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Abstract

Text similarity measures are used in multi-
ple tasks such as plagiarism detection, in-
formation ranking and recognition of para-
phrases and textual entailment. While re-
cent advances in deep learning highlighted
further the relevance of sequential mod-
els in natural language generation, existing
similarity measures do not fully exploit
the sequential nature of language. Exam-
ples of such similarity measures include n-
grams and skip-grams overlap which rely
on distinct slices of the input texts. In
this paper we present a novel text sim-
ilarity measure inspired from a common
representation in DNA sequence align-
ment algorithms. The new measure, called
TextFlow, represents input text pairs as
continuous curves and uses both the actual
position of the words and sequence match-
ing to compute the similarity value. Our
experiments on eight different datasets
show very encouraging results in para-
phrase detection, textual entailment recog-
nition and ranking relevance.

1 Background

The number of pages required to print the content
of the World Wide Web was estimated to 305 bil-
lion in a 2015 article1. While a big part of this
content consists of visual information such as pic-
tures and videos, texts also continue growing at a
very high pace. A recent study shows that the av-
erage webpage weights 1,200 KB with plain text
accounting for up to 16% of that size2.

While efficient distribution of textual data and
computations are the key to deal with the increas-

1http://goo.gl/p9lt7V
2http://goo.gl/c41wpa

ing scale of textual search, similarity measures
still play an important role in refining search re-
sults to more specific needs such as the recognition
of paraphrases and textual entailment, plagiarism
detection and fine-grained ranking of information.
These tasks are also often performed on dedicated
document collections for domain-specific applica-
tions where text similarity measures can be di-
rectly applied.

Finding relevant approaches to compute text
similarity motivated a lot of research in the last
decades (Sahami and Heilman, 2006; Hatzivas-
siloglou et al., 1999), and more recently with deep
learning methods (Socher et al., 2011; Yih et al.,
2011; Severyn and Moschitti, 2015). However,
most of the recent advances focused on designing
high performance classification methods, trained
and tested for specific tasks and did not offer a
standalone similarity measure that could be ap-
plied (i) regardless of the application domain and
(ii) without requiring training corpora.

For instance, Yih and Meek (2007) presented
an approach to improve text similarity measures
for web search queries with a length ranging from
one word to short sequences of words. The pro-
posed method is tailored to this specific task, and
the training models are not expected to perform
well on different kinds of data such as sentences,
questions or paragraphs. In a more general study,
Achananuparp et al. (2008) compared several text
similarity measures for paraphrase recognition,
textual entailment, and the TREC 9 question vari-
ants task. In their experiments the best perfor-
mance was obtained with a linear combination
of semantic and lexical similarities, including a
word order similarity proposed in (Li et al., 2006).
This word order similarity is computed by con-
structing first two vectors representing the com-
mon words between two given sentences and using
their respective positions in the sentences as term
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weights. The similarity value is then obtained by
subtracting the two vectors and taking the absolute
value. While such representation takes into ac-
count the actual positions of the words, it does not
allow detecting sub-sequence matches and takes
into account missing words only by omission.

More generally, existing standalone (or tradi-
tional) text similarity measures rely on the inter-
sections between token sets and/or text sizes and
frequency, including measures such as the Co-
sine similarity, Euclidean distance, Levenshtein
(Sankoff and Kruskal, 1983), Jaccard (Jain and
Dubes, 1988) and Jaro (Jaro, 1989). The se-
quential nature of natural language is taken into
account mostly through word n-grams and skip-
grams which capture distinct slices of the analysed
texts but do not preserve the order in which they
appear.

In this paper, we use intuitions from a common
representation in DNA sequence alignment to de-
sign a new standalone similarity measure called
TextFlow (XF). The proposed measure uses at the
same time the full sequence of input texts in a
natural sub-sequence matching approach together
with individual token matches and mismatches.
Our contributions can be detailed further as fol-
lows:

• A novel standalone similarity measure
which:

– exploits the full sequence of words in
the compared texts.

– is asymmetric in a way that allows it
to provide the best performance on dif-
ferent tasks (e.g., paraphrase detection,
textual entailment and ranking).

– when required, it can be trained with a
small set of parameters controlling the
impact of sub-sequence matching, posi-
tion gaps and unmatched words.

– provides consistent high performance
across tasks and datasets compared to
traditional similarity measures.

• A neural network architecture to train
TextFlow parameters for specific tasks.

• An empirical study on both performance con-
sistency and standard evaluation measures,
performed with eight datasets from three dif-
ferent tasks.

Figure 1: Dot matrix example for 2 DNA se-
quences (Mount, 2004)

• A new evaluation measure, called CORE,
used to better show the consistency of a sys-
tem at high performance using both its rank
average and rank variance when compared to
competing systems over a set of datasets.

2 The TextFlow Similarity

XF is inspired from a dot matrix representation
commonly used in pairwise DNA sequence align-
ment (cf. figure 1). We use a similar dot matrix
representation for text pairs and draw a curve os-
cillating around the diagonal (cf. figure 2). The
area under the curve is considered to be the dis-
tance between the two text pairs which is then
normalized with the matrix surface. For practical
computation, we transform this first intuitive rep-
resentation using the delta of positions as in figure
3. In this setting, the Y axis is the delta of posi-
tions of a word occurring in the two texts being
compared. If the word does not occur in the tar-
get text, the delta is considered to be a maximum
reference value (l in figure 2).

The semantics are: the bigger the area un-
der curve is, the lower the similarity between the
compared texts. XF values are real numbers
in the [0,1] interval, with 1 indicating a perfect
match, and 0 indicating that the compared texts
do not have any common tokens. With this rep-
resentation, we are able to take into account all
matched words and sub-sequences at the same
time. The exact value for the XF similarity be-
tween two texts X = {x1, x2, .., xn} and Y =
{y1, y2, .., ym} is therefore computed as:
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Figure 2: Illustration of TextFlow Intuition

Figure 3: Practical TextFlow Computation

XF (X,Y ) = 1− 1

nm

n∑

i=2

1

Si
Ti,i−1(X,Y )

− 1

nm

n∑

i=2

1

Si
Ri,i−1(X,Y )

(1)

With Ti,i−1(X,Y ) corresponding to the triangu-
lar area in the [i − 1, i] step (cf. figure 3)
and Ri,i−1(X,Y ) corresponding to the rectangu-
lar component. They are expressed as:

Ti,i−1(X,Y ) =
|∆P (xi, X, Y )−∆P (xi−1, X, Y )|

2
(2)

and:

Ri,i−1(X,Y ) = Min(∆P (xi, X, Y ),∆P (xi−1, X, Y ))
(3)

With:

• ∆P (xi, X, Y ) the minimum difference be-
tween xi positions in X and Y . xi position
in X is multiplied by the factor |Y ||X| for nor-
malization. If xi /∈ X ∩ Y , ∆P (xi, X, Y )

is set to the same reference value equal to m,
(i.e., the cost of a missing word is set by de-
fault to the length of the target text), and:

• Si is the length of the longest matching se-
quence between X and Y including the word
xi, if xi ∈ X ∩ Y , or 1 otherwise.

XF computation is performed in O(nm) in the
worst case where we have to check all tokens in the
target text Y for all tokens in the input textX . XF
is an asymmetric similarity measure. Its asymmet-
ric aspect has interesting semantic applications as
we show in the example below (cf. figure 2). The
minimum value of XF provided the best differ-
entiation between positive and negative text pairs
when looking for semantic equivalence (i.e., para-
phrases), the maximum value was among the top
three for the textual entailment example. We con-
duct this comparison at a larger scale in the evalu-
ation section.

We add 3 parameters to XF in order to repre-
sent the importance that should be given to posi-
tion deltas (Position factor α), missing words (sen-
sitivity factor β), and sub-sequence matching (se-
quence factor γ), such that:

XFα,β,γ(X,Y ) = 1− 1

βnm

n∑

i=2

α

Sγi
T βi,i−1(X,Y )

− 1

βnm

n∑

i=2

α

Sγi
Rβi,i−1(X,Y )

(4)

With:

T βi,i−1(X,Y ) =
|∆βP (xi, X, Y )−∆βP (xi−1, X, Y )|

2
(5)

Rβi,i−1(X,Y ) = Min(∆βP (xi, X, Y ),∆βP (xi−1, X, Y ))
(6)

and:

• ∆βP (xi, X, Y ) = βm, if xi /∈ X ∩ Y

• α < β: forces missing words to always cost
more than matched words.

• Sγi =
{

1ifSi = 1orxi /∈ X ∩ Y
γ SiforSi > 1

The γ factor increases or decreases the impact
of sub-sequence matching, α applies to individ-
ual token matches whether inside or outside a se-
quence, and β increases or decreases the impact of
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Positive Entailment
E1 Under a blue sky with white clouds, a child reaches up to touch the propeller of a plane

standing parked on a field of grass.
E2 A child is reaching to touch the propeller of a plane.

Negative Entailment
E3 Two men on bicycles competing in a race.
E4 Men are riding bicycles on the street.

Positive Paraphrase
P1 The most serious breach of royal security in recent years occurred in 1982 when 30-

year-old Michael Fagan broke into the queen’s bedroom at Buckingham Palace.
P2 It was the most serious breach of royal security since 1982 when an intruder, Michael

Fagan, found his way into the Queen’s bedroom at Buckingham Palace.

Negative Paraphrase
P3 “Americans don’t cut and run, we have to see this misadventure through,” she said.
P4 She also pledged to bring peace to Iraq: “Americans don’t cut and run, we have to see

this misadventure through.”

Task Entailment Recognition Paraphrase Detection
Sentence Pair (E1, E2) (E3, E4) (E1, E2) - (E3, E4) (P1, P2) (P3, P4) (P1, P2) - (P3, P4)
Example class (Pos/Neg) (Pos) (Neg) (Gap) (Pos) (Neg) (Gap)
Jaro-Winkler 0.629 0.712* -0.083** 0.884 0.738 0.146
Levenshtein 0.351 0.259 0.092 0.708 0.577 0.130
Jaccard 0.250* 0.143 0.107 0.571* 0.583 -0.012
Cosine 0.462 0.250 0.212 0.730 0.746** -0.016
Word Overlap 0.800 0.250 0.550 0.800 0.875* -0.075
MIN(XF (x,y), XF(y,x)) 0.260** 0.563** -0.303* 0.693** 0.497 0.196
MAX(XF(x,y), XF(y,x)) 0.707 0.563** 0.144 0.832 0.739 0.093

Figure 4: Example sentences and similarity values. The best value per column is highlighted. The
second best is underlined. Worst and second worst values are followed by one and two stars. Entailment
examples are taken from SNLI (Bowman et al., 2015). Paraphrase examples are taken from MSRP 4.

missing tokens as well as the normalization quan-
tity βnm in equation 4 to keep the similarity val-
ues in the [0,1] range.

2.1 Parameter Training

By default XF has canonical parameters set to 1.
However, when needed, α, β, and γ can be learned
on training data for a specific task. We designed a
neural network to perform this task, with a hidden
layer dedicated to compute the exact XF value. To
do so we compute, for each input text pair, the co-
efficients vector that would lead exactly to the XF
value when multiplied by the vector< α

β ,
α
βγ , 1 >.

Figure 5) presents the training neural network con-
sidering several types of sequences (or transla-
tions) of the input text pairs (e.g., lemmas, words,
synsets).

We use identity as activation function in the
dedicated XF layer in order to have a correct com-
parison with the other similarity measures, includ-
ing canonical XF where the similarity value is pro-
vided in the input layer (cf. figure 6).

3 Evaluation

Datasets. This evaluation was performed on 8
datasets from 3 different classification tasks: Tex-

tual Entailment Recognition, Paraphrase Detec-
tion, and ranking relevance. The datasets are as
follows:

• RTE 1, 2, and 3: the first three datasets from
the Recognizing Textual Entailment (RTE)
challenge (Dagan et al., 2006). Each dataset
consists of sentence pairs which are anno-
tated with 2 labels: entailment, and non-
entailment. They contain respectively (200,
800), (800, 800), and (800, 800) (train, test)
pairs.

• Guardian: an RTE dataset collected from
78,696 Guardian articles5 published from
January 2004 onwards and consisting of 32K
pairs which we split randomly in 90%/10%
training/test sets. Positive examples were
collected from the titles and first sentences.
Negative examples were collected from the
same source by selecting consecutive sen-
tences and random sentences.

• SNLI: a recent RTE dataset consisting of
560K training sentence pairs annotated with

5https://github.com/daoudclarke/
rte-experiment
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Figure 5: NN architecture A1 for XF Parameter Training

3 labels: entailment, neutral and contradic-
tion (Bowman et al., 2015). We discarded the
contradiction pairs as they do not necessarily
represent dissimilar sentences and are there-
fore a random noise w.r.t. our similarity mea-
sure evaluation.

• MSRP: the Microsoft Research Paraphrase
corpus, consisting of 5,800 sentence pairs
annotated with a binary label indicating
whether the two sentences are paraphrases or
not.

• Semeval-16-3B: a dataset of question-
question similarity collected from Stack-
Overflow (Nakov et al., 2016). The dataset
contains 3,169 training pairs and 700 test
pairs. Three labels are considered: ”Perfect
Match”, ”Relevant” or ”Irrelevant”. We com-
bined the first two into the same positive cat-
egory for our evaluation.

• Semeval-14-1: a corpus of Sentences Involv-
ing Compositional Knowledge (Marelli et al.,
2014) consisting of 10,000 English sentence
pairs annotated with both similarity scores
and relevance labels.

Features. After a preprocessing step where we
removed stopwords, we computed the similarity
values using 7 different types of sequences con-
structed, respectively, with the following value
from each token:

• Word (plain text value)

• Lemma

• Part-Of-Speech (POS) tag

• WordNet Synset6 OR Lemma

• WordNet Synset OR Lemma for Nouns

• WordNet Synset OR Lemma for Verbs

• WordNet Synset OR Lemma for Nouns and
Verbs.

In the last 4 types of sequences the lemma is
used when there is no corresponding WordNet
synset. In a first experiment we compare differ-
ent aggregation functions on top of XF (minimum,
maximum and average) in table 1. We used the Li-
bLinear7 SVM classifier for this task.

In the second part of the evaluation, we use neu-
ral networks to compare the efficiency of XFc,
XFt and other similarity measures with in the
same setting. We use the neural net described in
figure 5 for the trained versionXFt and the equiv-
alent architecture presented in figure 6 for all other
similarity measures. For canonical XFc we use
by default the best aggregation for the task as ob-
served in table 3.

6https://wordnet.princeton.edu/
7https://www.csie.ntu.edu.tw/˜cjlin/

liblinear/
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Task Entailment Recognition Paraphrase Detection Ranking Relevance
Datasets RTE 1 RTE 2 RTE 3 Guardian SNLI MSRP Semeval16-t3B Semeval12-t17
XF MIN 55.3 53.8 60.0 77.3 58.0 72.1 77.4 77.8
XF AVG 51.4 1 57.2 62.5 84.9 62.0 72.0 77.6 79.5
XF MAX 53.9 61.3 64.7 86.7 64.3 71.4 76.7 77.7

Table 1: Accuracy evaluation with different aggregations of XF using an SVM classifier.

Figure 6: NN Architecture A2 for the equivalent
evaluation of other similarity measures.

Similarity Measures. We considered nine tra-
ditional similarity measures included in the Sim-
metrics distribution8: Cosine, Euclidean dis-
tance, Word Overlap, Dice coefficient (Dice,
1945), Jaccard(Jain and Dubes, 1988), Damerau,
Jaro-Winkler (JW) (Porter et al., 1997), Leven-
shtein (LEV) (Sankoff and Kruskal, 1983), and
Longest Common Subsequence (LCS) (Friedman
and Sideli, 1992).
Implementation. XF was implemented in Java
as an extension of the Simmetrics package, made
available at this address9. The neural networks
were implemented in Python with TensorFlow10.
We also share the training sets used for both pa-
rameter training and evaluation. The evaluation
was performed on a 4-core laptop with 32GB of
RAM. The initial parameters for XFt were cho-
sen with a random function.
Evaluation Measures. We use the standard ac-
curacy values and F1, precision and recall for the

8https://github.com/Simmetrics/
simmetrics

9https://github.com/ymrabet/TextFlow
10https://www.tensorflow.org/

positive class (i.e., entailment, paraphrase, and
ranking relevance). We also study the relative rank
in performance of each similarity measure across
all datasets using the average rank, the rank vari-
ance and a new evaluation measure called Con-
sistent peRformancE (CORE), computed as fol-
lows for a system m, a set of datasets D, a set
of systems S, and an evaluation measure E ∈
{F1, P recision,Recall, Accuracy}:

CORE
D,S,E

(m) =

MIN
p∈S

(
AVG
d∈D

(RS(Ed(p)) + Vd∈D(RS(Ed(p)))

)

AVG
d∈D

(
RS(Ed(m))

)
+ Vd∈D

(
RS(Ed(m))

) (7)

With RS(Ed(m)) the rank of m according to
the evaluation measure E on dataset d w.r.t. com-
peting systems S. Vd∈D(RS(Ed(m))) is the rank
variance of m over datasets. The results in tables
2, 3, and 4 demonstrate the intuition. Basically,
CORE tells us how consistent a system/method
is in having high performance, relatively to the set
of competing systems S. The maximum value of
CORE is 1 for the best performing system ac-
cording to its rank. It also allows quantifying how
consistently a system achieves high performance
for the remaining systems.

TextFlow outperformed the results obtained
with a combination of word order similarity
and semantic similarities tested in (Achananuparp
et al., 2008), with gaps of +1.0 in F1 and +6.1 ac-
curacy on MSRP and +4.2 F1 and +2.7% accuracy
on RTE 3.

4 Discussion

4.1 Canonical Text Flow
TFc had the best average and micro-average accu-
racy on the 8 classification datasets, with a gap of
+0.4 to +6.3 when compared to the state-of-the-art
measures. It also reached the best precision aver-
age with a gap of +1.8 to +6.3. On the F1 score
level XFc achieved the second best performance
with a gap of -1.7, mainly caused by its under-
performance in recall, where it had the third best
performance with a gap of -6.3 (cf. table 3). On
a rank level, XFc had the best consistent rank for
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Cosine Euc Overlap Dice Jaccard Damerau JW LEV LCS XFC XFT

RTE 1 .561 .564 .550 .504 .511 .557 .532 .561 .568 .550 .575
RTE 2 .575 .555 .598 .566 .572 .548 .541 .551 .548 .597 .612
RTE 3 .652 .562 .636 .637 .630 .567 .538 .567 .562 .627 .647
Guardian .748 .750 .820 .778 .780 .847 .726 .847 .848 .867 .876
SNLI .621 .599 .665 .612 .608 .631 .556 .630 .619 .641 .656
MSRP .719 .689 .720 .729 .731 .687 .699 .685 .717 .724 .732
Semeval-16-3B .756 .734 .769 .781 .780 .759 .751 .759 .737 .777 .782
Semeval-14-1 .790 .756 .779 .783 .786 .749 .719 .749 .757 .783 .798
AVG .678 .651 .692 .674 .675 .668 .633 .669 .670 .696 .710
Micro Avg .699 .675 .725 .700 .700 .701 .646 .701 .701 .726 .739
RANK Avg 5.1 8.2 4.5 5.6 5.5 6.9 10.1 6.7 6.7 4.1 1.2
RANK Var. 9.0 5.9 4.3 10.0 8.6 5.3 1.6 6.2 8.2 2.7 0.2
CORE 0.104 0.103 0.167 0.094 0.104 0.121 0.125 0.113 0.098 0.215 1.000

Table 2: Accuracy values using. The best result is highlighted, the second best is underlined.

Cosine Euc Overlap Dice Jaccard Damerau JW LEV LCS XFC XFT

RTE 1 .612 .564 .636 .512 .523 .578 .513 .583 .494 .565 .599
RTE 2 .579 .590 .662 .565 .558 .549 .516 .551 .555 .616 .646
RTE 3 .705 .598 .682 .695 .682 .608 .556 .607 .603 .665 .690
Guardian .742 .749 .816 .774 .776 .849 .713 .849 .850 .862 .873
SNLI .582 .576 .641 .562 .564 .627 .479 .627 .611 .594 .585
MSRP .808 .797 .812 .814 .813 .784 .802 .783 .804 .804 .810
Semeval-16-3B .632 .462 .625 .648 .644 .544 .545 .547 .508 .633 .662
Semeval-14-1 .764 .707 .748 .753 .746 .706 .680 .706 .714 .744 .673
AVG .678 .630 .702 .665 .663 .655 .600 .656 .642 .685 .692
Micro Avg .684 .656 .716 .679 .677 .691 .608 .692 .688 .702 .687
RANK Avg 4.5 8.12 3.12 5.12 5.5 6.89 9.88 6.62 7.12 4.62 3.88
RANK Var. 9.7 4.7 4.4 14.7 6.6 8.7 1.8 9.1 8.1 2.3 11.0
CORE 0.485 0.538 0.915 0.348 0.571 0.443 0.588 0.438 0.452 1.000 0.464

Table 3: F1 scores. The best result is highlighted, the second best is underlined.

Cosine Euc Overlap Dice Jaccard Damerau JW LEV LCS XFC XFT

RTE 1 .548 .564 .534 .503 .510 .552 .535 .555 .596 .546 .566
RTE 2 .574 .547 .571 .567 .578 .547 .546 .551 .546 .588 .594
RTE 3 .624 .565 .618 .611 .610 .568 .547 .568 .564 .616 .627
Guardian .759 .753 .836 .789 .789 .839 .749 .840 .839 .891 .894
SNLI .644 .608 .690 .642 .632 .631 .577 .630 .621 .679 .735
MSRP .740 .705 .732 .749 .755 .723 .713 .722 .743 .760 .765
Semeval-16-3B .634 .708 .678 .698 .698 .732 .698 .729 .674 .700 .686
Semeval-14-1 .745 .738 .738 .743 .769 .716 .672 .716 .727 .762 .740
AVG .659 .649 .675 .663 .668 .664 .630 .664 .664 .693 .701
Micro Avg .693 .674 .721 .699 .704 .694 .645 .693 .693 .737 .752
RANK Avg. 5.6 7.5 5.9 5.9 5.1 6.1 9.6 6.1 7.1 3.2 2.5
RANK Var. 9.4 10.0 6.4 5.3 7.8 7.0 4.6 7.6 11.6 3.1 6.9
CORE 0.420 0.361 0.515 0.567 0.488 0.482 0.446 0.462 0.338 1.000 0.676

Table 4: Precision values. The best result is highlighted, the second best is underlined.

769



Cosine Euc Overlap Dice Jaccard Damerau JW LEV LCS XFC XFT

RTE 1 .693 .564 .786 .521 .536 .607 .493 .614 .421 .585 .635
RTE 2 .585 .640 .787 .562 .540 .550 .490 .550 .565 .647 .707
RTE 3 .810 .634 .761 .805 .773 .654 .566 .651 .649 .724 .768
Guardian .726 .744 .797 .758 .764 .858 .681 .858 .862 .835 .853
SNLI .531 .548 .600 .499 .510 .624 .409 .625 .601 .527 .486
MSRP .890 .916 .912 .890 .881 .857 .915 .856 .876 .854 .860
Semeval-16 .631 .343 .579 .605 .597 .433 .446 .438 .408 .579 .639
SICK .784 .678 .759 .763 .724 .696 .688 .695 .701 .727 .616
AVG .706 .633 .748 .675 .665 .660 .586 .661 .635 .685 .696
Micro Avg .683 649 .720 .668 .659 .695 .587 .695 .688 .677 .645
RANK Avg. 3.9 7.1 3.5 5.5 6.4 6.1 9.0 6.1 6.6 5.9 5.4
RANK Var. 9.6 12.4 3.4 9.4 5.4 8.1 10.0 11.0 11.7 5.8 14.3
CORE 0.516 0.355 1.000 0.464 0.588 0.486 0.365 0.405 0.378 0.591 0.353

Table 5: Recall values. The best result is highlighted, the second best is underlined.

accuracy, F1 and precision, and the second best for
recall.

4.2 Trained Text Flow

When compared to state-of-the-art measures
and to canonical XF, the trained version, XFt,
obtained the best accuracy with a gap ranging
from +1.4 to +7.8. XFt also obtained the second
best F1 average with a -1.0 gap, but with clear
inconsistencies according to the dataset. XFt
obtained the best precision with a gap ranging
from +0.8 to +7.1. XFt did not perform well
on recall with 64.5% micro-average compared to
WordOverlap with 72%. Both its recall and F1
performance can be explained by the fact that the
measure was trained to optimize accuracy, and
not the F1 score for the positive class; which also
suggests that the approach could be adapted to F1
optimization if needed.

4.3 Synthesis

Canonical XF was more consistent than trained
XF on all dimensions except accuracy, for which
XFt was optimized. We argue that this consis-
tency was made possible through the asymmetry
of XF which allowed it to adapt to different kinds
of similarities (i.e., equivalence/paraphrase, in-
ference/entailment, and mutual distance/ranking).
These results also show that the actual position
difference is a relevant factor for text similarity.
We explain it mainly by the natural flow of lan-
guage where the important entities and relations
are often expressed first, in contrast with a purely
logical-driven approach which has to consider, for
instance, that active forms and passive forms are

equivalent in meaning. The difference in positions
is also not read literally, both because of the higher
impact associated to missed words and to the α
parameter which allows leveraging their impact in
the trained version.

4.4 Additional Experiments

In additional experiments, we compared TFc and
TFt with the other similarity measures when ap-
plied to bi-grams and tri-grams instead of individ-
ual tokens. The results were significantly lower on
all datasets (between 3 and 10 points loss in accu-
racy) for both the soa measures and TextFlow vari-
ants. This result could be explained by the fact that
n-grams are too rigid when a sub-sequence varies
even slightly, e.g., the insertion of a new word in-
side a 3-words sequence leads to a tri-gram mis-
match and reduces bi-gram overlap from 100% to
50% for the considered sub-sequence. This issue
is not encountered with TextFlow as it relies on the
token level, and such an insertion will not cancel
or reduce significantly the gains from the correct
ordering of the words. It must be noted here that
not all languages grant the same level of impor-
tance to sequences and that additional multilingual
tests have to be carried out.

In addition to binary classification output such
as textual entailment and paraphrase recognition,
text similarity measures can be evaluated more
precisely when we consider the correlation of their
values for ranking purposes.

We conducted ranking correlation experiments
on three test datasets provided at the semantic
text similarity task at Semeval 2012, with gold
score values for their text pairs. The datasets have
750 sentence pairs each, and are extracted from
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the Microsoft Research video descriptions corpus,
MSRP and the SMTeuroparl11. When compared
to the traditional similarity measures, TextFlow
had the best correlation on the first two datasets
with, for instance, 0.54 and 0.46 pearson correla-
tion on the lemmas sequences and the second best
on the MSRP extract where the Cosine similarity
had the best performance with 0.71 vs 0.68, not-
ing that the Cosine similarity uses word frequen-
cies when the evaluated version of TextFlow did
not use word-level weights.

Including word weights is one of the promis-
ing perspectives in line with this work as it could
be done simply by making the deltas vary accord-
ing to the weight/importance of the (un)matched
word. Also, in such a setting, the impact of a
sequence of N words will naturally increase or
decrease according to the word weights (cf. fig-
ure 3). We conducted a preliminary test using the
inverse document frequency of the words as ex-
tracted from Wikipedia with Gensim12, which led
to an improvement of up to 2% for most datasets,
with performance decreasing slightly on two of
them. Other kinds of weights could also be in-
cluded just as easily, such as contextual word re-
latedness using embeddings or other semantic re-
latedness factors such as WordNet distances (Ped-
ersen et al., 2004).

5 Conclusion

We presented a novel standalone similarity mea-
sure that takes into account continuous word se-
quences. An evaluation on eight datasets show
promising results for textual entailment recogni-
tion, paraphrase detection and ranking. Among
the potential extensions of this work are the inclu-
sion of different kinds of weights such as TF-IDF,
embedding relatedness and semantic relatedness.
We also intend to test other variants around the
same concept, including considering the matched
words and sequences to have a negative weight to
balance further the weight of missing words.
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