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Abstract

Our goal is to create a convenient natu-
ral language interface for performing well-
specified but complex actions such as ana-
lyzing data, manipulating text, and query-
ing databases. However, existing natu-
ral language interfaces for such tasks are
quite primitive compared to the power one
wields with a programming language. To
bridge this gap, we start with a core pro-
gramming language and allow users to
“naturalize” the core language incremen-
tally by defining alternative, more natural
syntax and increasingly complex concepts
in terms of compositions of simpler ones.
In a voxel world, we show that a com-
munity of users can simultaneously teach
a common system a diverse language and
use it to build hundreds of complex voxel
structures. Over the course of three days,
these users went from using only the core
language to using the naturalized language
in 85.9% of the last 10K utterances.

1 Introduction

In tasks such as analyzing and plotting data
(Gulwani and Marron, 2014), querying databases
(Zelle and Mooney, 1996; Berant et al., 2013),
manipulating text (Kushman and Barzilay, 2013),
or controlling the Internet of Things (Campagna
et al., 2017) and robots (Tellex et al., 2011), peo-
ple need computers to perform well-specified but
complex actions. To accomplish this, one route is
to use a programming language, but this is inac-
cessible to most and can be tedious even for ex-
perts because the syntax is uncompromising and
all statements have to be precise. Another route
is to convert natural language into a formal lan-

Cubes: initial – select
left 6 – select front 8
– black 10x10x10 frame
– black 10x10x10 frame
– move front 10 – red
cube size 6 – move bot 2
– blue cube size 6 – green
cube size 4 – (some steps
are omitted)

Monsters, Inc: initial – move forward – add green
monster – go down 8 – go right and front – add brown
floor – add girl – go back and down – add door – add
black column 30 – go up 9 – finish door – (some steps
for moving are omitted)
Deer: initial – bird’s eye view – deer head; up; left 2;
back 2; { left antler }; right 2; {right antler} – down 4;
front 2; left 3; deer body; down 6; {deer leg front}; back
7; {deer leg back}; left 4; {deer leg back}; front 7; {deer
leg front} – (some steps omitted)

Figure 1: Some examples of users building struc-
tures using a naturalized language in Voxelurn:
http://www.voxelurn.com

guage, which has been the subject of work in se-
mantic parsing (Zettlemoyer and Collins, 2005;
Artzi and Zettlemoyer, 2011, 2013; Pasupat and
Liang, 2015). However, the capability of seman-
tic parsers is still quite primitive compared to the
power one wields with a programming language.
This gap is increasingly limiting the potential of
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both text and voice interfaces as they become more
ubiquitous and desirable.

In this paper, we propose bridging this gap with
an interactive language learning process which we
call naturalization. Before any learning, we seed a
system with a core programming language that is
always available to the user. As users instruct the
system to perform actions, they augment the lan-
guage by defining new utterances — e.g., the user
can explicitly tell the computer that ‘X’ means ‘Y’.
Through this process, users gradually and interac-
tively teach the system to understand the language
that they want to use, rather than the core language
that they are forced to use initially. While the
first users have to learn the core language, later
users can make use of everything that is already
taught. This process accommodates both users’
preferences and the computer action space, where
the final language is both interpretable by the com-
puter and easier to produce by human users.

Compared to interactive language learning with
weak denotational supervision (Wang et al., 2016),
definitions are critical for learning complex ac-
tions (Figure 1). Definitions equate a novel ut-
terance to a sequence of utterances that the sys-
tem already understands. For example, ‘go left 6
and go front’ might be defined as ‘repeat 6 [go
left]; go front’, which eventually can be traced
back to the expression ‘repeat 6 [select left of
this]; select front of this’ in the core language.
Unlike function definitions in programming lan-
guages, the user writes concrete values rather than
explicitly declaring arguments. The system auto-
matically extracts arguments and learns to produce
the correct generalizations. For this, we propose a
grammar induction algorithm tailored to the learn-
ing from definitions setting. Compared to stan-
dard machine learning, say from demonstrations,
definitions provide a much more powerful learn-
ing signal: the system is told directly that ‘a 3 by
4 red square’ is ‘3 red columns of height 4’, and
does not have to infer how to generalize from ob-
serving many structures of different sizes.

We implemented a system called Voxelurn,
which is a command language interface for a voxel
world initially equipped with a programming lan-
guage supporting conditionals, loops, and variable
scoping etc. We recruited 70 users from Ama-
zon Mechanical Turk to build 230 voxel struc-
tures using our system. All users teach the sys-
tem at once, and what is learned from one user

can be used by another user. Thus a community of
users evolves the language to becomes more effi-
cient over time, in a distributed way, through in-
teraction. We show that the user community de-
fined many new utterances—short forms, alterna-
tive syntax, and also complex concepts such as
‘add green monster, add yellow plate 3 x 3’. As
the system learns, users increasingly prefer to use
the naturalized language over the core language:
85.9% of the last 10K accepted utterances are in
the naturalized language.

Figure 2: Interface used by users to enter utter-
ances and create definitions.

2 Voxelurn

World. A world state in Voxelurn contains a set
of voxels, where each voxel has relations ‘row’,
‘col’, ‘height’, and ‘color’. There are two domain-
specific actions, ‘add’ and ‘move’, one domain-
specific relation ‘direction’. In addition, the state
contains a selection, which is a set of positions.
While our focus is Voxelurn, we can think more
generally about the world as a set of objects
equiped with relations — events on a calendar,
cells of a spreadsheet, or lines of text.

Core language. The system is born understand-
ing a core language called Dependency-based Ac-
tion Language (DAL), which we created (see Ta-
ble 1 for an overview).

The language composes actions using the usual
but expressive control primitives such as ‘if’,
‘foreach’, ‘repeat’, etc. Actions usually take
sets as arguments, which are represented using
lambda dependency-based compositional seman-
tics (lambda DCS) expressions (Liang, 2013). Be-
sides standard set operations like union, intersec-
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Rule(s) Example(s) Description

A→ A; A select left; add red perform actions sequentially
A→ repeat N A repeat 3-1 add red top repeat action N times

A→ if S A if has color red [select origin] action if S is non-empty
A→ while S A while not has color red [select left of this] action while S is non-empty

A→ foreach S A foreach this [remove has row row of this] action for each item in S
A→ [A] [select left or right; add red; add red top] group actions for precedence
A→ {A} {select left; add red} scope only selection

A→ isolate A isolate [add red top; select has color red] scope voxels and selection

A→ select S select all and not origin set the selection
A→ remove S remove has color red remove voxels

A→ update R S update color [color of left of this] change property of selection
S this current selection
S all | none | origin all voxels, empty set, (0, 0)

R of S | has R S has color red or yellow | has row [col of this] lambda DCS joins
not S | S and S | S or S this or left and not has color red set operations

N | N+N | N -N 1,. . . ,10 | 1+2 | row of this + 1 numbers and arithmetic
argmax R S | argmin R S argmax col has color red superlatives

R color | row | col | height | top | left | · · · voxel relations
C red | orange | green | blue | black | · · · color values
D top | bot | front | back | left | right direction values

S→ very D of S very top of very bot of has color green syntax sugar for argmax
A→ add C [D] | move D add red | add yellow bot | move left add voxel, move selection

Table 1: Grammar of the core language (DAL), which includes actions (A), relations (R), and sets of
values (S). The grammar rules are grouped into four categories. From top to bottom: domain-general
action compositions, actions using sets, lambda DCS expressions for sets, and domain-specific relations
and actions.

tion and complement, lambda DCS leverages the
tree dependency structure common in natural lan-
guage: for the relation ‘color’, ‘has color red’
refers to the set of voxels that have color red, and
its reverse ‘color of has row 1’ refers to the set
of colors of voxels having row number 1. Tree-
structured joins can be chained without using any
variables, e.g., ‘has color [yellow or color of has
row 1]’.

We protect the core language from being rede-
fined so it is always precise and usable.1 In ad-
dition to expressivity, the core language interpo-
lates well with natural language. We avoid explicit
variables by using a selection, which serves as the
default argument for most actions.2 For example,
‘select has color red; add yellow top; remove’
adds yellow on top of red voxels and then removes
the red voxels.

To enable the building of more complex struc-
1Not doing so resulted in ambiguities that propagated un-

controllably, e.g., once ‘red’ can mean many different colors.
2The selection is like the turtle in LOGO, but can be a set.

tures in a more modular way, we introduce a no-
tion of scoping. Suppose one is operating on one
of the palm trees in Figure 2. The user might want
to use ‘select all’ to select only the voxels in that
tree rather than all of the voxels in the scene. In
general, an action A can be viewed as taking a
set of voxels v and a selection s, and producing
an updated set of voxels v′ and a modified selec-
tion s′. The default scoping is ‘[A]’, which is the
same as ‘A’ and returns (v′, s′). There are two
constructs that alter the flow: First, ‘{A}’ takes
(v, s) and returns (v′, s), thus restoring the selec-
tion. This allows A to use the selection as a tem-
porary variable without affecting the rest of the
program. Second, ‘isolate [A]’ takes (v, s), calls
A with (s, s) (restricting the set of voxels to just
the selection) and returns (v′′, s), where v′′ con-
sists of voxels in v′ and voxels in v that occupy
empty locations in v′. This allows A to focus
only on the selection (e.g., one of the palm trees).
Although scoping can be explicitly controlled via
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‘[ ]’, ‘isolate’, and ‘{ }’, it is an unnatural concept
for non-programmers. Therefore when the choice
is not explicit, the parser generates all three pos-
sible scoping interpretations, and the model learns
which is intended based on the user, the rule, and
potentially the context.

3 Learning interactively from definitions

The goal of the user is to build a structure in Vox-
elurn. In Wang et al. (2016), the user provided
interactive supervision to the system by selecting
from a list of candidates. This is practical when
there are less than tens of candidates, but is com-
pletely infeasible for a complex action space such
as Voxelurn. Roughly, 10 possible colors over the
3× 3× 4 box containing the palm tree in Figure 2
yields 1036 distinct denotations, and many more
programs. Obtaining the structures in Figure 1 by
selecting candidates alone would be infeasible.

This work thus uses definitions in addition to se-
lecting candidates as the supervision signal. Each
definition consists of a head utterance and a body,
which is a sequence of utterances that the system
understands. One use of definitions is paraphras-
ing and defining alternative syntax, which helps
naturalize the core language (e.g., defining ‘add
brown top 3 times’ as ‘repeat 3 add brown top’).
The second use is building up complex concepts
hierarchically. In Figure 2, ‘add yellow palm tree’
is defined as a sequence of steps for building the
palm tree. Once the system understands an utter-
ance, it can be used in the body of other defini-
tions. For example, Figure 3 shows the full defini-
tion tree of ‘add palm tree’. Unlike function defi-
nitions in a programming language, our definitions
do not specify the exact arguments; the system has
to learn to extract arguments to achieve the correct
generalization.

The interactive definition process is described in
Figure 4. When the user types an utterance x, the
system parses x into a list of candidate programs.
If the user selects one of them (based on its de-
notation), then the system executes the resulting
program. If the utterance is unparsable or the user
rejects all candidate programs, the user is asked to
provide the definition body for x. Any utterances
in the body not yet understood can be defined re-
cursively. Alternatively, the user can first execute
a sequence of commands X , and then provide a
head utterance for body X .

When constructing the definition body, users

def: add palm tree
def: brown trunk height 3

def: add brown top 3 times
repeat 3 [add brown top]

def: go to top of tree
select very top of has color brown

def: add leaves here
def: select all sides

select left or right or front or back
add green

Figure 3: Defining ‘add palm tree’, tracing back
to the core language (utterances without def:).

begin execute x:
if x does not parse then define x;
if user rejects all parses then define x;
execute user choice

begin define x:
repeat starting with X ← [ ]

user enters x′;
if x′ does not parse then define x′;
if user rejects all x′ then define x′;
X ← [X;x′];

until user accepts X as the def’n of x;

Figure 4: When the user enters an utterance, the
system tries to parse and execute it, or requests
that the user define it.

can type utterances with multiple parses; e.g.,
‘move forward’ could either modify the selec-
tion (‘select front’) or move the voxel (‘move
front’). Rather than propagating this ambiguity
to the head, we force the user to commit to one
interpretation by selecting a particular candidate.
Note that we are using interactivity to control the
exploding ambiguity.

4 Model and learning

Let us turn to how the system learns and predicts.
This section contains prerequisites before we de-
scribe definitions and grammar induction in Sec-
tion 5.

Semantic parsing. Our system is based on a se-
mantic parser that maps utterances x to programs
z, which can be executed on the current state s (set
of voxels and selection) to produce the next state
s′ = JzKs. Our system is implemented as the inter-
active package in SEMPRE (Berant et al., 2013);
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Feature Description
Rule.ID ID of the rule
Rule.Type core?, used?, used by others?
Social.Author ID of author
Social.Friends (ID of author, ID of user)
Social.Self rule is authored by user?
Span (left/right token(s), category)
Scope type of scoping for each user

Table 2: Summary of features.

see Liang (2016) for a gentle exposition.
A derivation d represents the process by which

an utterance x turns into a program z = prog(d).
More precisely, d is a tree where each node
contains the corresponding span of the utterance
(start(d), end(d)), the grammar rule rule(d), the
grammar category cat(d), and a list of child
derivations [d1, . . . , dn].

Following Zettlemoyer and Collins (2005), we
define a log-linear model over derivations d given
an utterance x produced by the user u:

pθ(d | x, u) ∝ exp(θTφ(d, x, u)), (1)

where φ(d, x, u) ∈ Rp is a feature vector and
θ ∈ Rp is a parameter vector. The user u does
not appear in previous work on semantic parsing,
but we use it to personalize the semantic parser
trained on the community.

We use a standard chart parser to construct a
chart. For each chart cell, indexed by the start
and end indices of a span, we construct a list of
partial derivations recursively by selecting child
derivations from subspans and applying a gram-
mar rule. The resulting derivations are sorted by
model score and only the top K are kept. We
use chart(x) to denote the set of all partial deriva-
tions across all chart cells. The set of grammar
rules starts with the set of rules for the core lan-
guage (Table 1), but grows via grammar induction
when users add definitions (Section 5). Rules in
the grammar are stored in a trie based on the right-
hand side to enable better scalability to a large
number of rules.

Features. Derivations are scored using a
weighted combination of features. There are three
types of features, summarized in Table 2.

Rule features fire on each rule used to construct
a derivation. ID features fire on specific rules (by
ID). Type features track whether a rule is part of
the core language or induced, whether it has been

used again after it was defined, if it was used by
someone other than its author, and if the user and
the author are the same (5 + #rules features).

Social features fire on properties of rules that
capture the unique linguistic styles of different
users and their interaction with each other. Author
features capture the fact that some users provide
better, and more generalizable definitions that tend
to be accepted. Friends features are cross products
of author ID and user ID, which captures whether
rules from a particular author are systematically
preferred or not by the current user, due to stylistic
similarities or differences (#users+#users×#users
features).

Span features include conjunctions of the cate-
gory of the derivation and the leftmost/rightmost
token on the border of the span. In addition, span
features include conjunctions of the category of
the derivation and the 1 or 2 adjacent tokens just
outside of the left/right border of the span. These
capture a weak form of context-dependence that is
generally helpful (<≈ V 4 × #cats features for a
vocabulary of size V ).

Scoping features track how the community, as
well as individual users, prefer each of the 3
scoping choices (none, selection only ‘{A}’, and
voxels+selection ‘isolate {A}’), as described in
Section 2. 3 global indicators, and 3 indicators
for each user fire every time a particular scoping
choice is made (3 + 3× #users features).

Parameter estimation. When the user types an
utterance, the system generates a list of candidate
next states. When the user chooses a particular
next state s′ from this list, the system performs an
online AdaGrad update (Duchi et al., 2010) on the
parameters θ according to the gradient of the fol-
lowing loss function:

− log
∑

d:Jprog(d)Ks=s′
pθ(d | x, u) + λ||θ||1,

which attempts to increase the model probability
on derivations whose programs produce the next
state s′.

5 Grammar induction

Recall that the main form of supervision is via user
definitions, which allows creation of user-defined
concepts. In this section, we show how to turn
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these definitions into new grammar rules that can
be used by the system to parse new utterances.

Previous systems of grammar induction for
semantic parsing were given utterance-program
pairs (x, z). Both the GENLEX (Zettlemoyer
and Collins, 2005) and higher-order unifica-
tion (Kwiatkowski et al., 2010) algorithms over-
generate rules that liberally associate parts of x
with parts of z. Though some rules are immedi-
ately pruned, many spurious rules are undoubtedly
still kept. In the interactive setting, we must keep
the number of candidates small to avoid a bad user
experience, which means a higher precision bar
for new rules.

Fortunately, the structure of definitions makes
the grammar induction task easier. Rather than be-
ing given an utterance-program (x, z) pair, we are
given a definition, which consists of an utterance
x (head) along with the body X = [x1, . . . , xn],
which is a sequence of utterances. The body X is
fully parsed into a derivation d, while the head x is
likely only partially parsed. These partial deriva-
tions are denoted by chart(x).

At a high-level, we find matches—partial
derivations chart(x) of the head x that also occur
in the full derivation d of the body X . A grammar
rule is produced by substituting any set of non-
overlapping matches by their categories. As an
example, suppose the user defines

‘add red top times 3’ as ‘repeat 3 [add red top]’.

Then we would be able to induce the following
two grammar rules:

A→ add C D times N :

λCDN.repeat N [add C D]
A→ A times N :

λAN.repeat N [A]

The first rule substitutes primitive values (‘red’,
‘top’, and ‘3’) with their respective pre-terminal
categories (C, D, N ). The second rule contains
compositional categories like actions (A), which
require some care. One might expect that greedily
substituting the largest matches or the match that
covers the largest portion of the body would work,
but the following example shows that this is not
the case:

A1 A1 A1︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
add red left and here = add red left; add red︸ ︷︷ ︸ ︸ ︷︷ ︸

A2 A2

Here, both the highest coverage substitution (A1:
‘add red’, which covers 4 tokens of the body), and
the largest substitution available (A2: ‘add red
left’) would generalize incorrectly. The correct
grammar rule only substitutes the primitive values
(‘red’, ‘left’).

5.1 Highest scoring abstractions

We now propose a grammar induction procedure
that optimizes a more global objective and uses the
learned semantic parsing model to choose substi-
tutions. More formally, let M be the set of partial
derivations in the head whose programs appear in
the derivation dX of the body X:

M
def
= {d ∈ chart(x) :

∃d′ ∈ desc(dX) ∧ prog(d) = prog(d′)},

where desc(dX) are the descendant derivations of
dX . Our goal is to find a packing P ⊆ M ,
which is a set of derivations corresponding to non-
overlapping spans of the head. We say that a pack-
ing P is maximal if no other derivations may be
added to it without creating an overlap.

Let packings(M) denote the set of maximal
packings, we can frame our problem as finding the
maximal packing that has the highest score under
our current semantic parsing model:

P ∗L = argmax
P∈packings(M);

∑

d∈P
score(d). (2)

Finding the highest scoring packing can be
done using dynamic programming on P ∗i for i =
0, 1, . . . , L, whereL is the length of x and P ∗0 = ∅.
Since d ∈M , start(d) and end(d) (exclusive) re-
fer to span in the head x. To obtain this dynamic
program, let Di be the highest scoring maximal
packing containing a derivation ending exactly at
position i (if it exists):

Di = {di} ∪ P ∗start(di), (3)

di = argmax
d∈M ;end(d)=i

score(d ∪ P ∗start(d)). (4)

Then the maximal packing of up to i can be de-
fined recursively as

P ∗i = argmax
D∈{Ds(i)+1,Ds(i)+2,...,Di}

score(D) (5)

s(i) = max
d:end(d)≤i

start(d), (6)
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Input : x, dX , P ∗

Output: rule
r ← x;
f ← dX ;
for d ∈ P ∗ do

r ← r[cat(d)/ span(d)]
f ← λ cat(d).f [cat(d)/d]

return rule (cat(dX)→ r : f)

Algorithm 1: Extract a rule r from a derivation
dX of body X and a packing P ∗. Here, f [t/s]
means substituting s by t in f , with the usual
care about names of bound variables.

where s(i) is the largest index such thatDs(i) is no
longer maximal for the span (0, i) (i.e. there is a
d ∈M on the span start(d) ≥ s(i) ∧ end(d) ≤ i.

Once we have a packing P ∗ = P ∗L, we can go
through d ∈ P ∗ in order of start(d), as in Algo-
rithm 1. This generates one high precision rule per
packing per definition. In addition to the highest
scoring packing, we also use a “simple packing”,
which includes only primitive values (in Voxelurn,
these are colors, numbers, and directions). Un-
like the simple packing, the rule induced from the
highest scoring packing does not always general-
ize correctly. However, a rule that often general-
izes incorrectly should be down-weighted, along
with the score of its packings. As a result, a differ-
ent rule might be induced next time, even with the
same definition.

5.2 Extending the chart via alignment

Algorithm 1 yields high precision rules, but fails
to generalize in some cases. Suppose that ‘move
up’ is defined as ‘move top’, where ‘up’ does not
parse, and does not match anything. We would
like to infer that ‘up’ means ‘top’. To handle this,
we leverage a property of definitions that we have
not used thus far: the utterances themselves. If
we align the head and body, then we would in-
tuitively expect aligned phrases to correspond to
the same derivations. Under this assumption, we
can then transplant these derivations from dX to
chart(x) to create new matches. This is more con-
strained than the usual alignment problem (e.g., in
machine translation) since we only need to con-
sider spans of X which corresponds to derivations
in desc(dX).

Algorithm 2 provides the algorithm for extend-
ing the chart via alignments. The aligned function
is implemented using the following two heuristics:

Input : x,X, dX
for d ∈ desc(dX), x′ ∈ spans(x) do

if aligned(x′, d, (x,X)) then
d′ ← d;
start(d′)← start(x′);
end(d′)← end(x′);
chart(x)← chart(x) ∪ d′

end
end

Algorithm 2: Extending the chart by alignment:
If d is aligned with x′ based on the utterance,
then we pretend that x′ should also parse to d,
and d is transplanted to chart(x) as if it parsed
from x′.

• exclusion: if all but 1 pair of short spans (1
or 2 tokens) are matched, the unmatched pair
is considered aligned.

• projectivity: if d1, d2 ∈ desc(dX) ∩
chart(x), then ances(d1, d2) is aligned to the
corresponding span in x.

With the extended chart, we can run the algo-
rithm from Section 5.1 to induce rules. The trans-
planted derivations (e.g., ‘up’) might now form
new matches which allows the grammar induction
to induce more generalizable rules. We only per-
form this extension when the body consists of one
utterance, which tend to be a paraphrase. Bodies
with multiple utterances tend to be new concepts
(e.g., ‘add green monster’), for which alignment
is impossible. Because users have to select from
candidates parses in the interactive setting, induc-
ing low precision rules that generate many parses
degrade the user experience. Therefore, we induce
alignment-based rules conservatively—only when
all but 1 or 2 tokens of the head aligns to the body
and vice versa.

6 Experiments

Setup. Our ultimate goal is to create a commu-
nity of users who can build interesting structures in
Voxelurn while naturalizing the core language. We
created this community using Amazon Mechani-
cal Turk (AMT) in two stages. First, we had quali-
fier tasks, in which an AMT worker was instructed
to replicate a fixed target exactly (Figure 5), ensur-
ing that the initial users are familiar with at least
some of the core language, which is the starting
point of the naturalization process.
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Figure 5: The target used for the qualifier.

Next, we allowed the workers who qualified to
enter the second freebuilding task, in which they
were asked to build any structure they wanted in
30 minutes. This process was designed to give
users freedom while ensuring quality. The anal-
ogy of this scheme in a real system is that early
users (or a small portion of expert users) have to
make some learning investment, so the system can
learn and become easier for other users.

Statistics. 70 workers passed the qualifier task,
and 42 workers participated in the final free-
building experiment. They built 230 structures.
There were over 103,000 queries consisting of
5,388 distinct token types. Of these, 64,075 utter-
ances were tried and 36,589 were accepted (so an
action was performed). There were 2,495 defini-
tions combining over 15,000 body utterances with
6.5 body utterances per head on average (96 max).
From these definitions, 2,817 grammar rules were
induced, compared to less than 100 core rules.
Over all queries, there were 8.73 parses per utter-
ance on average (starting from 1 for core).

Is naturalization happening? The answer is
yes according to Figure 6, which plots the cum-
mulative percentage of utterances that are core, in-
duced, or unparsable. To rule out that more in-
duced utterances are getting rejected, we consider
only accepted utterances in the middle of Fig-
ure 6, which plots the percentage of induced rules
among accepted utterances for the entire commu-
nity, as well as for the 5 heaviest users. Since un-
parsable utterances cannot be accepted, accepted
core (which is not shown) is the complement of
accepted induced. At the conclusion of the ex-
periment, 72.9% of all accepted utterances are
induced—this becomes 85.9% if we only consider
the final 10,000 accepted utterances.

Three modes of naturalization are outlined in
Table 3. For very common operations, like moving
the selection, people found ‘select left’ too ver-
bose and shorterned this to l, left, >, sel l. One
user preferred ‘go down and right’ instead of ‘se-
lect bot; select right’ in core and defined it as
‘go down; go right’. Definitions for high-level

Figure 6: Learning curves. Top: percentage of
all utterances that are part of the core language,
the induced language, or unparsable by the sys-
tem. Middle: percentage of accepted utterances
belonging to the induced language, overall and for
the 5 heaviest users. Bottom: expressiveness mea-
sured by the ratio of the length of the program to
the length of the corresponding utterance.

concepts tend to be whole objects that are not pa-
rameterized (e.g., ‘dancer’). The bottom plot of
Figure 6 suggests that users are defining and us-
ing higher level concepts, since programs become
longer relative to utterances over time.

As a result of the automatic but implicit gram-
mar induction, some concepts do not generalize
correctly. In definition head ‘3 tall 9 wide white
tower centered here’, arguments do not match the
body; for ‘black 10x10x10 frame’, we failed to to-
kenize.
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Short forms
left, l, mov left, go left, <, sel left
br, black, blu, brn, orangeright, left3
add row brn left 5 := add row brown left 5
Alternative syntax
go down and right := go down; go right
select orange := select has color orange
add red top 4 times := repeat 4 [add red top]
l white := go left and add white
mov up 2 := repeat 2 [select up]
go up 3 := go up 2; go up
Higher level
add red plate 6 x 7, green cube size 4,
add green monster, black 10x10x10 frame,
flower petals, deer leg back, music box, dancer

Table 3: Example definitions. See CodaLab work-
sheet for the full leaderboard.

Learned parameters. Training using L1 regu-
larization, we obtained 1713 features with non-
zero parameters. One user defined many con-
cepts consisting of a single short token, and the
Social.Author feature for that user has the most
negative weight overall. With user compatibil-
ity (Social.Friends), some pairs have large pos-
itive weights and others large negative weights.
The ‘isolate’ scoping choice (which allows easier
hierarchical building) received the most positive
weights, both overall and for many users. The 2
highest scoring induced rules correspond to ‘add
row red right 5’ and ‘select left 2’.

Incentives. Having complex structures show
that the actions in Voxelurn are expressive and that
hierarchical definitions are useful. To incentivize
this behavior, we created a leaderboard which
ranked structures based on recency and upvotes
(like Hacker News). Over the course of 3 days,
we picked three prize categories to be released
daily. The prize categories for each day were
bridge, house, animal; tower, monster, flower;
ship, dancer, and castle.

To incentivize more definitions, we also track
citations. When a rule is used in an accepted ut-
terance by another user, the rule (and its author)
receives a citation. We pay bonuses to top users
according to their h-index. Most cited definitions
are also displayed on the leaderboard. Our qual-
itative results should be robust to the incentives
scheme, because the users do not overfit to the
incentives—e.g., around 20% of the structures are

not in the prize categories and users define com-
plex concepts that are rarely cited.

7 Related work and discussion

This work is an evolution of Wang et al. (2016),
but differs crucially in several ways: While Wang
et al. (2016) starts from scratch and relies on se-
lecting candidates, this work starts with a pro-
gramming language (PL) and additionally relies
on definitions, allowing us to scale. Instead of
having a private language for each user, the user
community in this work shares one language.

Azaria et al. (2016) presents Learning by In-
struction Agent (LIA), which also advocates learn-
ing from users. They argue that developers can-
not anticipate all the actions that users want, and
that the system cannot understand the correspond-
ing natural language even if the desired action is
built-in. Like Jia et al. (2017), Azaria et al. (2016)
starts with an ad-hoc set of initial slot-filling com-
mands in natural language as the basis of further
instructions—our approach starts with a more ex-
pressive core PL designed to interpolate with nat-
ural language. Compared to previous work, this
work studied interactive learning in a shared com-
munity setting and hierarchical definitions result-
ing in more complex concepts.

Allowing ambiguity and a flexible syntax is
a key reason why natural language is easier to
produce—this cannot be achieved by PLs such as
Inform and COBOL which look like natural lan-
guage. In this work, we use semantic parsing tech-
niques that can handle ambiguity (Zettlemoyer
and Collins, 2005, 2007; Kwiatkowski et al., 2010;
Liang et al., 2011; Pasupat and Liang, 2015). In
semantic parsing, the semantic representation and
action space is usually designed to accommodate
the natural language that is considered constant.
In contrast, the action space is considered constant
in the naturalizing PL approach, and the language
adapts to be more natural while accommodating
the action space.

Our work demonstrates that interactive defini-
tions is a strong and usable form of supervision.
In the future, we wish to test these ideas in more
domains, naturalize a real PL, and handle para-
phrasing and implicit arguments. In the process of
naturalization, both data and the semantic gram-
mar have important roles in the evolution of a lan-
guage that is easier for humans to produce while
still parsable by computers.
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