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Abstract

We propose a perspective on dialogue that
focuses on relative information contribu-
tions of conversation partners as a key to
successful communication. We predict the
success of collaborative task in English
and Danish corpora of task-oriented dia-
logue. Two features are extracted from the
frequency domain representations of the
lexical entropy series of each interlocutor,
power spectrum overlap (PSO) and rela-
tive phase (RP). We find that PSO is a neg-
ative predictor of task success, while RP is
a positive one. An SVM with these fea-
tures significantly improved on previous
task success prediction models. Our find-
ings suggest that the strategic distribution
of information density between interlocu-
tors is relevant to task success.

1 Introduction

What factors affect whether information is con-
veyed effectively and reliably in conversations?
Several theoretical frameworks have emerged that
model dialogical behavior at different granularity
levels. Can we use them to measure communica-
tive effectiveness?

Grounding theory (Clark and Brennan, 1991)
models a successful communication as a pro-
cess during which “common ground” (i.e., mu-
tual knowledge, beliefs etc.) is jointly built among
interlocutors. The interactive alignment model
(IAM) (Pickering and Garrod, 2004) proposes that
the ultimate goal of dialogue is the alignment of
interlocutors’ situational model, which is helped
by alignment at all other lower representation lev-
els (e.g., lexical, syntactic etc.), driven by the psy-
chologically well-documented priming effects.
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Recently, empirical studies have verified the
explanatory powers of the above-mentioned the-
ories, especially the IAM, utilizing dialogues
recorded and transcribed from various collabora-
tive tasks conducted in laboratory settings (Reit-
ter and Moore, 2007; Reitter and Moore, 2014,
Fusaroli et al., 2012; Fusaroli and Tylén, 2016).
In those studies, the quality of communication is
directly reflected in the collaborative performance
of interlocutors, i.e., how successful they are in ac-
complishing the task. Although they do not come
to fully agree on which theoretical accounts of di-
alogue (e.g., interactive alignment vs. interper-
sonal synergy) provides better explanations (see
Section 2.1 for details), the majority of these stud-
ies have confirmed that the alignment of certain
linguistic markers, lexical items, or syntactic rules
between interlocutors correlates with task success.

What is missing from the picture, however, is
the computational understanding of how strategies
of interaction and the mix of information contribu-
tions to the conversation facilitate successful com-
munication. This is understandable because those
higher level concepts do not directly map onto
the atomic linguistic elements and thus are much
more difficult to define and operationalize. In the
present study, we intend to explore this missing
part of work by characterizing how the interaction
between interlocutors in terms of their informa-
tion contributions affects the quality of communi-
cation.

1.1 An information-based approach

Recent work has already used information theory
to study the dynamics of dialogue. Xu and Reit-
ter (2016b) observed that the amount of lexical in-
formation (measured by entropy) from interlocu-
tors of different roles, converges within the span of
topic episodes in natural spoken dialogue. Anon
(2017) interpret this converging pattern as a re-
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flection of the dynamic process in which the infor-
mation contributed by two interlocutors fluctuates
in a complementary way at the early stage, and
gradually reaches an equilibrium status. Xu and
Reitter (2016b) also correlated this entropy con-
verging pattern with the fopic shift phenomenon
that frequently occurs in natural conversation (Ng
and Bradac, 1993), and proposed that it reflects
the process of interlocutors building the common
ground that is necessary for the ongoing topics of
conversation.

Based on Xu and Reitter’s (2016) finding
that entropy converging pattern repeatedly occurs
within dialogue (though not necessarily at strictly
regular intervals), it is reasonable to expect that
after applying some spectral analysis techniques
(time space to frequency space conversion) to the
entropy series of dialogue, the frequency space
representations should demonstrate some patterns
that are distinct from white noise, because the pe-
riodicity properties in time space are captured.

Furthermore, we expect that how the frequency
representations of two interlocutors correlate pro-
vides some information about the higher level
properties of dialogue, e.g., the task performance
etc. The thought is intuitive: If we imagine the
entropy series from two interlocutors as two ideal
sinusoidal signals s; and s2 (supposedly of dif-
ferent frequencies, f; and f) (Figure 1), then
the observed converging pattern can be thought of
as a segment from the full spans of the signals.
Then the frequency space properties, such as how
close f1 and f5 are, and the phase difference ¢
between them, will definitely affect the shape of
the converging pattern (solid lines in Figure 1).
As Xu and Reitter (2016b) argues that the con-
verging segment reflects the grounding process be-
tween interlocutors, it is reasonable to expect that
the shape and length of this segment are reflective
of how well interlocutors understand each other,
and the overall collaborative performance as well.

Based on the above considerations, the goal of
the present study is to explore how the frequency
space representations of the entropy series of dia-
logue are correlated with the collaborative perfor-
mance of task. We first demonstrate that entropy
series satisfy the prerequisites of spectral analy-
sis techniques in Section 4. Then we use two fre-
quency space statistics, power spectrum overlap
(PSO) and relative phase (RP), to predict task suc-
cess. The reasons of using these two specific in-
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Figure 1: Analogizing the entropy converging pat-
terns reported by Xu and Reitter (2016b) to a
segment from two periodic signals. The shad-
owed area and the solid lines indicate the observed
entropy convergence between interlocutors. The
dashed lines are the imaginary parts of the ideal
signals.

dices are discussed in Section 2.3, and their def-
initions are given in Section 3.3. The results are
shown in Sections 5 to 7, and the implications are
discussed.

2 Related Work

2.1 The success of dialogue

The interactive-alignment model (IAM) (Picker-
ing and Garrod, 2004) stipulates that communica-
tion is successful to the extent that communicators
“understand relevant aspects of the world in the
same way as each other” (Garrod and Pickering,
2009). Qualitative and quantitative studies (Gar-
rod and A. Anderson, 1987; Pickering and Gar-
rod, 2006; Reitter and Moore, 2014) have revealed
that the alignment of linguistic elements at differ-
ent representation levels between interlocutors fa-
cilitates the success of task-oriented dialogues.
More recently, different theoretical accounts
other than IAM, such as interpersonal synergy
(Fusaroli et al., 2014) and complexity matching
(Abney et al., 2014) have been proposed to ex-
plain the mechanism of successful dialogue from
the perspective of dynamic systems. Fusaroli and
Tylén (2016) compare the approaches of interac-
tive alignment and interpersonal synergy in terms
of how well they predict the collective perfor-
mance in a joint task. They find that the syn-
ergy approach is a better predictor than the align-
ment approach. Abney et al. (2014) differentiate
the concepts of behavior matching and complexity
matching in dyadic interaction. They demonstrate
the acoustic onset events in speech signals exhibit
power law clustering across timescales, and the



complexity matching in these power law functions
is reflective of whether the conversation is affilia-
tive or argumentative.

The perspective taken by the present study has
some common places with Fusaroli and Tylén
(2016) and Abney et al.’s (2014) work: we view
dialogue as an interaction of two dynamic sys-
tems. The joint decision-making task used by
Fusaroli and Tylén (2016) resulted in a small cor-
pus of dialogue in Danish, which we will use for
the present study.

2.2 Information density in natural language

Information Theory (Shannon, 1948) predicts that
the optimal way to communicate is to send infor-
mation at a constant rate, a.k.a. the principle of
entropy rate constancy (ERC). The way humans
use natural language to communicate also follows
this principle: by computing the local per-word
entropy of the sentence (which, under the predic-
tion of ERC, will increase with sentence position),
ERC is confirmed in both written text (Genzel
and Charniak, 2002; Genzel and Charniak, 2003;
Keller, 2004; Qian and Jaeger, 2011) and spoken
dialogue (Xu and Reitter, 2016b; Xu and Reitter,
2016a). The theory of uniform information den-
sity (UID) extends ERC to syntactic representa-
tions (Jaeger, 2010) and beyond.

The information density in language, i.e., the
distribution of entropy (predictability), reveal the
discourse structure to some extent. For exam-
ple, entropy drops at the boundaries between top-
ics (Genzel and Charniak, 2003; Qian and Jaeger,
2011), and increases within a topic episode in di-
alogue (Xu and Reitter, 2016b) (see Section 1.1).
The entropy of microblog text reflects changes in
contextual information (e.g., an unexpected event
in a sports game) (Doyle and Frank, 2015).

In sum, per-word entropy quantifies the amount
of lexical information in natural language, and
therefore fulfills the needs of modeling the infor-
mation contribution from interlocutors.

2.3 Spectral analysis methodology

Spectral analysis, also referred to as frequency do-
main analysis, is a pervasively used technique in
physics, engineering, economics and social sci-
ences. The key idea of it is to decompose a com-
plex signal in time space into simpler components
in frequency space, using mathematical operations
such as Fourier transform (Bracewell, 1986).
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The application of spectral analysis in human
language technology mainly focuses on process-
ing the acoustic signals of human voice, and cap-
turing the para-linguistics features relevant to cer-
tain tasks (Schuller et al., 2013). For example,
Bitouk et al. (2010) find that utterance-level spec-
tral features are useful for emotion recognition.
Gregory Jr and Gallagher (2002) demonstrate that
spectral information beneath 0.5 kHz can predict
US president election outcomes. However, we
are not aware of the usage of spectral analysis in
studying linguistic phenomena at higher represen-
tation levels than the acoustic level.

For our study, we are looking for some tech-
niques that can capture the coupling between two
signals at frequency space. The nature of the sig-
nal (whether it is language-related or not) should
not be the first concern from the perspective of
methodology. Therefore, studies outside the field
of speech communication and linguistics could
also be enlightening to our work.

After searching the literature, we find that the
spectral analysis techniques that Oullier et al.
(2002) and Oullier et al. (2008) use to study
the physical and social functions of human body
movement are useful to our research goal. In Oul-
lier et al.’s (2002) work, subjects stood in a mov-
ing room and were to track a target attached to the
wall. A frequency space statistics, power spec-
trum overlap (PSO), was used to demonstrate the
coupling between motion of the room and motion
of the subject’s head. Stronger coupling effect
(higher PSO) was found in the tracking task than
a no-tracking baseline. PSO in nature quantifies
how much the frequency space representations of
two signals (power spectrum density) overlap. It
allows us to explore the frequency space coupling
of two interlocutors’ entropy series in dialogue.

Similarly, Oullier et al. (2008) used the metrics
of peak-to-peak relative phase (RP) and PSO to
study the spontaneous synchrony in behavior that
emerges between interactants as a result of infor-
mation exchange. The signals to be analyzed were
the flexion-extension movement of index fingers
of two subjects sitting in front of each other. Both
metrics showed different patterns when the partici-
pants see each other or not. RP, in their work, mea-
sures the magnitude of delay between two signals,
and it corresponds to the notion of ¢ in Section 1.1.



3 Methods
3.1 Corpus data

Two corpora are examined in this study: the
HCRC Map Task Corpus (A. H. Anderson et al.,
1991) and a smaller corpus in Danish from a
joint decision-making study (Fusaroli et al., 2012),
henceforth DJD.

Map Task contains a set of 128 dialogues be-
tween two subjects, who accomplished a cooper-
ative task together. They were given two slightly
different maps of imaginary landmarks. One of
them plays as the instruction giver, who has routes
marked on her map, and the other plays as the in-
struction follower, who does not have routes. The
task for them is to reproduce the giver’s route on
the follower’s map. The participants are free to
speak, but they cannot see each other’s map. The
whole conversations were recorded, transcribed
and properly annotated. The collaborative perfor-
mance in the task is measured by the PATHDEV
variable, which quantifies the deviation between
the paths drawn by interlocutors. Larger values
indicate poorer task performance.

DJD contains a set of 16 dialogues from na-
tive speakers of Danish (11,100 utterances and
56,600 words). In Fusaroli et al.’s (2012) original
study the participants were to accomplish a series
of visual perception task trials, by discussing the
stimuli they saw and reaching a joint decision for
each trial. The collaborative performance is mea-
sured by the CollectivePerformance vari-
able, which is based on a psychometric function
that measures the sensitivity of the dyad’s joint de-
cision to the actual contrast difference of the trial
(Fusaroli et al., 2012). Higher value of this vari-
able indicates better task performance.

The Switchboard Corpus (Godfrey et al., 1992)
is used to train the language model for estimating
the sentence entropy in Map Task. The Copen-
hagen Dependency Treebanks Corpus' is used for
the same purpose for DJD.

3.2 Estimating information density in
dialogue

The information density of language is estimated
at the sentence level, by computing the per-word
entropy of each sentence using a trigram language
model trained from a different corpus. We con-
sider a sentence to be a sequence of words, S =

"http://mbkromann.github.io/
copenhagen-dependency- treebank/
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{wy,wa, ..., w,}, and the per-word entropy is es-

timated by:

1
H(wy...w,) = - Z log P(w;|wy ... w;—1)
w; €W
(1

where P(w;|wy ... w;—_1) is estimated by a trigram
model that is trained from an outside corpus. The
SRILM software (Stolcke, 2002) is used to train
the language model and to compute sentence en-
tropy.

Dialogue is a sequence of utterances contributed
by two interlocutors. For the k th dialogue whose
total utterance number is Nj, we mark it as Dy =
{uf | i = 1,2,..., Ny}, in which u? is the i th
utterance. Map Task contains annotations of sen-
tence structure in utterances, and one utterance
could consist of several sentences that are syn-
tactically independent. Thus we further split Dy,
into a sequence of sentence, Dy = {sF | i =
1,2,..., N/}, in which V] is number of sentences
in Dy. Since DJD lacks the sentence annotations,
we do not further split the utterance sequence, and
simply treat an utterance as a complete sentence.

Given a sequence {s¥} (Map Task), or {u¥}
(DJD), we calculate the per-word entropy for each
item in the sequence:

Hy={H(sHor Hur)|i=1,2,...,Ni(orN;)}
2)
where H (s¥) or H(u¥) is computed according
to Equation 1.

Then we split the entropy series Hy into two
sub-series by the source of utterances (i.e., who
speaks them), resulting in H ,? for interlocutor A,
and HP for interlocutor B. For Map Task, the two
interlocutors have distinct roles, instruction giver
and follower. Thus the resulting two entropy series
are H and H ,{ . These per-interlocutor entropy
series will be the input of our next-step spectral
analysis.

3.3 Computing power spectrum overlap and
relative phase

The time intervals between utterances (or sen-
tences) vary, but since we care about the aver-
age information contribution within a complete se-
mantic unit, we treat entropy series as regular time
series. The time scale is not measured in seconds
but in turns (or sentences).

For a given dialogue Dy, we apply the fast
Fourier transform (FFT) on its two entropy se-



ries H ;;‘ and HP, and obtain the power spectra
(or, power spectral density plots) of them, Pk‘f‘ and
P,f . The power spectra are estimated with the pe-
riodogram method provided by the open source R
software. The Y axis of a power spectrum is the
squared amplitude of signal (or power), and X axis
ranges from 0 to 7/2 (we do not have sampling
frequency, thus the X axis is in angular frequency
but not in Hz).

The power spectrum overlap, PSOg, is calcu-
lated by computing the common area under the
curves of P,f and P,f is calculated, and normal-
izing by the total area of the two curves (see Fig-
ure 2). PSOy, ranges from O to 1, and a larger value
indicates higher similarity between P,f and PE .

Spectrum
P

8
— PP

Common area

0.0 01 02 03 0.4 05
Frequency

Figure 2: How PSO is computed. The blue
shadow is the common area under two spectrums.

The relative phase (RP) between H. ,‘3 and H ,?
is directly returned by the spect rum function in
R. It is a vector of real numbers that range from 0
to 7, and each element represent the phase differ-
ence between two signals at a particular frequency
position of the spectrum.

4 Prerequisites of Spectral Analysis

Before proceeding to the actual analysis, we first
examine whether the data we use satisfy some of
the prerequisites of spectral analysis techniques.
One common assumption of Fourier transforms
is that the signals (time series) are stationary
(Dwivedi and Subba Rao, 2011). Stationarity
means that the mean, variance and other distri-
butional properties do not change over time (Na-
trella, 2010). Another presumption we hold is that
the entropy series contain some periodic patterns
(see Section 1.1), which means their power spec-
trum should differ from that of white noise.

4.1 Examine stationarity

We use three pervasively used statistical tests to
test the stationarity of our entropy series data: the
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Table 1: Percentage stationary data

Corpus ADF  KPSS PP
Map Task 82.4% 95.5% 100%
DID 100% 81.3% 100%

augmented Dickey-Fuller (ADF) test (Dickey and
Fuller, 1979), the Kwiatkowski-Phillips-Schmidt-
Shin (KPSS) test (Kwiatkowski et al., 1992), and
the Phillips-Perron (PP) test (Phillips and Perron,
1988). The percentage of entropy series that pass
the stationarity tests are shown in Table 1. We
can see that the majority of our data satisfy the
assumption of stationarity, and thus it is valid to
conduct Fourier transform on the entropy series.
The stationarity property seems contradictory
to the previous findings about entropy increase
in written text and spoken dialogue (Genzel and
Charniak, 2002; Genzel and Charniak, 2003; Xu
and Reitter, 2016b), because stationarity predicts
that the mean entropy stays constant over time. We
examine this in our data by fitting a simple linear
model with entropy as the dependent, and sentence
position as the independent variable, which yields
significant (marginal) effects of the latter: For
Map Task, 3 = 2.3 x 1073, p < .05, Adj-R? =
1.7x107% For DID, f = 72x107°, p =
.06, Adj-R?> = 2.2 x 10~*. It indicates that the
stationarity of entropy series does not conflict with
the entropy increasing trend predicted by the prin-
ciple of ERC (Shannon, 1948). We conjecture
that stationarity satisfies because the effect size
(Adj-R?) of entropy increase is very small.

4.2 Comparison with white noise

Power spectra for all entropy series are obtained
with an FFT. We compare them with those of
white noise. The white noise data are simulated
with i.i.d. random data points that are generated
from normal distributions (same means and stan-
dard deviations as the actual data). Figure 3 shows
the smoothed average spectrums of the actual en-
tropy data and the simulated white noise data.
White noise signals should demonstrate a con-
stant power spectral density (Narasimhan and
Veena, 2005), and if the entropy series is not
completely random, then their average spectrum
should be flat. Linear models show that the aver-
age spectrums of the entropy data have slopes that
are significantly larger than zero (For Map Task,
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Figure 3: Comparing the average power spectra of
the actual entropy data and white noise. There are
significant linear correlations between power (Y
axis) and frequency (X axis) for the actual entropy
data, which means the data are not completely ran-
dom. Shadowed areas are 95% C.I.

B=23x10"2, SE=9.4x1073, p < .05; for
DID, g = 314.1, SE = 19.8, p < .001), while
the slopes of the white noise data are not signifi-
cantly different from zero. This confirms our pre-
sumption that the entropy series of dialogue con-
tains some periodic patterns that are identifiable in
frequency space.

We also conduct Ljung-Box test (Ljung and
Box, 1978) to examine how the entropy series is
different from white noise. The null hypothesis
is that the time series being tested is independent
of the lagged sequence of itself. The test on a
white noise series will give big p-values, for any
lags greater than 0, because of its randomness na-
ture. We try several lags on each entropy series,
and pick the smallest p-value. Consequently, we
obtain a mean p-value of .23 on MapTask, and a
mean p-value of .27 on DJD. Therefore, we cannot
reject the null hypothesis for all the entropy series
data, but the Type-I error of considering them as
different form white noise is pretty low.

5 PSO Predicts Task Success

5.1 Results of linear models

We compute PSO for all the dialogues in
Map Task and DJD and fit two linear mod-
els using PSO as predictor, with PATHDEV and
CollectivePerformance asdependent vari-
ables respectively.

PSO is a reliable predictor in both models (p <
.05). The coefficients are shown in Table 2. Since
PATHDEV is a measure of failure, but collabora-
tive task performance is a measure of success, the
negative correlation between PSO and collabora-
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tive task performance is consistent. Regression
lines with residuals are plotted in Figure 4.

Table 2: Coefficients of PSO in predict-
ing PATHDEV (Map Task) and Collective-
Performance (DJD). * indicates p < .05.

Dependent 153 SE F Adj-R?

PATHDEV 124.8 494 6.39* .045

Collective” 409 159 6.60% 271
erformance

Figure 4 (a) suggests a heteroscedasticity prob-
lem, because the right half of data points seem
to stretch up along the y axis. This was con-
firmed by a Breush-Pagan test (Breusch and Pa-
gan, 1979) (BP = 5.62, p < .05). To rec-
tify this issue, we adopt a Box-Cox transformation
(Box and Cox, 1964) on the dependent variable,
PATHDEV, which is a typical way of handling het-
eroscedasticity. The new model that uses PSO to
predict the Box-Cox transformed PATHDEV also
yields significant coefficients: 5 = 3.85, SE =
1.67, F(1,113) = 5.32, p < .05. Therefore,
the correlation between PSO and PATHDEV is re-
liable.

As for DJD, due to the lack of data (we only
have 16 dialogues), we do not run further diagnos-
tics analysis on the regression model.

5.2 Discussion

The coupling of entropy series in frequency space
is negatively correlated with task success. In other
words, synchrony between interlocutors in terms
of their information distribution hinders the suc-
cess of collaboration. By “synchrony”, we mean
an overlap in the frequencies at which they choose
to inject novel information into the conversation.
This conclusion seems contradictory to the per-
spective of interactive alignment at the first glance.
However, here we are starting with a very high-
level model of dialogue that has does not refer to
linguistic devices. Instead, we utilize the concept
of “information density” and the entropy metric of
natural language, to paint the picture of a system
in which communicators inject novelty into the di-
alogue, and that each communicator does so reg-
ularly and with a set of overlapping frequencies.
We assume that the rapid change of sentence en-
tropy, i.e., the high frequency components in the
spectrum, correspond to the moments in conversa-
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Figure 4: Regression lines of linear models using PSO to predict PATHDEV in Map Task (a) and
CollectivePerformance in DJD (b). Shadowed areas are 95% C.1.

tion where one interlocutor brings relatively novel
content to the table, such as a detailed instruc-
tion, a strange question, an unexpected response
etc. This assumption is reasonable because pre-
vious work has shown that sudden change in en-
tropy predicts topic change in dialogue (Genzel
and Charniak, 2003; Qian and Jaeger, 2011; Xu
and Reitter, 2016b).

We argue that higher synchrony (larger overlap
in frequency space) in terms of how much nov-
elty each interlocutor contributes, does not neces-
sarily leads to better outcomes of communication.
Rather, we would expect the correlation to be op-
posite (and our empirical results confirm this), be-
cause dialogue is a joint activity, in which a tak-
ing on different roles as interlocutors (e.g., the one
who gives orders versus the one who follows) is
often required to push the activity along (Clark,
1996). A dialogue with maximal synchrony or fre-
quency overlap would be one where partners take
turns at regular intervals. Perhaps because such
regularity in turn-taking assigns no special roles
to interlocutors, and because they engage in turn-
taking with no regard for content, it is not strange
that such synchrony is disadvantageous.

Let’s look at several scenarios of different syn-
chrony levels between interlocutors: First, high
synchrony due to both interlocutors contributing
large amount of new information, which means
there is more overlap near the high frequency band
of spectrums. In this case, they are more likely to
have difficulty in comprehending each other due
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to the potential information overload. Situations
such as arguing, or both speakers asking a lot of
questions are good examples. Second, high syn-
chrony due to both interlocutors providing ineffec-
tive information, which indicates overlap in spec-
trums near the low frequency band. Obviously this
type of ineffective communication is not helpful
to the collaborative task. Third, low synchrony
due to one interlocutor providing more informa-
tion and the other one providing less, which means
the overlap in spectrums is minimum. An example
of this case is that one interlocutor is saying some-
thing important, while the other one is produc-
ing short utterances such “uh-huh”, “yes”, or short
questions to make sure that they are on the same
page, which is known as the back-channel mecha-
nism in conversation (Orestrom, 1983). This com-
plementary style of communication allows them to
build mutual understand of each other’s intention,
and thus reaches better collaborative performance.

6 RP Predicts Task Success

6.1 Results of linear models

We obtain the relative phase (RP) vector (absolute
values) of all frequency components, and fit linear
models using the mean of RP as predictor, and task
performance as the dependent variable. We get
non-significant coefficients for both models: For
Map Task, F(1,113) = .004, p > .05; for DID,
F(1,14) = .772, p > .05. This suggests that the
phase information of all frequency components in
spectrum is not very indicative of task success.



The power spectra describe the distribution of
energy across the span of frequency components
that compose the signal. The frequency com-
ponents with higher energy (peaks in spectrum)
are more dominant than those with lower energy
(troughs) in determining the nature of the signal.
Therefore it makes sense to only include the peak
frequencies into the model, because they are more
“representative” of the signal, and so the “noise”
from the low energy frequencies are filtered out.
Thus we obtain RP from the local peak frequency
components, and use the mean, median, and max-
imum values of them as predictors. It turns out
that for Map Task, the maximum of RP is a sig-
nificant predictor (the mean and median are left
out via stepwise analysis). For DJD, the mean of
RP is a significant predictor of task success (when
median and maximum are included in the model).
(see Table 3).

Table 3: Coefficients of the linear models using the
mean, median, and maximum values of RP from
peak frequency components to predict task perfor-
mance. * p < .05, Tp < .1.

Corpus Predictor 15} SE tscore
Map Task max -64.9 30.3 -2.14%
mean 156 5.7 2.76*
DJD median  -7.4 3.6 -2.06'
max 115 7.2 -1.60

From the significant effect of maximum RP in
Map Task and mean RP in DID, it is safe to
state that RP is positively correlated with task per-
formance. However, this relationship is not as
straight-forward as PSO, because of the marginal
effect at the opposite direction. A more fine-
grained analysis is required, but it is outside the
scope of this study.

6.2 Discussion

The relative phase in frequency space can be un-
derstood as the “lag” between signals in time
space. Imagine that we align the two entropy se-
ries from one dialogue onto the same time scale
(just like Figure 1), the distance between the en-
tropy “peaks” is proportionate to the relative phase
in frequency space. Then, the positive correlation
between relative phase and task performance sug-
gests that relatively large delays between entropy
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Table 4: R? performance on the HCRC MapTask
task success prediction task (percentage of vari-
ance explained). 10-fold cross-validated by dia-
logue; same folds for each model. Reitter and
Moore (2007) (R&M) contained length and lexi-
cal and syntactic repetition features.

Model R?
R&M 17
R&M LENGTH only .09
R&M LENGTH only (C=.5) 1260
R&M (C=.5) 1771
R&M + PSO + RP 2826
R&M + PSO*RP 2435
R&M LENGTH only + PSO*RP  .2494

“surges” seen in each interlocutor are beneficial to
collaborative performance.

The delay of entropy surges can be understood
as a strategy for an interlocutor to distribute in-
formation in his or her own utterance accordingly
with the information received. For example, after
interlocutor A contributes a big piece of informa-
tion, the other one, B, does not rush to make new
substantial contributions, but instead keeps her ut-
terances at low entropy until it is the proper time
to take a turn to contribute. This does not have to
coincide with dialogic turn-taking.

This delay gives B more time to “digest” the
information provided by A, which could be an
instruction that needs to be comprehended, or a
question that needs to be thought about and so on.
A relatively long delay guarantees enough time for
interlocutors to reach mutual understanding. On
the contrary, if B rushes to speak a lot shortly after
the A’s input, then it will probably cause informa-
tion overload and be harmful to communication.

Therefore, we believe that the RP statistic cap-
tures the extent to which interlocutors manage
the proper “timing” of information contribution to
maintain effective communication.

7 Prediction Task

Here we explore whether the frequency domain
features, PSO and RP, can help with an existing
framework that utilizes alignment features, such
as the repetition of lexical and syntactic elements,
to predict the success of dialogue in MapTask (Re-
itter and Moore, 2007).



R&M described an SVM model that takes into
the repetition count of lexicons (LEXREP) and syn-
tax structures (SYNREP), and the length of di-
alogues (LENGTH) as features. The full model
achieves an R? score of .17, which means that it
can account for 17% of the variance of task suc-
cess.

We add the new PSO and RP (mean, median and
maximum RP features per dialogue are included)
covariates to the original SVM model. An RBF
kernel (v = 5) was used. The cost parameter C
was (coarsely) tuned on different cross-validation
folds to reduce overfitting on this relatively small
dataset, and the R&M’s original full model was re-
calculated (shown in Table 4 as R&M). Two mod-
els with PSO and RP interactions (once without
the alignment/repetition features) are shown for
comparison. (See Table 4).

Significant improvement in the model’s ex-
planatory power, i.e., R?, is gained after the PSO
and RP features are added. The best model we
have is by adding PSO and RP as predictors with-
out the interaction term (bold number in Table 4),
which gives about 60% increase of R? compared
to R&M’s full model. Note that even if we ex-
clude the alignment features, and include only
(LENGTH) and the frequency features (last row in
Table 4), the performance also exceeds R&M’s
full model.

The results indicate that the frequency domain
features (PSO and RP) of the sentence informa-
tion density can capture some hidden factors of
task success that are unexplained by the alignment
approach. It is not surprising that how people
coordinate their information contribution matters
a lot to the success of the collaboration. What
we show here is that regular, repeated patterns
of information-dense and information-sparse turns
seem to make speakers more or less compatible
with each other. Whether individuals have typi-
cal patterns (frequency distributions) of informa-
tion density, or whether this is a result of dynamic
interaction in each particular dialogue, remains to
be seen.

8 Conclusions

The empirical results of the present study suggest
that examining how the information contribution
from interlocutors co-develops can provide a way
to understand dialogue from a higher-level per-
spective, which has been missing in existing work.
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Our work adds a brick to the series of endeavors
on studying the linguistic and behavioral factors of
successful dialogue, and for the first time (as far as
we know) demonstrates quantitatively that the dy-
namics of not just “what” and “how” we say, but
also “how much” we say and the “timing” of dis-
tributing what we say in dialogue, are relevant to
the quality of communication. Although the way
we model information in language is simply the
entropy at lexical level, we believe the findings
still reveal the nature of information production
and processing in dialogue. We hope that by com-
paring and combining our methodology with other
approaches of studying dialogue, we can reach a
more comprehensive and holistic understanding of
this common yet mysterious human practice.
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