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Abstract

We model a dependency graph as a book,
a particular kind of topological space, for
semantic dependency parsing. The spine
of the book is made up of a sequence of
words, and each page contains a subset
of noncrossing arcs. To build a semantic
graph for a given sentence, we design new
Maximum Subgraph algorithms to gener-
ate noncrossing graphs on each page, and
a Lagrangian Relaxation-based algorithm
to combine pages into a book. Experi-
ments demonstrate the effectiveness of the
book embedding framework across a wide
range of conditions. Our parser obtains
comparable results with a state-of-the-art
transition-based parser.

1 Introduction

Dependency analysis provides a lightweight and
effective way to encode syntactic and semantic
information of natural language sentences. One
of its branches, syntactic dependency parsing
(Kübler et al., 2009) has been an extremely ac-
tive research area, with high-performance parsers
being built and applied for practical use of NLP.
Semantic dependency parsing, however, has only
been addressed in the literature recently (Oepen
et al., 2014, 2015; Du et al., 2015; Zhang et al.,
2016; Cao et al., 2017).

Semantic dependency parsing employs a graph-
structured semantic representation. On the one
hand, it is flexible enough to provide analysis
for various semantic phenomena (Ivanova et al.,
2012). This very flexibility, on the other hand,
brings along new challenges for designing pars-
ing algorithms. For graph-based parsing, no previ-
ously defined Maximum Subgraph algorithm has
simultaneously a high coverage and a polynomial

complexity to low degrees. For transition-based
parsing, no principled decoding algorithms, e.g.
dynamic programming (DP), has been developed
for existing transition systems.

In this paper, we borrow the idea of book em-
bedding from graph theory, and propose a novel
framework to build parsers for flexible depen-
dency representations. In graph theory, a book is
a kind of topological space that consists of a spine
and a collection of one or more half-planes. In
our “book model” of semantic dependency graph,
the spine is made up of a sequence of words, and
each half-plane contains a subset of dependency
arcs. In particular, the arcs on each page com-
pose a noncrossing dependency graph, a.k.a. pla-
nar graph. Though a dependency graph in general
is very flexible, its subgraph on each page is rather
regular. Under the new perspective, semantic de-
pendency parsing can be cast as a two-step task:
Each page is first analyzed separately, and then all
the pages are bound coherently.

Our work is motivated by the extant low-degree
polynomial time algorithm for first-order Max-
imum Subgraph parsing for noncrossing depen-
dency graphs (Kuhlmann and Jonsson, 2015). We
enhance existing work with new exact second- and
approximate higher-order algorithms. Our algo-
rithms facilitate building with high accuracy the
partial semantic dependency graphs on each page.
To produce a full semantic analysis, we also need
to integrate partial graphs on all pages into one co-
herent book. To this end, we formulate the prob-
lem as a combinatorial optimization problem, and
propose a Lagrangian Relaxation-based algorithm
for solutions.

We implement a practical parser in the
new framework with a statistical disambiguation
model. We evaluate this parser on four data sets:
those used in SemEval 2014 Task 8 (Oepen et al.,
2014), and the dependency graphs extracted from
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Figure 1: A fragment of a semantic dependency
graph.

CCGbank (Hockenmaier and Steedman, 2007).
On all data sets, we find that our higher-order pars-
ing models are more accurate than the first-order
baseline. Experiments also demonstrate the effec-
tiveness of our page binding algorithm. Our new
parser can be taken as a graph-based parser ex-
tended for more general dependency graphs. It
parallels the state-of-the-art transition-based sys-
tem of Zhang et al. (2016) in performance.

The implementation of our parser is avail-
able at http://www.icst.pku.edu.cn/
lcwm/grass.

2 Background

2.1 Semantic Dependency Graphs

A dependency graph G = (V, A) is a labeled di-
rected graph for a sentence s = w1, . . . , wn. The
vertex set V consists of n vertices, each of which
corresponds to a word and is indexed by an integer.
The arc set A represents the labeled dependency
relations of the particular analysis G. Specifically,
an arc, viz. a(i,j,l), represents a dependency rela-
tion l from head wi to dependent wj .

Semantic dependency parsing is the task of
mapping a natural language sentence into a formal
meaning representation in the form of a depen-
dency graph. Figure 1 shows a graph fragment of a
noun phrase. This semantic graph is grounded on
Combinatory Categorial Grammar (CCG; Steed-
man, 2000), and can be taken as a proxy for
predicate–argument structure. The graph includes
most semantically relevant non-anaphoric local
(e.g. from “wants” to “Mark”) and long-distance
(e.g. from “buy” to “company”) dependencies.

2.2 Maximum Subgraph Parsing

Usually, syntactic dependency analysis employs
tree-shaped representations. Dependency parsing,
thus, can be formulated as the search for a max-
imum spanning tree (MST) of an arc-weighted
graph. For semantic dependency parsing, where
the target representations are not necessarily trees,

Kuhlmann and Jonsson (2015) proposed to gener-
alize the MST model to other types of subgraphs.
In general, dependency parsing is formulated as
the search for Maximum Subgraph for graph class
G: Given a graph G = (V, A), find a subset
A′ ⊆ A with maximum total weight such that the
induced subgraph G′ = (V, A′) belongs to G. For-
mally, we have the following optimization prob-
lem:

G′(s) = arg max
H∈G(s,G)

∑

p∈H

SCOREPART(s, p)

Here, G(s, G) is the set of all graphs that belong to
G and are compatible with s and G. For parsing,
G is usually a complete graph. SCOREPART(s, p)
evaluates the event that a small subgraph p of a
candidate graph H is good. We define the order of
a part according to the number of dependencies it
contains, in analogy with tree parsing in terminol-
ogy. Previous work only discussed the first-order
case for Maximum Subgraph parsing (Kuhlmann
and Jonsson, 2015). In this paper, we are also in-
terested in higher-order parsing, with a special fo-
cus on factorizations utilizing the following parts:

..
dependency
.

single-side neighbors
.

both-side neighbors
.

both-side tri-neighbors

If G is the set of projective trees or non-
crossing graphs the first-order Maximum Sub-
graph problem can be solved in cubic-time (Eis-
ner, 1996; Kuhlmann and Jonsson, 2015). Un-
fortunately, these two graph classes are not ex-
pressive enough to encode semantic dependency
graphs. Moreover, this problem for several well-
motivated graph classes, including acyclic or 2-
planar graphs, is NP-hard, even if one only consid-
ers first-order factorization. The lack of appropri-
ate decoding algorithms results in one major chal-
lenge for semantic dependency parsing.

2.3 Book Embedding
This section introduces the basic idea about book
embedding from a graph theoretical point of view.
Definition 1. A book is a kind of topological
space that consists of a line, called the spine,
together with a collection of one or more half-
planes, called the pages, each having the spine as
its boundary.

Definition 2. A book embedding of a finite graph
G onto a book B satisfies the following conditions.
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Figure 2: Book embedding for the graph in Figure
1. Arcs are assigned to two pages.

1. Every vertex of G is depicted as a point on
the spine of B.

2. Every edge of G is depicted as a curve that
lies within a single page of B.

3. Every page of B does not have any edge
crossings.

A book embedding separates a graph into sev-
eral subgraphs, each of which contains all vertices,
but only a subset of arcs that are not crossed with
each other. This kind of graph is named noncross-
ing dependency graph by Kuhlmann and Jonsson
(2015) and planar by Titov et al. (2009), Gómez-
Rodrı́guez and Nivre (2010) and many others.

We can formalize a semantic dependency graph
as a book. Take the graph in Figure 1 for example.
We can separate the edges into two sets and take
each set as a single page, as shown in Figure 2.

Empirically, a semantic dependency graph is
sparse enough that it can be that it can be usually
embedded onto a very thin book. To measure the
thickness, we can use pagenumber that is defined
as follows.
Definition 3. The book pagenumber of G is the
minimum number of pages required for a book em-
bedding of G.

We look into the pagenumber of graphs on four
linguistic graph banks (as defined in Section 5).
These corpora are also used for training and eval-
uating our data-driven parsers. The pagenum-
bers are calculated using sentences in the train-
ing sets. Table 1 lists the percentages of com-
plete graphs that can be accounted with books of
different thickness. The percentages of noncross-
ing graphs, i.e. graphs that have pagenumber 1,
vary between 48.23% and 78.26%. The practical
usefulness of the algorithms for computing max-
imum noncrossing graphs will be limited by the
relatively low coverage.

The class of graphs with pagenumber no more
than two has a considerably satisfactory coverage.

PN DM PAS CCD PSD
1 69.83% 60.07% 48.23% 78.26%
2 29.85% 39.46% 49.86% 20.12%
3 0.31% 0.46% 1.71% 1.39%
4 0 0.02% 0.18% 0.21%
5 0 0 0.02% 0.02%
6 0 0 0 0.01%

Table 1: Coverage in terms of complete graphs
with respect to different pagenumbers (“PN” for
short). “DM,” “PAS,” “CCD” and “PSD” are short
for DeepBank, Enju HPSGBank, CCGBank and
Prague Dependency Treebank.

It can account for more than 98% of the graphs
and sometimes close to 100% in each data set.
Unfortunately, the power of Maximum Subgraph
parsing is limited given that finding the maximum
acyclic subgraph when pagenumber is at most k
is NP-hard for k ≥ 2 (Kuhlmann and Jonsson,
2015). As an alternative, we propose to model a
semantic graph as a book, in which the spine is
made up of a sequence of words, and each half-
plane contains a subset of dependency arcs. To
build a semantic graph for a given sentence, we de-
sign new parsing algorithms to generate noncross-
ing graphs on each page (Section 3), and a La-
grangian Relaxation-based algorithm to integrate
pages into a book (Section 4).

3 Maximum Subgraph for Noncrossing
Graphs

We introduce several DP algorithms for cal-
culating the maximum noncrossing dependency
graphs. Each algorithm visits all the spans from
bottom to top, finding the best combination of
smaller structures to form a new structure, accord-
ing to the scores of first- or higher-order features.
For sake of conciseness, we focus on undirected
graphs and treat direction of linguistic dependen-
cies as edge labels1. We will use e(i,j,l)(i < j) or
simply e(i,j) to indicate an edge in either direction

1 The single-head property does not hold. We currently
do not consider other constraints of directions. So predic-
tion of the direction of one edge does not affect prediction
of other edges as well as their directions. The directions can
be assigned locally, and our parser builds directed rather than
undirected graphs in this way. Undirected graphs are only
used to conveniently illustrate our algorithms. All experi-
mental results in Section 5 consider directed dependencies in
a standard way. We use the official evaluation tool provided
by SDP2014 shared task. The numberic results reported in
this paper are directly comparable to results in other papers.
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Figure 3: The sub-problems of first-order factor-
ization and the decomposition for C[s, e, l].

between i and j.
For sake of formal concision, we introduce the

algorithm of which the goal is to calculate the
maximum score of a subgraph. Extracting corre-
sponding optimal graphs can be done in a num-
ber of ways. For example, we can maintain an
auxiliary arc table which is populated parallel to
the procedure of obtaining maximum scores. We
define two score functions: (1) sfst(s, e, l) as-
signs a score to an individual edge e(s,e,l) and (2)
sscd(s, e1, e2, l1, l2) assigns a score to a pair of
neighboring edges e(s,e1,l1) and e(s,e2,l2).

3.1 First-Order Factorization
Given a sentence, we define two DP tables, namely
O[s, e] and C[s, e, l] which represents the value of
the highest scoring noncrossing graphs that spans
sequences of words of a sentence. The two ta-
bles are related to two sub-problems, as graphi-
cally shown in Figure 3. The following is their
explaination.

Open O[s, e] is intended to represent the highest
weighted subgraph spanning ws to we. The
subgraphs related to O[s, e] may or may not
contain e(s,e).

Closed C[s, e, l] represents the highest weighted
subgraph spanning ws to we too. But the
subgraphs related to C[s, e, l] must contain
e(s,e,l).

O[s, e] can be obtained by one of the following
combinations:

• C[s, e, l](l ∈ L), if there is an edge between
s and e with label l.

• C[s, k, l] + O[k, e](l ∈ L, s < k < e), if
e(s,e) does not exist and there is an edge with
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Figure 4: The decomposition for C[s, e, l] in exact
single-side second-order factorization.

label l between s and some node in this span.
k is the farthest node linked to s.

• O[s + 1, e], if e(s,e) does not exist and there
is no edge to its right in this span.

C[s, e, l] can be obtained by one of the following
combinations:

• O[s + 1, e] + sfst(s, e, l), if s has no edge to
its right;

• C[s, k, l′] + O[k, e] + sfst(s, e, l)(l
′ ∈ L, s <

k < e), if there is an edge from s to some
node in the span.

For each edge, there are two directions for the
edge, we encode the directions into the label l,
and treat it as undirected edge. We need to search
for a best split and a best label for every span, so
the time complexity of the algorithm is O(n3|L|)
where n is the length of the sentence and L is the
set of labels.

3.2 Second-Order Single Side Factorization

We propose a new algorithm concerning single-
side second-order factorization. The DP tables, as
well as the decomposition for the open problem,
are the same as in the first order factorization. The
decomposition of C[s, e, l] is very different. In or-
der to score second-order features from adjacent
edges in the same side, which is similar to sibling
features for tree parsing (McDonald and Pereira,
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2006), we need to find the rightmost node adja-
cent to s, denoted as rs, and the leftmost node
adjacent to e, denoted as le, and here we have
s < rs ≤ le < e. And, sometimes, we split
C[s, e, l] into three parts to capture the neighbor
factors on both endpoints. In summary, C[s, e, l]
can be obtained by one of the following combina-
tion (as graphically shown in Figure 4):

• O[s + 1, e − 1] + sfst(s, e, l) +
sscd(s, nil, e, nil, l) + sscd(e, nil, s, nil, l), if
there is no edge from s/e to any node in the
span.

• C[s, rs, l
′] + O[rs, e − 1] + sfst(s, e, l) +

sscd(s, rs, e, l
′, l) + sscd(e, nil, s, nil, l) (s <

rs < e), if there is no edge from e to any
node in the span.

• O[s + 1, le] + C[le, e, l
′] + sfst(s, e, l) +

sscd(e, le, s, l
′, l) + sscd(s, nil, e, nil, l) (s <

le < e), if there is no edge from s to any
node in the span.

• C[s, rs, l
′] + O[rs, le] + C[le, e, l

′′] +
sfst(s, e, l) + sscd(s, rs, e, l

′, l) +
sscd(e, le, s, l

′′, l) (s < rs ≤ le < e),
otherwise.

For the last combination, we need to search
for two best separating words, namely sr and
le, and two best labels, namely l′ and l′, so the
time complexity of this second-order algorithm is
O(n4|L|2).

3.3 Generalized Higher-Order Parsing
Both of the above two algorithms are exact de-
coding algorithms. Solutions allow for exact de-
coding with higher-order features typically at a
high cost in terms of efficiency. A trade-off be-
tween rich features and exact decoding benefit tree
parsing (McDonald and Nivre, 2011). In particu-
lar, Zhang and McDonald (2012) proposed a gen-
eralized higher-order model that abandons exact
search in graph-based parsing in favor of free-
dom in feature scope. They kept intact Eisner’s
algorithm for first-order parsing problems, while
enhanced the scoring function in an approximate
way by introducing higher-order features.

We borrow Zhang and McDonald’s idea and de-
velop a generalized parsing model for noncrossing
dependency representations. The sub-problems
and their decomposition are much like the first-
order algorithm. The difference is that we expand
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Figure 5: Sub-problems of generalized higher-
order factorization and some of the combinations.

the signature of each structure to include all the
larger context required to compute higher-order
features. For example, we can record the leftmost
and the rightmost edges in the open structure to get
the tri-neighbor features. The time complexity is
thus always O(n3B2), no matter how complicat-
edly higher-order features are incorporated.

We focus on five factors introduced in Section
2.2. Still consider single-side second-order factor-
ization. We keep the closed structure the same but
modify the open one to O[s, e; rs, le, ls,rs , lle,e].
During parsing, we only record the top-B combi-
nations of label concerning e(s,e) and related rs, le,
ls,rs and lle,e. The split of a structure is similar to
the first-order algorithm, shown in Figure 5. Note
that rs may be e and le may be s. In this way, we
know exactly whether or not there is an edge from
s to e in a refined open structure. This is different
from the intuition of the design of the open struc-
ture when we consider first-order factorization.

4 Finding and Binding Pages

Statistics presented in Table 1 indicate that the
coverage of noncrossing dependency graphs is rel-
atively low. If we treat semantic dependency pars-
ing as Maximum Subgraph parsing, the practical
usefulness of the algorithms introduced above is
rather limited accordingly. To deal with this prob-
lem, we model a semantic graph as a book, and
view semantic dependency parsing as finding a
book with coherent optimal pages. Given the con-
siderably high coverage of pagenumber at most 2,
we only consider 2-page books.
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Figure 6: Every non-crossing arc is repeatedly
assigned to every page.

4.1 Finding Pages via Coloring

In general, finding the pagenumber of a graph
is NP-hard (Gómez-Rodrı́guez and Nivre, 2010).
However, it is easy to figure out that the problem
is solvable if the pagenumber is at most 2. For-
tunately, a semantic dependency graph is not so
dense that it can be usually embedded onto a very
thin book with only 2 pages. For a structured pre-
diction problem, the structural information of the
output produced by a parser is very important. The
density of semantic dependency graphs therefore
results in a defect: The output’s structural infor-
mation is limited because only a half of arcs on
average are included in one page. To enrich the
structural information, we put into each page the
arcs that do not cross with any other arcs. See Fig-
ure 6 for example.

We utilize an algorithm based on coloring to de-
compose a graph G = (V,A) into two noncross-
ing subgraphs GA = (V, AB) and GB = (V, AB).
A detailed description is included in the supple-
mentary note. The key idea of our algorithm is to
color each crossing arc in two colors using depth-
first search. When we color an arc ex, we exam-
ine all arcs crossing with ex. If one of them, say
ey, has not been examined and can be colored in
the other color (no crossing arc of ey has the same
color with ey), we color ey and then recursively
process ey. Otherwise, ey is marked as a bad arc
and dropped from both AA and AB . After color-
ing all the crossing arcs, we add every arc in dif-
ferent color to different subgraphs. Specially, all
noncrossing arcs are assigned to both AA and AB .

4.2 Binding Pages via Lagrangian Relaxation

Applying the above algorithm, we can obtain two
corpora to train two noncrossing dependency pars-
ing models. In other words, we can learn two
score functions fA and fB to score noncrossing

dependency graphs. Given the trained models and
a sentence, we can find two optimal noncrossing
graphs, i.e. find the solutions for arg maxg fA(g)
and arg maxg fB(g), respectively.

We can put all the arcs contained in gA =
arg maxg fA(g) and gB = arg maxg fB(g) to-
gether as our parse for the sentence. This naive
combination always gives a graph with a recall
much higher than the precision. The problem is
that a naive combination does not take the agree-
ments of the graphs on the two pages into consid-
eration, and thus loses some information. To com-
bine the two pages in a principled way, we must
do joint decoding to find two graphs gA and gB to
maximize the score fA(gA) + fB(gB), under the
following constraints.

gA(i, j) ≤
∑

cross((i,j),(i′,j′))

gB(i′, j′) + gB(i, j)

gB(i, j) ≤
∑

cross((i,j),(i′,j′))

gA(i′, j′) + gA(i, j)

∀i, j
The functionality of cross is to figure out whether
e(i,j) and e(i′,j′) cross. The meaning of the first
constraint is: When there is an arc e(i,j) in the first
graph, e(i,j) is also in the second graph, or there is
an arc e(i′,j′) in the second graph which cross with
e(i,j). So is the second one. All constraints are
linear and can be written in a simplified way as,

AgA + BgB ≤ 0

where A and B are matrices that can be con-
structed by checking all possible crossing arc
pairs. In summary, we have the following con-
strained optimization problem,

min. −fA(gA)− fB(gB)
s.t. gA, gB are noncrossing graphs

AgA + BgB ≤ 0

The Lagrangian of the optimization problem is

L(gA, gB; u)
= −fg(gA)− ft(gB) + u⊤(AgA + BgB)

where u is the Lagrangian multiplier. Then the
dual is

L(u) = min
gA,gB

L(gA, gB; u)

= max
gA

(fg(gA)− u⊤AgA)

+max
gB

(fy(gB)− u⊤BgB)
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BINDTWOPAGES(gA, gB)
1 u(0) ← 0
2 for k ← 0..T do
3 gA ← arg maxg fA(g)− u(k)⊤Ag

4 gB ← arg maxg fB(g)− u(k)⊤Bg

5 if AgA + BgB ≤ 0 then
6 return gA, gB

7 else
8 u(k+1) ← u(k) + α(k)(AgA + BgB)
9 return gA, gB

Figure 7: The page binding algorithm.

We instead try to find the solution for
maxu L(u). By using a subgradient method to cal-
culate maxu L(u), we have an algorithm for joint
decoding (see Figure 7). L(u) is divided into two
optimization problems which can be decoded eas-
ily. Each sub-problem is still a parsing problem
for noncrossing graphs. Only the scores of factors
are modified (see Line 3 and 4). Specifically, to
modify the first order weights of edges, we take a
subtraction of u⊤A in the first model and a sub-
straction of u⊤B in the second one. In each it-
eration, after obtaining two new parsing results,
we check whether the constraints are satisfied. If
the answer is “yes,” we stop and return the merged
graph. Otherwise, we update u in a way to in-
crease L(u) (see Line 8).

5 Experiments

5.1 Data Sets

To evaluate the effectiveness of book embed-
ding in practice, we conduct experiments on un-
labeled parsing using four corpora: CCGBank
(Hockenmaier and Steedman, 2007), DeepBank
(Flickinger et al., 2012), Enju HPSGBank (En-
juBank; Miyao et al., 2004) and Prague Depen-
dency TreeBank (PCEDT; Hajic et al., 2012), We
use “standard” training, validation, and test splits
to facilitate comparisons. Following previous ex-
perimental setup for CCG parsing, we use sec-
tion 02-21 as training data, section 00 as the de-
velopment data, and section 23 for testing. The
other three data sets are from SemEval 2014 Task
8 (Oepen et al., 2014), and the data splitting policy
follows the shared task. All the four data sets are
publicly available from LDC (Oepen et al., 2016).

Experiments for CCG analysis were performed
using automatically assigned POS-tags generated
by a symbol-refined HMM tagger (Huang et al.,

2010). For the other three data sets we use POS-
tags provided by the shared task. We also use fea-
tures extracted from trees. We consider two types
of trees: (1) syntactic trees provided as a com-
panion analysis by the shared task and CCGBank,
(2) pseudo trees (Zhang et al., 2016) automatically
extracted from semantic dependency annotations.
We utilize the Mate parser (Bohnet, 2010) to gen-
erate pseudo trees for all data sets and also syntac-
tic trees for CCG analysis, and use the companion
syntactic analysis provided by the shared task for
the other three data sets.

5.2 Statistical Disambiguation
Our parsing algorithms can be applied to scores
originated from any source, but in our experiments
we chose to use the framework of global linear
models, deriving our scores as:

SCOREPART(s, p) = w⊤ϕ(s, p)

ϕ is a feature-vector mapping and w is a param-
eter vector. p may refer to a single arc, a pair of
neighboring arcs, or a general tuple of arcs, ac-
cording to the definition of a parsing model. For
details we refer to the source code. We chose the
averaged structured perceptron (Collins, 2002) for
parameter estimation.

5.3 Results of Practical Parsing
We evaluate five decoding algorithms:

M1 first-order exact algorithm,

M2 second-order exact algorithm with single-
side factorization,

M3 second-order approximate algorithm2 with
single-side factorization,

M4 second-order approximate algorithm with
single- and both-side factorization,

M5 third-order approximate algorithm with
single- and both-side factorization.

5.3.1 Effectiveness of Higher-Order Features
Table 2 lists the accuracy of Maximum Subgraph
parsing. The output of our parser was evaluated
against each dependency in the corpus. We report
unlabeled precision (UP), recall (UR) and f-score
(UF). We can see that the first-order model obtains
a considerably good precision, with rich features.

2The beam size is set to 4 for all approximate algorithms.
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DeepBank EnjuBank CCGBank PCEDT
UP UR UF UP UR UF UP UR UF UP UR UF

Sy
nt

ax
Tr

ee
M1 MS 90.97 86.11 88.47 92.92 89.71 91.29 94.21 88.70 91.37 91.49 86.39 88.87
M2 91.04 87.47 89.22 93.03 90.48 91.74 93.95 88.96 91.39 91.11 87.56 89.30
M3 90.94 87.65 89.27 93.27 90.62 91.93 93.93 89.11 91.46 91.25 87.66 89.42
M4 91.02 87.78 89.37 93.18 90.65 91.90 94.02 89.14 91.51 91.43 87.98 89.67
M5 90.91 87.51 89.18 93.15 90.57 91.84 93.91 89.19 91.49 91.29 87.96 89.59
M4 NC 88.17 90.46 89.30 91.42 93.42 92.41 92.36 93.10 92.73 89.25 90.34 89.79

LR 90.72 88.80 89.75 92.75 92.49 92.62 93.50 92.48 92.98 90.98 89.04 90.00

Ps
eu

do
Tr

ee

M1 MS 90.75 86.13 88.38 93.38 90.20 91.76 94.21 88.55 91.29 90.62 85.69 88.08
M2 90.13 87.01 88.54 93.18 90.63 91.89 93.96 88.54 91.17 89.92 86.55 88.20
M3 90.39 87.20 88.77 93.20 90.64 91.90 93.90 88.98 91.37 90.07 86.69 88.35
M4 90.31 87.25 88.76 93.18 90.67 91.91 94.01 89.04 91.46 90.03 86.84 88.40
M5 90.17 87.11 88.61 93.13 90.62 91.86 93.87 89.00 91.37 90.21 86.93 88.54
M4 NC 88.39 89.85 89.11 91.63 93.24 92.43 92.83 92.97 92.90 88.51 88.97 88.74

LR 90.01 88.55 89.27 92.79 92.59 92.69 93.78 92.28 93.02 90.04 87.92 88.97

Table 2: Parsing accuracy evaluated on the development sets. “MS” is short for Maximum Subgraph
parsing. “NC” and “LR” are short for naive combination and Lagrangian Relaxation.
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Figure 8: The termination rate of page binding. The left and right diagrams show the results obtained
when applying syntactic and pseudo tree features respectively.

But due to the low coverage of the noncrossing
dependency graphs, a set of dependencies can not
be built. This property has a great impact on re-
call. Furthermore, we can see that the introduction
of higher-order features improves parsing substan-
tially for all data sets, as expected. When pseudo
trees are utilized, the improvement is marginal.
We think the reason is that we have already in-
cluded many higher-order features at the stage of
pseudo tree parsing.

5.3.2 Effectiveness of Approximate Parsing

Perhaps surprisingly approximate parsing with
single-side second order features and cube pruning
is even slightly better than exact parsing. This re-
sult demonstrates the effectiveness of generalized
dependency parsing. Further including third-order
features does not improve parsing accuracy.

5.3.3 Effectiveness of Page Binding

When arcs are assigned to two sets, we can sep-
arately train two parsers for producing two types
of noncrossing dependency graphs. These two
parsers can be integrated using a naive merger or a
LR-based merger. Table 2 also shows the accuracy
obtained by the second-order model M4. The ef-
fectivenss of the Lagrangian Relaxation-based al-
gorithm for binding pages is confirmed.

5.3.4 Termination Rate of Page Binding

Figure 8 presents the termination rate with respec-
tive to the number of iterations. Here we apply M4
with syntax and pseudo tree features. In practice
the Lagrangian Relaxation-based algorithm finds
solutions in a few iterations for a majority of sen-
tences. This suggests that even though the joint
decoding is an iterative procedure, satisfactory ef-
ficiency is still available.
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DeepBank EnjuBank CCGBank PCEDT
UP UR UF UP UR UF UP UR UF UP UR UF

M4-LR Syn 89.99 87.77 88.87 92.87 92.04 92.46 93.45 92.51 92.98 89.58 87.73 88.65
Pse 90.01 88.16 89.08 93.17 92.48 92.83 93.66 92.06 92.85 89.27 87.37 88.31

ZDSW Pse 89.04 88.85 88.95 92.92 92.83 92.87 92.49 92.30 92.40 - - - - - -
Peking 91.72 89.92 90.81 94.46 91.61 93.02 - - - - - - 91.79 86.02 88.81

Table 3: Parsing accuracy evaluated on the test sets.

5.4 Comparison with Other Parsers
We show the parsing results on the test data to-
gether with some relevant results from related
work. We compare our parser with two other
systems: (1) ZDSW (Zhang et al., 2016) is a
transition-based system that obtains state-of-the-
art accuracy; we present the results of their best
single parsing model; (2) Peking (Du et al., 2014)
is the best-performing system in the shared task; it
is a hybrid system that integrate more than ten sub-
models to achieve high accuracy. Our parser can
be taken as a graph-based parser. It reaches state-
of-the-art performance produced by the transition-
based system. On DeepBank and EnjuBank, the
accuracy of our parser is equivalent to ZDSW,
while on CCGBank, our parser is significantly bet-
ter.

There is still a gap between our single pars-
ing model and Peking hybrid model. For a ma-
jority of NLP tasks, e.g. parsing (Surdeanu and
Manning, 2010), semantic role labeling (Koomen
et al., 2005), hybrid systems that combines com-
plementary strength of heterogeneous models per-
form better. But good individual system is the cor-
nerstone of hybrid systems. Better design of single
system almost always benefits system ensemble.

6 Conclusion

We propose a new data-driven parsing frame-
work, namely book embedding, for semantic de-
pendency analysis, viz. mapping from natural lan-
guage sentences to bilexical semantic dependency
graphs. Our work includes two contributions:

1. new algorithms for maximum noncrossing
dependency parsing.

2. a Lagrangian Relaxation based algorithm to
combine noncrossing dependency subgraphs.

Experiments demonstrate the effectiveness of the
book embedding framework across a wide range
of conditions. Our graph-based parser obtains
state-of-the-art accuracy.
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Sandra Kübler, Ryan T. McDonald, and Joakim Nivre.
2009. Dependency Parsing. Synthesis Lectures on
Human Language Technologies. Morgan & Clay-
pool.

Marco Kuhlmann and Peter Jonsson. 2015. Parsing to
noncrossing dependency graphs. Transactions of the
Association for Computational Linguistics 3:559–
570.

Ryan McDonald and Fernando Pereira. 2006. Online
learning of approximate dependency parsing algo-
rithms. In Proceedings of 11th Conference of the
European Chapter of the Association for Computa-
tional Linguistics (EACL-2006)). volume 6, pages
81–88.

Ryan T. McDonald and Joakim Nivre. 2011. Analyz-
ing and integrating dependency parsers. Computa-
tional Linguistics 37(1):197–230.

Yusuke Miyao, Takashi Ninomiya, and Jun ichi Tsujii.
2004. Corpus-oriented grammar development for
acquiring a head-driven phrase structure grammar
from the penn treebank. In IJCNLP. pages 684–693.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinková, Dan Flickinger,
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