeds through mutual re-
cursion between the constituting modules, where
the syntactic structure of the output tree mirrors
the call graph of the generation procedure. At
each step, the active decoder module either makes
a generation decision, propagates state down the
tree, or both.

To construct a composite node of a given type,
the decoder calls the appropriate composite type
module to obtain a constructor and its associated
module. That module is then invoked to obtain
updated vertical LSTM states for each of the con-
structor’s fields, and the corresponding constructor
field modules are invoked to advance the process
to those children.

This process continues downward, stopping at
each primitive node, where a value is generated
but no further recursion is carried out.

3.4 Attention

Following standard practice for sequence-to-
sequence models, we compute a raw bilinear at-
tention score ¢;*" for each token ¢ in the input us-
ing the decoder’s current state x and the token’s
encoding e;:

¢ = e/ Wx.

The current state x can be either the vertical
LSTM state in isolation or a concatentation of the
vertical LSTM state and either a horizontal LSTM
state or a character LSTM state (for string gener-
ation). Each submodule that computes attention
does so using a separate matrix W.

A separate attention score g. * is computed
for each component of the input, independent of
its content:

P

comp __
. =

wlx.
The final token-level attention scores are the
sums of the raw token-level scores and the corre-

sponding component-level scores:

@ =a™ + 4"
where ¢(t) denotes the component in which token
t occurs. The attention weight vector a is then
computed using a softmax:

a = softmax (q) .

Given the weights, the attention-based context is
given by:
C = Z at€et.
t

Certain decision points that require attention
have been highlighted in the description above;
however, in our final implementation we made
attention available to the decoder at all decision
points.

Supervised Attention In the datasets we con-
sider, partial or total copying of input tokens into
primitive nodes is quite common. Rather than pro-
viding an explicit copying mechanism (Ling et al.,
2016), we instead generate alignments where pos-
sible to define a set of tokens on which the atten-
tion at a given primitive node should be concen-
trated.2 If no matches are found, the correspond-
ing set of tokens is taken to be the whole input.

The attention supervision enters the loss
through a term that encourages the final attention
weights to be concentrated on the specified sub-
set. Formally, if the matched subset of component-
token pairs is S, the loss term associated with the
supervision would be

log > ~exp(a;) —log» exp(ar), (3)
t

tes

2Alignments are generated using an exact string match
heuristic that also included some limited normalization, pri-
marily splitting of special characters, undoing camel case,
and lemmatization for the semantic parsing datasets.
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where a, is the attention weight associated with to-
ken ¢, and the sum in the first term ranges over all
tokens in the input. The loss in (3) can be inter-
preted as the negative log probability of attending
to some token in S.

4 Experimental evaluation

4.1 Semantic parsing

Data We use three semantic parsing datasets:
JoBS, GEO, and ATIS. All three consist of nat-
ural language queries paired with a logical repre-
sentation of their denotations. JOBS consists of
640 such pairs, with Prolog-style logical represen-
tations, while GEO and ATIS consist of 880 and
5,410 such pairs, respectively, with A-calculus log-
ical forms. We use the same training-test split
as Zettlemoyer and Collins (2005) for JOBS and
GEO, and the standard training-development-test
split for ATIS. We use the preprocessed versions
of these datasets made available by Dong and La-
pata (2016), where text in the input has been low-
ercased and stemmed using NLTK (Bird et al.,
2009), and matching entities appearing in the same
input-output pair have been replaced by numbered
abstract identifiers of the same type.

Evaluation We compute accuracies using tree
exact match for evaluation. Following the pub-
licly released code of Dong and Lapata (2016), we
canonicalize the order of the children within con-
junction and disjunction nodes to avoid spurious
errors, but otherwise perform no transformations
before comparison.

4.2 Code generation

Data We use the HEARTHSTONE dataset intro-
duced by Ling et al. (2016), which consists of
665 cards paired with their implementations in the
open-source Hearthbreaker engine.? Our training-
development-test split is identical to that of Ling
et al. (2016), with split sizes of 533, 66, and 66,
respectively.

Cards contain two kinds of components: tex-
tual components that contain the card’s name and
a description of its function, and categorical ones
that contain numerical attributes (attack, health,
cost, and durability) or enumerated attributes (rar-
ity, type, race, and class). The name of the card
is represented as a sequence of characters, while

*Available online at https://github.com/
danielyule/hearthbreaker.

its description consists of a sequence of tokens
split on whitespace and punctuation. All categori-
cal components are represented as single-token se-
quences.

Evaluation For direct comparison to the results
of Ling et al. (2016), we evaluate our predicted
code based on exact match and token-level BLEU
relative to the reference implementations from the
library. We additionally compute node-based pre-
cision, recall, and F1 scores for our predicted trees
compared to the reference code ASTs. Formally,
these scores are obtained by defining the intersec-
tion of the predicted and gold trees as their largest
common tree prefix.

4.3 Settings

For each experiment, all feedforward and LSTM
hidden dimensions are set to the same value. We
select the dimension from {30, 40, 50, 60, 70}
for the smaller JOBS and GEO datasets, or from
{50, 75, 100, 125, 150} for the larger ATIS
and HEARTHSTONE datasets. The dimensionality
used for the inputs to the encoder is set to 100 in
all cases. We apply dropout to the non-recurrent
connections of the vertical and horizontal LSTMs,
selecting the noise ratio from {0.2, 0.3, 0.4, 0.5}.
All parameters are randomly initialized using Glo-
rot initialization (Glorot and Bengio, 2010).

We perform 200 passes over the data for the
JoBS and GEO experiments, or 400 passes for
the ATIS and HEARTHSTONE experiments. Early
stopping based on exact match is used for the se-
mantic parsing experiments, where performance is
evaluated on the training set for JOBS and GEO
or on the development set for ATIS. Parameters
for the HEARTHSTONE experiments are selected
based on development BLEU scores. In order to
promote generalization, ties are broken in all cases
with a preference toward higher dropout ratios and
lower dimensionalities, in that order.

Our system is implemented in Python using
the DyNet neural network library (Neubig et al.,
2017). We use the Adam optimizer (Kingma and
Ba, 2014) with its default settings for optimiza-
tion, with a batch size of 20 for the semantic pars-
ing experiments, or a batch size of 10 for the
HEARTHSTONE experiments.

4.4 Results

Our results on the semantic parsing datasets are
presented in Table 1. Our basic system achieves
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ATIS GEO JoBs

System Accuracy | System Accuracy | System Accuracy
ZH15 84.2 ZH15 88.9 ZH15 85.0
ZC07 84.6 KCAZ13 89.0 PEKO03 88.0
WKZ14 91.3 WKZ14 90.4 LJK13 90.7
DL16 84.6 DL16 87.1 DL16 90.0
ASN 85.3 ASN 85.7 ASN 914

+ SUPATT 85.9 + SUPATT 87.1 + SUPATT 92.9

Table 1: Accuracies for the semantic parsing tasks. ASN denotes our abstract syntax network framework.
SUPATT refers to the supervised attention mentioned in Section 3.4.

System Accuracy BLEU Fl1
NEAREST 3.0 65.0 65.7
LPN 6.1 67.1 -
ASN 18.2 776 724
+ SUPATT 22,7 79.2 75.6

Table 2: Results for the HEARTHSTONE task. SU-
PATT refers to the system with supervised atten-
tion mentioned in Section 3.4. LPN refers to the
system of Ling et al. (2016). Our nearest neigh-
bor baseline NEAREST follows that of Ling et al.
(2016), though it performs somewhat better; its
nonzero exact match number stems from spurious
repetition in the data.

a new state-of-the-art accuracy of 91.4% on the
JOBS dataset, and this number improves to 92.9%
when supervised attention is added. On the ATIS
and GEO datasets, we respectively exceed and
match the results of Dong and Lapata (2016).
However, these fall short of the previous best re-
sults of 91.3% and 90.4%, respectively, obtained
by Wang et al. (2014). This difference may be par-
tially attributable to the use of typing information
or rich lexicons in most previous semantic pars-
ing approaches (Zettlemoyer and Collins, 2007;
Kwiatkowski et al., 2013; Wang et al., 2014; Zhao
and Huang, 2015).

On the HEARTHSTONE dataset, we improve
significantly over the initial results of Ling et al.
(2016) across all evaluation metrics, as shown in
Table 2. On the more stringent exact match metric,
we improve from 6.1% to 18.2%, and on token-
level BLEU, we improve from 67.1 to 77.6. When
supervised attention is added, we obtain an ad-
ditional increase of several points on each scale,
achieving peak results of 22.7% accuracy and 79.2
BLEU.

def _ _init__ (self):
super () .__init__ (
’Ironbark Protector’, 8,
CHARACTER_CLASS.DRUID,
CARD_RARITY.COMMON)
def create_minion(self,
return Minion (
8, 8, taunt=True)

player):

Figure 6: Cards with minimal descriptions exhibit
a uniform structure that our system almost always
predicts correctly, as in this instance.

class ManaWyrm(MinionCard) :
def _ _init__ (self):
super () .__init__ (
'Mana Wyrm’, 1,
CHARACTER_CLASS .MAGE,
CARD_RARITY.COMMON)
def create_minion(self, player):
return Minion (
1, 3, effects=[
Effect (
SpellCast (),
ActionTag (
Give (ChangeAttack (1)),
SelfSelector()))

1
Figure 7: For many cards with moderately com-
plex descriptions, the implementation follows a
functional style that seems to suit our modeling
strategy, usually leading to correct predictions.

4.5 Error Analysis and Discussion

As the examples in Figures 6-8 show, classes in
the HEARTHSTONE dataset share a great deal of
common structure. As a result, in the simplest
cases, such as in Figure 6, generating the code is
simply a matter of matching the overall structure
and plugging in the correct values in the initializer
and a few other places. In such cases, our sys-
tem generally predicts the correct code, with the
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class MultiShot (SpellCard) :
def _ _init__ (self):
super () .__init__ (
'Multi-Shot’, 4,
CHARACTER_CLASS.HUNTER,
CARD_RARITY.FREE)
def use(self, player,
super () .use(player, game)
targets = copy.copy (

game) :

game.other_player.minions)

for i in range (0, 2):
target = game.random_choice (targets)
targets.remove (target)

class MultiShot (SpellCard) :
def _ _init__ (self):

super ()

. init_ (

"Multi-Shot’, 4,
CHARACTER_CLASS . HUNTER,
CARD_RARITY.FREE)

def use(self,
super () .use (player,

player, game):

game)

minions = copy.copy (

game.other_player.minions)

for i in range (0, 3):
minion = game.random_choice (minions)
minions.remove (minion)

target .damage ( def can_use(self, player, game):
player.effective_spell damage (3), return (
self) super () .can_use (player, game) and
def can_use(self, player, game): len(game.other_player.minions) >= 3)
return (
super () .can_use (player, game) and

(len(game.other_player.minions)

>= 2))

Figure 8: Cards with nontrivial logic expressed in an imperative style are the most challenging for our
system. In this example, our prediction comes close to the gold code, but misses an important statement
in addition to making a few other minor errors. (Left) gold code; (right) predicted code.

exception of instances in which strings are incor-
rectly transduced. Introducing a dedicated copy-
ing mechanism like the one used by Ling et al.
(2016) or more specialized machinery for string
transduction may alleviate this latter problem.

The next simplest category of card-code pairs
consists of those in which the card’s logic is
mostly implemented via nested function calls.
Figure 7 illustrates a typical case, in which the
card’s effect is triggered by a game event (a spell
being cast) and both the trigger and the effect are
described by arguments to an Ef fect construc-
tor. Our system usually also performs well on in-
stances like these, apart from idiosyncratic errors
that can take the form of under- or overgeneration
or simply substitution of incorrect predicates.

Cards whose code includes complex logic ex-
pressed in an imperative style, as in Figure 8, pose
the greatest challenge for our system. Factors like
variable naming, nontrivial control flow, and in-
terleaving of code predictable from the descrip-
tion with code required due to the conventions of
the library combine to make the code for these
cards difficult to generate. In some instances (as
in the figure), our system is nonetheless able to
synthesize a close approximation. Howeyver, in the
most complex cases, the predictions deviate sig-
nificantly from the correct implementation.

In addition to the specific errors our system
makes, some larger issues remain unresolved. Ex-
isting evaluation metrics only approximate the
actual metric of interest: functional equiva-
lence. Modifications of BLEU, tree F1, and exact

match that canonicalize the code—for example,
by anonymizing all variables—may prove more
meaningful. Direct evaluation of functional equiv-
alence is of course impossible in general (Sipser,
2006), and practically challenging even for the
HEARTHSTONE dataset because it requires inte-
grating with the game engine.

Existing work also does not attempt to enforce
semantic coherence in the output. Long-distance
semantic dependencies, between occurrences of a
single variable for example, in particular are not
modeled. Nor is well-typedness or executability.
Overcoming these evaluation and modeling issues
remains an important open problem.

5 Conclusion

ASNs provide a modular encoder-decoder archi-
tecture that can readily accommodate a variety of
tasks with structured output spaces. They are par-
ticularly applicable in the presence of recursive
decompositions, where they can provide a simple
decoding process that closely parallels the inher-
ent structure of the outputs. Our results demon-
strate their promise for tree prediction tasks, and
we believe their application to more general out-
put structures is an interesting avenue for future
work.
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A Appendix

expr
= Apply (pred predicate,
| Not (expr argument)
| Or(expr left, expr right)
| And(exprx arguments)

argx arguments)

arg
= Literal(lit literal)
| Variable (var variable)

Figure 9: The Prolog-style grammar we use for the
JOBS task.

expr

= Variable (var variable)

| Entity(ent entity)
Number (num number)
Apply (pred predicate, exprx arguments)
Argmax (var variable,
Argmin (var variable,
Count (var variable,
Exists (var variable,

expr body)
expr body)

Lambda (var variable, var_type type, expr body)

expr body)
Min (var variable, expr body)
Sum (var variable, expr domain, expr body)
The (var variable, expr body)
(

Not (expr argument)
And (expr* arguments)
Or (expr* arguments)

\
\
\
\
\
\
\
| Max (var variable,
\
\
\
\
\
\
| Compare (cmp_op op, expr left,

expr right)

cmp_op = Equal | LessThan | GreaterThan

Figure 10: The A-calculus grammar used by our
system.
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