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Abstract

Our goal is to learn a semantic parser that
maps natural language utterances into ex-
ecutable programs when only indirect su-
pervision is available: examples are la-
beled with the correct execution result,
but not the program itself. Consequently,
we must search the space of programs
for those that output the correct result,
while not being misled by spurious pro-
grams: incorrect programs that coinci-
dentally output the correct result. We
connect two common learning paradigms,
reinforcement learning (RL) and maxi-
mum marginal likelihood (MML), and
then present a new learning algorithm that
combines the strengths of both. The new
algorithm guards against spurious pro-
grams by combining the systematic search
traditionally employed in MML with the
randomized exploration of RL, and by up-
dating parameters such that probability is
spread more evenly across consistent pro-
grams. We apply our learning algorithm
to a new neural semantic parser and show
significant gains over existing state-of-the-
art results on a recent context-dependent
semantic parsing task.

1 Introduction

We are interested in learning a semantic parser that
maps natural language utterances into executable
programs (e.g., logical forms). For example, in
Figure 1, a program corresponding to the utter-
ance transforms an initial world state into a new
world state. We would like to learn from indirect
supervision, where each training example is only
labeled with the correct output (e.g. a target world
state), but not the program that produced that out-

"The man in the yellow hat moves to the left of the woman in blue.” 

Spurious:  move(hasShirt(red), 1)
Correct:     move(hasHat(yellow), leftOf(hasShirt(blue))) 
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Figure 1: The task is to map natural language ut-
terances to a program that manipulates the world
state. The correct program captures the true mean-
ing of the utterances, while spurious programs ar-
rive at the correct output for the wrong reasons.
We develop methods to prevent the model from
being drawn to spurious programs.

put (Clarke et al., 2010; Liang et al., 2011; Kr-
ishnamurthy and Mitchell, 2012; Artzi and Zettle-
moyer, 2013; Liang et al., 2017).

The process of constructing a program can be
formulated as a sequential decision-making pro-
cess, where feedback is only received at the end
of the sequence when the completed program is
executed. In the natural language processing lit-
erature, there are two common approaches for
handling this situation: 1) reinforcement learn-
ing (RL), particularly the REINFORCE algorithm
(Williams, 1992; Sutton et al., 1999), which max-
imizes the expected reward of a sequence of
actions; and 2) maximum marginal likelihood
(MML), which treats the sequence of actions as
a latent variable, and then maximizes the marginal
likelihood of observing the correct program output
(Dempster et al., 1977).

While the two approaches have enjoyed success
on many tasks, we found them to work poorly out
of the box for our task. This is because in addi-
tion to the sparsity of correct programs, our task
also requires weeding out spurious programs (Pa-
supat and Liang, 2016): incorrect interpretations
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of the utterances that accidentally produce the cor-
rect output, as illustrated in Figure 1.

We show that MML and RL optimize closely re-
lated objectives. Furthermore, both MML and RL
methods have a mechanism for exploring program
space in search of programs that generate the cor-
rect output. We explain why this exploration tends
to quickly concentrate around short spurious pro-
grams, causing the model to sometimes overlook
the correct program. To address this problem, we
propose RANDOMER, a new learning algorithm
with two parts:

First, we propose randomized beam search, an
exploration strategy which combines the system-
atic beam search traditionally employed in MML
with the randomized off-policy exploration of RL.
This increases the chance of finding correct pro-
grams even when the beam size is small or the pa-
rameters are not pre-trained.

Second, we observe that even with good explo-
ration, the gradients of both the RL and MML
objectives may still upweight entrenched spuri-
ous programs more strongly than correct programs
with low probability under the current model. We
propose a meritocratic parameter update rule, a
modification to the MML gradient update, which
more equally upweights all programs that produce
the correct output. This makes the model less
likely to overfit spurious programs.

We apply RANDOMER to train a new neural se-
mantic parser, which outputs programs in a stack-
based programming language. We evaluate our re-
sulting system on SCONE, the context-dependent
semantic parsing dataset of Long et al. (2016).
Our approach outperforms standard RL and MML
methods in a direct comparison, and achieves new
state-of-the-art results, improving over Long et al.
(2016) in all three domains of SCONE, and by
over 30% accuracy on the most challenging one.

2 Task

We consider the semantic parsing task in the
SCONE dataset1 (Long et al., 2016). As illustrated
in Figure 1, each example consists of a world con-
taining several objects (e.g., people), each with
certain properties (e.g., shirt color and hat color).
Given the initial world state w0 and a sequence of
M natural language utterances u = (u1, . . . , uM ),
the task is to generate a program that manipulates
the world state according to the utterances. Each

1
https://nlp.stanford.edu/projects/scone

utterance um describes a single action that trans-
forms the world state wm−1 into a new world state
wm. For training, the system receives weakly su-
pervised examples with input x = (u, w0) and the
target final world state y = wM .

The dataset includes 3 domains: ALCHEMY,
TANGRAMS, and SCENE. The description of each
domain can be found in Appendix B. The do-
mains highlight different linguistic phenomena:
ALCHEMY features ellipsis (e.g., “throw the rest
out”, “mix”); TANGRAMS features anaphora on
actions (e.g., “repeat step 3”, “bring it back”);
and SCENE features anaphora on entities (e.g., “he
moves back”, “. . . to his left”). Each domain con-
tains roughly 3,700 training and 900 test exam-
ples. Each example contains 5 utterances and is
labeled with the target world state after each utter-
ance, but not the target program.

Spurious programs. Given a training example
(u, w0, wM ), our goal is to find the true underly-
ing program z∗ which reflects the meaning of u.
The constraint that z∗ must transformw0 intowM ,
i.e. z(w0) = wM , is not enough to uniquely iden-
tify the true z∗, as there are often many z satisfy-
ing z(w0) = wM : in our experiments, we found
at least 1600 on average for each example. Al-
most all do not capture the meaning of u (see Fig-
ure 1). We refer to these incorrect z’s as spurious
programs. Such programs encourage the model
to learn an incorrect mapping from language to
program operations: e.g., the spurious program in
Figure 1 would cause the model to learn that “man
in the yellow hat” maps to hasShirt(red).

Spurious programs in SCONE. In this dataset,
utterances often reference objects in different
ways (e.g. a person can be referenced by shirt
color, hat color, or position). Hence, any target
programming language must also support these
different reference strategies. As a result, even
a single action such as moving a person to a tar-
get destination can be achieved by many different
programs, each selecting the person and destina-
tion in a different way. Across multiple actions,
the number of programs grows combinatorially.2

Only a few programs actually implement the cor-
rect reference strategy as defined by the utterance.
This problem would be more severe in any more
general-purpose language (e.g. Python).

2The number of well-formed programs in SCENE exceeds
1015
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3 Model

We formulate program generation as a sequence
prediction problem. We represent a program as
a sequence of program tokens in postfix nota-
tion; for example, move(hasHat(yellow),
leftOf(hasShirt(blue))) is linearized as
yellow hasHat blue hasShirt leftOf
move. This representation also allows us to incre-
mentally execute programs from left to right using
a stack: constants (e.g., yellow) are pushed onto
the stack, while functions (e.g., hasHat) pop
appropriate arguments from the stack and push
back the computed result (e.g., the list of people
with yellow hats). Appendix B lists the full set of
program tokens, Z , and how they are executed.
Note that each action always ends with an action
token (e.g., move).

Given an input x = (u, w0), the model gener-
ates program tokens z1, z2, . . . from left to right
using a neural encoder-decoder model with atten-
tion (Bahdanau et al., 2015). Throughout the gen-
eration process, the model maintains an utterance
pointer, m, initialized to 1. To generate zt, the
model’s encoder first encodes the utterance um
into a vector em. Then, based on em and pre-
viously generated tokens z1:t−1, the model’s de-
coder defines a distribution p(zt | x, z1:t−1) over
the possible values of zt ∈ Z . The next token zt is
sampled from this distribution. If an action token
(e.g., move) is generated, the model increments
the utterance pointer m. The process terminates
when all M utterances are processed. The final
probability of generating a particular program z =
(z1, . . . , zT ) is p(z | x) =

∏T
t=1 p(zt | x, z1:t−1).

Encoder. The utterance um under the pointer is
encoded using a bidirectional LSTM:

hFi = LSTM(hFi−1,Φu(um,i))

hBi = LSTM(hBi+1,Φu(um,i))

hi = [hFi ;hBi ],

where Φu(um,i) is the fixed GloVe word embed-
ding (Pennington et al., 2014) of the ith word in
um. The final utterance embedding is the concate-
nation em = [hF|um|;h

B
1 ].

Decoder. Unlike Bahdanau et al. (2015), which
used a recurrent network for the decoder, we opt
for a feed-forward network for simplicity. We
use em and an embedding f(z1:t−1) of the previ-
ous execution history (described later) as inputs to

compute an attention vector ct:

qt = ReLU(Wq[em; f(z1:t−1)])

αi ∝ exp(q>t Wahi) (i = 1, . . . , |um|)
ct =

∑

i

αihi.

Finally, after concatenating qt with ct, the distri-
bution over the set Z of possible program tokens
is computed via a softmax:

p(zt | x, z1:t−1) ∝ exp(Φz(zt)
>Ws[qt; ct]),

where Φz(zt) is the embedding for token zt.

Execution history embedding. We compare
two options for f(z1:t−1), our embedding of the
execution history. A standard approach is to sim-
ply take the k most recent tokens zt−k:t−1 and con-
catenate their embeddings. We will refer to this as
TOKENS and use k = 4 in our experiments.

We also consider a new approach which lever-
ages our ability to incrementally execute programs
using a stack. We summarize the execution history
by embedding the state of the stack at time t − 1,
achieved by concatenating the embeddings of all
values on the stack. (We limit the maximum stack
size to 3.) We refer to this as STACK.

4 Reinforcement learning versus
maximum marginal likelihood

Having formulated our task as a sequence pre-
diction problem, we must still choose a learn-
ing algorithm. We first compare two standard
paradigms: reinforcement learning (RL) and max-
imum marginal likelihood (MML). In the next sec-
tion, we propose a better alternative.

4.1 Comparing objective functions
Reinforcement learning. From an RL perspec-
tive, given a training example (x, y), a policy
makes a sequence of decisions z = (z1, . . . , zT ),
and then receives a reward at the end of the
episode: R(z) = 1 if z executes to y and 0 oth-
erwise (dependence on x and y has been omitted
from the notation).

We focus on policy gradient methods, in which
a stochastic policy function is trained to maximize
the expected reward. In our setup, pθ(z | x) is
the policy (with parameters θ), and its expected
reward on a given example (x, y) is

G(x, y) =
∑

z

R(z) pθ(z | x), (1)
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where the sum is over all possible programs. The
overall RL objective, JRL, is the expected reward
across examples:

JRL =
∑

(x,y)

G(x, y). (2)

Maximum marginal likelihood. The MML
perspective assumes that y is generated by a
partially-observed random process: conditioned
on x, a latent program z is generated, and con-
ditioned on z, the observation y is generated. This
implies the marginal likelihood:

pθ(y | x) =
∑

z

p(y | z) pθ(z | x). (3)

Note that since the execution of z is deterministic,
pθ(y | z) = 1 if z executes to y and 0 otherwise.
The log marginal likelihood of the data is then

JMML = logLMML, (4)

where LMML =
∏

(x,y)

pθ(y | x). (5)

To estimate our model parameters θ, we maximize
JMML with respect to θ.

With our choice of reward, the RL expected re-
ward (1) is equal to the MML marginal probabil-
ity (3). Hence the only difference between the two
formulations is that in RL we optimize the sum of
expected rewards (2), whereas in MML we opti-
mize the product (5).3

4.2 Comparing gradients
In both policy gradient and MML, the objectives
are typically optimized via (stochastic) gradient
ascent. The gradients of JRL and JMML are
closely related. They both have the form:

∇θJ =
∑

(x,y)

Ez∼q [R(z)∇ log pθ(z | x)] (6)

=
∑

(x,y)

∑

z

q(z)R(z)∇ log pθ(z | x),

where q(z) equals

qRL(z) = pθ(z | x) for JRL, (7)

qMML(z) =
R(z)pθ(z | x)∑
z̃R(z̃)pθ(z̃ | x)

(8)

= pθ(z | x,R(z) 6= 0) for JMML.

3 Note that the log of the product in (5) does not equal the
sum in (2).

Taking a step in the direction of∇ log pθ(z | x)
upweights the probability of z, so we can heuris-
tically think of the gradient as attempting to up-
weight each reward-earning program z by a gradi-
ent weight q(z). In Subsection 5.2, we argue why
qMML is better at guarding against spurious pro-
grams, and propose an even better alternative.

4.3 Comparing gradient approximation
strategies

It is often intractable to compute the gradient (6)
because it involves taking an expectation over all
possible programs. So in practice, the expectation
is approximated.

In the policy gradient literature, Monte Carlo
integration (MC) is the typical approximation
strategy. For example, the popular REINFORCE
algorithm (Williams, 1992) uses Monte Carlo
sampling to compute an unbiased estimate of the
gradient:

∆MC =
1

B

∑

z∈S
[R(z)− c]∇ log pθ(z | x), (9)

where S is a collection of B samples z(b) ∼ q(z),
and c is a baseline (Williams, 1992) used to re-
duce the variance of the estimate without altering
its expectation.

In the MML literature for latent sequences, the
expectation is typically approximated via numeri-
cal integration (NUM) instead:

∆NUM =
∑

z∈S
q(z)R(z)∇ log pθ(z | x). (10)

where the programs in S come from beam search.

Beam search. Beam search generates a set of
programs via the following process. At step t of
beam search, we maintain a beam Bt of at most B
search states. Each state s ∈ Bt represents a par-
tially constructed program, s = (z1, . . . , zt) (the
first t tokens of the program). For each state s in
the beam, we generate all possible continuations,

cont(s) = cont((z1, . . . , zt))

= {(z1, . . . , zt, zt+1) | zt+1 ∈ Z} .

We then take the union of these continuations,
cont(Bt) =

⋃
s∈Bt cont(s). The new beam

Bt+1 is simply the highest scoringB continuations
in cont(Bt), as scored by the policy, pθ(s | x).
Search is halted after a fixed number of iterations
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or when there are no continuations possible. S is
then the set of all complete programs discovered
during beam search. We will refer to this as beam
search MML (BS-MML).

In both policy gradient and MML, we think of
the procedure used to produce the set of programs
S as an exploration strategy which searches for
programs that produce reward. One advantage of
numerical integration is that it allows us to de-
couple the exploration strategy from the gradient
weights assigned to each program.

5 Tackling spurious programs

In this section, we illustrate why spurious pro-
grams are problematic for the most commonly
used methods in RL (REINFORCE) and MML
(beam search MML). We describe two key prob-
lems and propose a solution to each, based on
insights gained from our comparison of RL and
MML in Section 4.

5.1 Spurious programs bias exploration

As mentioned in Section 4, REINFORCE and BS-
MML both employ an exploration strategy to ap-
proximate their respective gradients. In both meth-
ods, exploration is guided by the current model
policy, whereby programs with high probability
under the current policy are more likely to be ex-
plored. A troubling implication is that programs
with low probability under the current policy are
likely to be overlooked by exploration.

If the current policy incorrectly assigns low
probability to the correct program z∗, it will likely
fail to discover z∗ during exploration, and will
consequently fail to upweight the probability of
z∗. This repeats on every gradient step, keep-
ing the probability of z∗ perpetually low. The
same feedback loop can also cause already high-
probability spurious programs to gain even more
probability. From this, we see that exploration is
sensitive to initial conditions: the rich get richer,
and the poor get poorer.

Since there are often thousands of spurious pro-
grams and only a few correct programs, spurious
programs are usually found first. Once spurious
programs get a head start, exploration increasingly
biases towards them.

As a remedy, one could try initializing parame-
ters such that the model puts a uniform distribution
over all possible programs. A seemingly reason-
able tactic is to initialize parameters such that the

"The man in the yellow hat moves to the left of the woman in blue.” 

Spurious:  move(hasShirt(red), 1)
Correct:     move(hasHat(yellow), leftOf(hasShirt(blue))) 

1 2 3 1 2 3
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z'0.1

0.1

0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.1

p(z') = 10-4

p(z*) = 10-6

red
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hasHat blue hasShirt leftOf move

move1hasShirt

Figure 2: Two possible paths in the tree of all
possible programs. One path leads to the spurious
program z′ (red) while the longer path leads to the
correct program z∗ (gold). Each edge represents a
decision and shows the probability of that decision
under a uniform policy. The shorter program has
two orders of magnitude higher probability.

model policy puts near-uniform probability over
the decisions at each time step. However, this
causes shorter programs to have orders of mag-
nitude higher probability than longer programs,
as illustrated in Figure 2 and as we empirically
observe. A more sophisticated approach might
involve approximating the total number of pro-
grams reachable from each point in the program-
generating decision tree. However, we instead
propose to reduce sensitivity to the initial distri-
bution over programs.

Solution: randomized beam search
One solution to biased exploration is to simply rely
less on the untrustworthy current policy. We can
do this by injecting random noise into exploration.

In REINFORCE, a common solution is to sam-
ple from an ε-greedy variant of the current policy.
On the other hand, MML exploration with beam
search is deterministic. However, it has a key ad-
vantage over REINFORCE-style sampling: even
if one program occupies almost all probability un-
der the current policy (a peaky distribution), beam
search will still use its remaining beam capacity to
explore at least B− 1 other programs. In contrast,
sampling methods will repeatedly visit the mode
of the distribution.

To get the best of both worlds, we propose a
simple ε-greedy randomized beam search. Like
regular beam search, at iteration t we compute the
set of all continuations cont(Bt) and sort them
by their model probability pθ(s | x). But instead
of selecting the B highest-scoring continuations,
we choose B continuations one by one without re-
placement from cont(Bt). When choosing a con-
tinuation from the remaining pool, we either uni-
formly sample a random continuation with prob-
ability ε, or pick the highest-scoring continuation
in the pool with probability 1− ε. Empirically, we
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find that this performs much better than both clas-
sic beam search and ε-greedy sampling (Table 3).

5.2 Spurious programs dominate gradients
In both RL and MML, even if exploration is per-
fect and the gradient is exactly computed, spurious
programs can still be problematic.

Even if perfect exploration visits every pro-
gram, we see from the gradient weights q(z) in (7)
and (8) that programs are weighted proportional to
their current policy probability. If a spurious pro-
gram z′ has 100 times higher probability than z∗ as
in Figure 2, the gradient will spend roughly 99%
of its magnitude upweighting towards z′ and only
1% towards z∗ even though the two programs get
the same reward.

This implies that it would take many updates for
z∗ to catch up. In fact, z∗ may never catch up, de-
pending on the gradient updates for other training
examples. Simply increasing the learning rate is
inadequate, as it would cause the model to take
overly large steps towards z′, potentially causing
optimization to diverge.

Solution: the meritocratic update rule
To solve this problem, we want the upweighting to
be more “meritocratic”: any program that obtains
reward should be upweighted roughly equally.

We first observe that JMML already improves
over JRL in this regard. From (6), we see that the
gradient weight qMML(z) is the policy distribution
restricted to and renormalized over only reward-
earning programs. This renormalization makes the
gradient weight uniform across examples: even if
all reward-earning programs for a particular exam-
ple have very low model probability, their com-
bined gradient weight

∑
z qMML(z) is always 1.

In our experiments, JMML performs significantly
better than JRL (Table 4).

However, while JMML assigns uniform weight
across examples, it is still not uniform over the
programs within each example. Hence we propose
a new update rule which goes one step further in
pursuing uniform updates. Extending qMML(z),
we define a β-smoothed version:

qβ(z) =
qMML(z)β∑
z̃ qMML(z̃)β

. (11)

When β = 0, our weighting is completely uni-
form across all reward-earning programs within an
example while β = 1 recovers the original MML
weighting. Our new update rule is to simply take

a modified gradient step where q = qβ .4 We will
refer to this as the β-meritocratic update rule.

5.3 Summary of the proposed approach

We described two problems5 and their solutions:
we reduce exploration bias using ε-greedy ran-
domized beam search and perform more balanced
optimization using the β-meritocratic parameter
update rule. We call our resulting approach RAN-
DOMER. Table 1 summarizes how RANDOMER

combines desirable qualities from both REIN-
FORCE and BS-MML.

6 Experiments

Evaluation. We evaluate our proposed methods
on all three domains of the SCONE dataset. Accu-
racy is defined as the percentage of test examples
where the model produces the correct final world
state wM . All test examples have M = 5 (5utts),
but we also report accuracy after processing the
first 3 utterances (3utts). To control for the effects
of randomness, we train 5 instances of each model
with different random seeds. We report the median
accuracy of the instances unless otherwise noted.

Training. Following Long et al. (2016), we de-
compose each training example into smaller ex-
amples. Given an example with 5 utterances, u =
[u1, . . . , u5], we consider all length-1 and length-2
substrings of u: [u1], [u2], . . . , [u3, u4], [u4, u5] (9
total). We form a new training example from each
substring, e.g., (u′, w′0, w

′
M ) where u′ = [u4, u5],

w′0 = w3 and w′M = w5.
All models are implemented in TensorFlow

(Abadi et al., 2015). Model parameters are ran-
domly initialized (Glorot and Bengio, 2010), with
no pre-training. We use the Adam optimizer
(Kingma and Ba, 2014) (which is applied to the
gradient in (6)), a learning rate of 0.001, a mini-
batch size of 8 examples (different from the beam
size), and train until accuracy on the validation set
converges (on average about 13,000 steps). We

4 Also, note that if exploration were exhaustive, β = 0
would be equivalent to supervised learning using the set of
all reward-earning programs as targets.

5 These problems concern the gradient w.r.t. a single ex-
ample. The full gradient averages over multiple examples,
which helps separate correct from spurious. E.g., if multi-
ple examples all mention “yellow hat”, we will find a correct
program parsing this as hasHat(yellow) for each exam-
ple, whereas the spurious programs we find will follow no
consistent pattern. Consequently, spurious gradient contribu-
tions may cancel out while correct program gradients will all
“vote” in the same direction.
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Method Approximation of Eq [·] Exploration strategy Gradient weight q(z)
REINFORCE Monte Carlo integration independent sampling pθ(z | x)

BS-MML numerical integration beam search pθ(z | x,R(z) 6= 0)
RANDOMER numerical integration randomized beam search qβ(z)

Table 1: RANDOMER combines qualities of both REINFORCE (RL) and BS-MML. For approximating
the expectation over q in the gradient, we use numerical integration as in BS-MML. Our exploration
strategy is a hybrid of search (MML) and off-policy sampling (RL). Our gradient weighting is equivalent
to MML when β = 1 and more “meritocratic” than both MML and REINFORCE for lower values of β.

use fixed GloVe vectors (Pennington et al., 2014)
to embed the words in each utterance.

Hyperparameters. For all models, we per-
formed a grid search over hyperparameters to
maximize accuracy on the validation set. Hy-
perparameters include the learning rate, the
baseline in REINFORCE, ε-greediness and β-
meritocraticness. For REINFORCE, we also ex-
perimented with a regression-estimated baseline
(Ranzato et al., 2015), but found it to perform
worse than a constant baseline.

6.1 Main results
Comparison to prior work. Table 2 compares
RANDOMER to results from Long et al. (2016)
as well as two baselines, REINFORCE and BS-
MML (using the same neural model but differ-
ent learning algorithms). Our approach achieves
new state-of-the-art results by a significant mar-
gin, especially on the SCENE domain, which fea-
tures the most complex program syntax. We report
the results for REINFORCE, BS-MML, and RAN-
DOMER on the seed and hyperparameters that
achieve the best validation accuracy.

We note that REINFORCE performs very well
on TANGRAMS but worse on ALCHEMY and very
poorly on SCENE. This might be because the pro-
gram syntax for TANGRAMS is simpler than the
other two: there is no other way to refer to objects
except by index.

We also found that REINFORCE required ε-
greedy exploration to make any progress. Us-
ing ε-greedy greatly skews the Monte Carlo ap-
proximation of ∇JRL, making it more uniformly
weighted over programs in a similar spirit to us-
ing β-meritocratic gradient weights qβ . However,
qβ increases uniformity over reward-earning pro-
grams only, rather than over all programs.

Effect of randomized beam search. Table 3
shows that ε-greedy randomized beam search con-
sistently outperforms classic beam search. Even
when we increase the beam size of classic beam

ALCHEMY TANGRAMS SCENE
system 3utts 5utts 3utts 5utts 3utts 5utts
LONG+16 56.8 52.3 64.9 27.6 23.2 14.7
REINFORCE 58.3 44.6 68.5 37.3 47.8 33.9
BS-MML 58.7 47.3 62.6 32.2 53.5 32.5
RANDOMER 66.9 52.9 65.8 37.1 64.8 46.2

Table 2: Comparison to prior work. LONG+16
results are directly from Long et al. (2016). Hy-
perparameters are chosen by best performance on
validation set (see Appendix A).

ALCHEMY TANGRAMS SCENE
random beam 3utts 5utts 3utts 5utts 3utts 5utts

classic beam search
None 32 30.3 23.2 0.0 0.0 33.4 20.1
None 128 59.0 46.4 60.9 28.6 24.5 13.9

randomized beam search
ε = 0.05 32 58.7 45.5 61.1 32.5 33.4 23.0
ε = 0.15 32 61.3 48.3 65.2 34.3 50.8 33.5
ε = 0.25 32 60.5 48.6 60.0 27.3 54.1 35.7

Table 3: Randomized beam search. All listed
models use gradient weight qMML and TOKENS to
represent execution history.

search to 128, it still does not surpass randomized
beam search with a beam of 32, and further in-
creases yield no additional improvement.

Effect of β-meritocratic updates. Table 4 eval-
uates the impact of β-meritocratic parameter up-
dates (gradient weight qβ). More uniform up-
weighting across reward-earning programs leads
to higher accuracy and fewer spurious programs,
especially in SCENE. However, no single value of
β performs best over all domains.

Choosing the right value of β in RANDOMER

significantly accelerates training. Figure 3 illus-
trates that while β = 0 and β = 1 ultimately
achieve similar accuracy on ALCHEMY, β = 0
reaches good performance in half the time.

Since lowering β reduces trust in the model pol-
icy, β < 1 helps in early training when the cur-
rent policy is untrustworthy. However, as it grows
more trustworthy, β < 1 begins to pay a price for
ignoring it. Hence, it may be worthwhile to anneal
β towards 1 over time.
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ALCHEMY TANGRAMS SCENE
q(z) 3utts 5utts 3utts 5utts 3utts 5utts
qRL 0.2 0.0 0.9 0.6 0.0 0.0

qMML (qβ=1) 61.3 48.3 65.2 34.3 50.8 33.5
qβ=0.25 64.4 48.9 60.6 29.0 42.4 29.7
qβ=0 63.6 46.3 54.0 23.5 61.0 42.4

Table 4: β-meritocratic updates. All listed
models use randomized beam search, ε = 0.15
and TOKENS to represent execution history.

ALCHEMY TANGRAMS SCENE
3utts 5utts 3utts 5utts 3utts 5utts

HISTORY 61.3 48.3 65.2 34.3 50.8 33.5
STACK 64.2 53.2 63.0 32.4 59.5 43.1

Table 5: TOKENS vs STACK embedding. Both
models use ε = 0.15 and gradient weight qMML.

Effect of execution history embedding. Ta-
ble 5 compares our two proposals for embed-
ding the execution history: TOKENS and STACK.
STACK performs better in the two domains where
an object can be referenced in multiple ways
(SCENE and ALCHEMY). STACK directly embeds
objects on the stack, invariant to the way in which
they were pushed onto the stack, unlike TOKENS.
We hypothesize that this invariance increases ro-
bustness to spurious behavior: if a program acci-
dentally pushes the right object onto the stack via
spurious means, the model can still learn the re-
maining steps of the program without conditioning
on a spurious history.

Fitting vs overfitting the training data. Ta-
ble 6 reveals that BS-MML and RANDOMER use
different strategies to fit the training data. On
the depicted training example, BS-MML actually
achieves higher expected reward / marginal prob-
ability than RANDOMER, but it does so by putting
most of its probability on a spurious program—
a form of overfitting. In contrast, RANDOMER

spreads probability mass over multiple reward-
earning programs, including the correct ones.

As a consequence of overfitting, we observed at
test time that BS-MML only references people by
positional indices instead of by shirt or hat color,
whereas RANDOMER successfully learns to use
multiple reference strategies.

7 Related work and discussion

Semantic parsing from indirect supervision.
Our work is motivated by the classic problem of
learning semantic parsers from indirect supervi-
sion (Clarke et al., 2010; Liang et al., 2011; Artzi

0 5000 10000 15000 20000 25000
0.0
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0.4

0.5

0.6

0.7

RANDOMER beta = 0

RANDOMER beta = 0.25

RANDOMER beta = 1

BS-MML

REINFORCE

Figure 3: Validation set accuracy (y-axis)
across training iterations (x-axis) on ALCHEMY.
We compare RANDOMER, BS-MML and REIN-
FORCE. Vertical lines mark the first time each
model surpasses 60% accuracy. RANDOMER with
β = 0 reaches this point twice as fast as β = 1.
REINFORCE plateaus for a long time, then begins
to climb after 40k iterations (not shown). Training
runs are averaged over 5 seeds.

and Zettlemoyer, 2011, 2013; Reddy et al., 2014;
Pasupat and Liang, 2015). We are interested in
the initial stages of training from scratch, where
getting any training signal is difficult due to the
combinatorially large search space. We also high-
lighted the problem of spurious programs which
capture reward but give incorrect generalizations.

Maximum marginal likelihood with beam
search (BS-MML) is traditionally used to learn se-
mantic parsers from indirect supervision.

Reinforcement learning. Concurrently, there
has been a recent surge of interest in reinforce-
ment learning, along with the wide application
of the classic REINFORCE algorithm (Williams,
1992)—to troubleshooting (Branavan et al., 2009),
dialog generation (Li et al., 2016), game playing
(Narasimhan et al., 2015), coreference resolution
(Clark and Manning, 2016), machine translation
(Norouzi et al., 2016), and even semantic parsing
(Liang et al., 2017). Indeed, the challenge of train-
ing semantic parsers from indirect supervision is
perhaps better captured by the notion of sparse re-
wards in reinforcement learning.

The RL answer would be better exploration,
which can take many forms including simple
action-dithering such as ε-greedy, entropy regular-
ization (Williams and Peng, 1991), Monte Carlo
tree search (Coulom, 2006), randomized value
functions (Osband et al., 2014, 2016), and meth-
ods which prioritize learning environment dynam-
ics (Duff, 2002) or under-explored states (Kearns
and Singh, 2002; Bellemare et al., 2016; Nachum
et al., 2016). The majority of these methods em-
ploy Monte Carlo sampling for exploration. In
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Utterance: the man in the purple shirt and red hat moves just
to the right of the man in the red shirt and yellow hat

program prob
RANDOMER (ε = 0.15, β = 0)

* move(hasHat(red),
rightOf(hasHat(red)))

0.122

* move(hasShirt(purple),
rightOf(hasShirt(red)))

0.061

o move(hasHat(red),
rightOf(index(allPeople, 1)))

0.059

* move(hasHat(red),
rightOf(hasHat(yellow)))

0.019

o move(index(allPeople, 2),
rightOf(hasShirt(red)))

0.018

x move(hasHat(red), 8) 0.018
BS-MML

o move(index(allPeople, 2), 2) 0.887
x move(index(allPeople, 2), 6) 0.041
x move(index(allPeople, 2), 5) 0.020
x move(index(allPeople, 2), 8) 0.016
x move(index(allPeople, 2), 7) 0.009
x move(index(allPeople, 2), 3) 0.008

Table 6: Top-scoring predictions for a training ex-
ample from SCENE (* = correct, o = spurious, x
= incorrect). RANDOMER distributes probabil-
ity mass over numerous reward-earning programs
(including the correct ones), while classic beam
search MML overfits to one spurious program,
giving it very high probability.

contrast, we find randomized beam search to be
more suitable in our setting, because it explores
low-probability states even when the policy distri-
bution is peaky. Our β-meritocratic update also
depends on the fact that beam search returns an
entire set of reward-earning programs rather than
one, since it renormalizes over the reward-earning
set. While similar to entropy regularization, β-
meritocratic update is more targeted as it only in-
creases uniformity of the gradient among reward-
earning programs, rather than across all programs.

Our strategy of using randomized beam search
and meritocratic updates lies closer to MML than
RL, but this does not imply that RL has nothing
to offer in our setting. With the simple connec-
tion between RL and MML we established, much
of the literature on exploration and variance reduc-
tion in RL can be directly applied to MML prob-
lems. Of special interest are methods which incor-
porate a value function such as actor-critic.

Maximum likelihood and RL. It is tempting to
group our approach with sequence learning meth-
ods which interpolate between supervised learn-
ing and reinforcement learning (Ranzato et al.,
2015; Venkatraman et al., 2015; Ross et al., 2011;
Norouzi et al., 2016; Bengio et al., 2015; Levine,

2014). These methods generally seek to make RL
training easier by pre-training or “warm-starting”
with fully supervised learning. This requires each
training example to be labeled with a reasonably
correct output sequence. In our setting, this would
amount to labeling each example with the correct
program, which is not known. Hence, these meth-
ods cannot be directly applied.

Without access to correct output sequences,
we cannot directly maximize likelihood, and in-
stead resort to maximizing the marginal likelihood
(MML). Rather than proposing MML as a form of
pre-training, we argue that MML is a superior sub-
stitute for the standard RL objective, and that the
β-meritocratic update is even better.

Simulated annealing. Our β-meritocratic up-
date employs exponential smoothing, which bears
resemblance to the simulated annealing strategy of
Och (2003); Smith and Eisner (2006); Shen et al.
(2015). However, a key difference is that these
methods smooth the objective function whereas
we smooth an expectation in the gradient. To un-
derscore the difference, we note that fixing β = 0
in our method (total smoothing) is quite effective,
whereas total smoothing in the simulated anneal-
ing methods would correspond to a completely flat
objective function, and an uninformative gradient
of zero everywhere.

Neural semantic parsing. There has been re-
cent interest in using recurrent neural networks for
semantic parsing, both for modeling logical forms
(Dong and Lapata, 2016; Jia and Liang, 2016;
Liang et al., 2017) and for end-to-end execution
(Yin et al., 2015; Neelakantan et al., 2016). We
develop a neural model for the context-dependent
setting, which is made possible by a new stack-
based language similar to Riedel et al. (2016).
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Programming with a differentiable forth interpreter.
CoRR, abs/1605.06640 .

S. Ross, G. Gordon, and A. Bagnell. 2011. A reduction
of imitation learning and structured prediction to no-
regret online learning. In Artificial Intelligence and
Statistics (AISTATS).

S. Shen, Y. Cheng, Z. He, W. He, H. Wu, M. Sun, and
Y. Liu. 2015. Minimum risk training for neural ma-
chine translation. arXiv preprint arXiv:1512.02433
.

D. A. Smith and J. Eisner. 2006. Minimum risk an-
nealing for training log-linear models. In Interna-
tional Conference on Computational Linguistics and
Association for Computational Linguistics (COL-
ING/ACL). pages 787–794.

R. Sutton, D. McAllester, S. Singh, and Y. Mansour.
1999. Policy gradient methods for reinforcement
learning with function approximation. In Advances
in Neural Information Processing Systems (NIPS).

A. Venkatraman, M. Hebert, and J. A. Bagnell. 2015.
Improving multi-step prediction of learned time se-
ries models. In Association for the Advancement of
Artificial Intelligence (AAAI). pages 3024–3030.

R. J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine learning 8(3):229–256.

R. J. Williams and J. Peng. 1991. Function optimiza-
tion using connectionist reinforcement learning al-
gorithms. Connection Science 3(3):241–268.

P. Yin, Z. Lu, H. Li, and B. Kao. 2015. Neural en-
quirer: Learning to query tables. arXiv preprint
arXiv:1512.00965 .

A Hyperparameters in Table 2
System ALCHEMY TANGRAMS SCENE

REINFORCE

Sample size 32
Baseline 10−2

ε = 0.15
embed TOKENS

Sample size 32
Baseline 10−2

ε = 0.15
embed TOKENS

Sample size 32
Baseline 10−4

ε = 0.15
embed TOKENS

BS-MML Beam size 128
embed TOKENS

Beam size 128
embed TOKENS

Beam size 128
embed TOKENS

RANDOMER
β = 1
ε = 0.05
embed TOKENS

β = 1
ε = 0.15
embed TOKENS

β = 0
ε = 0.15
embed STACK
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B SCONE domains and program tokens
token type semantics
Shared across ALCHEMY, TANGRAMS, SCENE

1, 2, 3, . . . constant push: number
-1, -2, -3, . . .
red, yellow, green, constant push: color
orange, purple, brown
allObjects constant push: the list of all objects
index function pop: a list L and a number i

push: the object L[i] (the index starts from 1; negative indices are allowed)
prevArgj (j = 1, 2) function pop: a number i

push: the j argument from the ith action
prevAction action pop: a number i

perform: fetch the ith action and execute it using the arguments on the stack
Additional tokens for the ALCHEMY domain
An ALCHEMY world contains 7 beakers. Each beaker may contain up to 4 units of colored chemical.
1/1 constant push: fraction (used in the drain action)
hasColor function pop: a color c

push: list of beakers with chemical color c
drain action pop: a beaker b and a number or fraction a

perform: remove a units of chemical (or all chemical if a = 1/1) from b

pour action pop: two beakers b1 and b2
perform: transfer all chemical from b1 to b2

mix action pop: a beaker b
perform: turn the color of the chemical in b to brown

Additional tokens for the TANGRAMS domain
A TANGRAMS world contains a row of tangram pieces with different shapes. The shapes are anonymized; a tangram can
be referred to by an index or a history reference, but not by shape.
swap action pop: two tangrams t1 and t2

perform: exchange the positions of t1 and t2
remove action pop: a tangram t

perform: remove t from the stage
add action pop: a number i and a previously removed tangram t

perform: insert t to position i
Additional tokens for the SCENE domain
A SCENE world is a linear stage with 10 positions. Each position may be occupied by a person with a colored shirt and
optionally a colored hat. There are usually 1-5 people on the stage.
noHat constant push: pseudo-color (indicating that the person is not wearing a hat)
hasShirt, hasHat function pop: a color c

push: the list of all people with shirt or hat color c
hasShirtHat function pop: two colors c1 and c2

push: the list of all people with shirt color c1 and hat color c2
leftOf, rightOf function pop: a person p

push: the location index left or right of p
create action pop: a number i and two colors c1, c2

perform: add a new person at position i with shirt color c1 and hat color c2
move action pop: a person p and a number i

perform: move p to position i
swapHats action pop: two people p1 and p2

perform: have p1 and p2 exchange their hats
leave action pop: a person p

perform: remove p from the stage
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