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Abstract

Keyphrase provides highly-summative
information that can be effectively used
for understanding, organizing and retriev-
ing text content. Though previous studies
have provided many workable solutions
for automated keyphrase extraction, they
commonly divided the to-be-summarized
content into multiple text chunks, then
ranked and selected the most meaningful
ones. These approaches could neither
identify keyphrases that do not appear
in the text, nor capture the real semantic
meaning behind the text. We propose a
generative model for keyphrase prediction
with an encoder-decoder framework,
which can effectively overcome the above
drawbacks. We name it as deep keyphrase
generation since it attempts to capture the
deep semantic meaning of the content with
a deep learning method. Empirical analy-
sis on six datasets demonstrates that our
proposed model not only achieves a sig-
nificant performance boost on extracting
keyphrases that appear in the source text,
but also can generate absent keyphrases
based on the semantic meaning of the
text. Code and dataset are available
at  https://github.com/memray/seq2seq-
keyphrase.

1 Introduction

A keyphrase or keyword is a piece of short, sum-
mative content that expresses the main semantic
meaning of a longer text. The typical use of a
keyphrase or keyword is in scientific publications
to provide the core information of a paper. We use
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the term “keyphrase” interchangeably with “key-
word” in the rest of this paper, as both terms
have an implication that they may contain mul-
tiple words. High-quality keyphrases can facili-
tate the understanding, organizing, and accessing
of document content. As a result, many studies
have focused on ways of automatically extracting
keyphrases from textual content (Liu et al., 2009;
Medelyan et al., 2009a; Witten et al., 1999). Due
to public accessibility, many scientific publication
datasets are often used as test beds for keyphrase
extraction algorithms. Therefore, this study also
focuses on extracting keyphrases from scientific
publications.

Automatically extracting keyphrases from a
document is called keypharase extraction, and
it has been widely used in many applications,
such as information retrieval (Jones and Staveley,
1999), text summarization (Zhang et al., 2004),
text categorization (Hulth and Megyesi, 20006),
and opinion mining (Berend, 2011). Most of
the existing keyphrase extraction algorithms have
addressed this problem through two steps (Liu
et al., 2009; Tomokiyo and Hurst, 2003). The
first step is to acquire a list of keyphrase candi-
dates. Researchers have tried to use n-grams or
noun phrases with certain part-of-speech patterns
for identifying potential candidates (Hulth, 2003;
Leetal.,2016; Liu et al., 2010; Wang et al., 2016).
The second step is to rank candidates on their
importance to the document, either through su-
pervised or unsupervised machine learning meth-
ods with a set of manually-defined features (Frank
et al., 1999; Liu et al., 2009, 2010; Kelleher and
Luz, 2005; Matsuo and Ishizuka, 2004; Mihalcea
and Tarau, 2004; Song et al., 2003; Witten et al.,
1999).

There are two major drawbacks in the above
keyphrase extraction approaches. First, these
methods can only extract the keyphrases that ap-
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pear in the source text; they fail at predicting
meaningful keyphrases with a slightly different se-
quential order or those that use synonyms. How-
ever, authors of scientific publications commonly
assign keyphrases based on their semantic mean-
ing, instead of following the written content in
the publication. In this paper, we denote phrases
that do not match any contiguous subsequence of
source text as absent keyphrases, and the ones
that fully match a part of the text as present
keyphrases. Table 1 shows the proportion of
present and absent keyphrases from the docu-
ment abstract in four commonly-used datasets,
from which we can observe large portions of ab-
sent keyphrases in all the datasets. The absent
keyphrases cannot be extracted through previous
approaches, which further prompts the develop-
ment of a more powerful keyphrase prediction
model.

Second, when ranking phrase candidates, pre-
vious approaches often adopted machine learning
features such as TF-IDF and PageRank. However,
these features only target to detect the importance
of each word in the document based on the statis-
tics of word occurrence and co-occurrence, and
are unable to reveal the full semantics that underlie
the document content.

Table 1: Proportion of the present keyphrases and
absent keyphrases in four public datasets

Dataset  # Keyphrase % Present % Absent
Inspec 19,275 55.69 4431
Krapivin 2,461 44.74 52.26
NUS 2,834 67.75 32.25
SemEval 12,296 42.01 57.99

To overcome the limitations of previous stud-
ies, we re-examine the process of keyphrase pre-
diction with a focus on how real human annotators
would assign keyphrases. Given a document, hu-
man annotators will first read the text to get a ba-
sic understanding of the content, then they try to
digest its essential content and summarize it into
keyphrases. Their generation of keyphrases relies
on an understanding of the content, which may not
necessarily use the exact words that occur in the
source text. For example, when human annota-
tors see “Latent Dirichlet Allocation” in the text,
they might write down “topic modeling” and/or
“text mining” as possible keyphrases. In addition
to the semantic understanding, human annotators
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might also go back and pick up the most impor-
tant parts, based on syntactic features. For exam-
ple, the phrases following “we propose/apply/use”
could be important in the text. As a result, a better
keyphrase prediction model should understand the
semantic meaning of the content, as well as cap-
ture the contextual features.

To effectively capture both the semantic and
syntactic features, we use recurrent neural net-
works (RNN) (Cho et al., 2014; Gers and Schmid-
huber, 2001) to compress the semantic informa-
tion in the given text into a dense vector (i.e., se-
mantic understanding). Furthermore, we incorpo-
rate a copying mechanism (Gu et al., 2016) to al-
low our model to find important parts based on
positional information. Thus, our model can gen-
erate keyphrases based on an understanding of
the text, regardless of the presence or absence of
keyphrases in the text; at the same time, it does
not lose important in-text information.

The contribution of this paper is three-fold.
First, we propose to apply an RNN-based gen-
erative model to keyphrase prediction, as well
as incorporate a copying mechanism in RNN,
which enables the model to successfully pre-
dict phrases that rarely occur. Second, this is
the first work that concerns the problem of ab-
sent keyphrase prediction for scientific publica-
tions, and our model recalls up to 20% of absent
keyphrases. Third, we conducted a comprehen-
sive comparison against six important baselines
on a broad range of datasets, and the results show
that our proposed model significantly outperforms
existing supervised and unsupervised extraction
methods.

In the remainder of this paper, we first review
the related work in Section 2. Then, we elaborate
upon the proposed model in Section 3. After that,
we present the experiment setting in Section 4 and
results in Section 5, followed by our discussion in
Section 6. Section 7 concludes the paper.

2 Related Work

2.1 Automatic Keyphrase Extraction

A keyphrase provides a succinct and accurate
way of describing a subject or a subtopic in a
document. A number of extraction algorithms
have been proposed, and the process of extracting
keyphrases can typically be broken down into two
steps.

The first step is to generate a list of phrase can-



didates with heuristic methods. As these candi-
dates are prepared for further filtering, a consid-
erable number of candidates are produced in this
step to increase the possibility that most of the
correct keyphrases are kept. The primary ways
of extracting candidates include retaining word se-
quences that match certain part-of-speech tag pat-
terns (e.g., nouns, adjectives) (Liu et al., 2011;
Wang et al., 2016; Le et al., 2016), and extracting
important n-grams or noun phrases (Hulth, 2003;
Medelyan et al., 2008).

The second step is to score each candidate
phrase for its likelihood of being a keyphrase in the
given document. The top-ranked candidates are
returned as keyphrases. Both supervised and un-
supervised machine learning methods are widely
employed here. For supervised methods, this task
is solved as a binary classification problem, and
various types of learning methods and features
have been explored (Frank et al., 1999; Witten
et al., 1999; Hulth, 2003; Medelyan et al., 2009b;
Lopez and Romary, 2010; Gollapalli and Caragea,
2014). As for unsupervised approaches, primary
ideas include finding the central nodes in text
graph (Mihalcea and Tarau, 2004; Grineva et al.,
2009), detecting representative phrases from topi-
cal clusters (Liu et al., 2009, 2010), and so on.

Aside from the commonly adopted two-step
process, another two previous studies realized the
keyphrase extraction in entirely different ways.
Tomokiyo and Hurst (2003) applied two language
models to measure the phraseness and informa-
tiveness of phrases. Liu et al. (2011) share the
most similar ideas to our work. They used a word
alignment model, which learns a translation from
the documents to the keyphrases. This approach
alleviates the problem of vocabulary gaps between
source and target to a certain degree. However,
this translation model is unable to handle seman-
tic meaning. Additionally, this model was trained
with the target of title/summary to enlarge the
number of training samples, which may diverge
from the real objective of generating keyphrases.

Zhang et al. (2016) proposed a joint-layer recur-
rent neural network model to extract keyphrases
from tweets, which is another application of deep
neural networks in the context of keyphrase ex-
traction. However, their work focused on se-
quence labeling, and is therefore not able to pre-
dict absent keyphrases.

2.2 Encoder-Decoder Model

The RNN Encoder-Decoder model (which is also
referred as sequence-to-sequence Learning) is an
end-to-end approach. It was first introduced by
Cho et al. (2014) and Sutskever et al. (2014) to
solve translation problems. As it provides a pow-
erful tool for modeling variable-length sequences
in an end-to-end fashion, it fits many natural lan-
guage processing tasks and can rapidly achieve
great successes (Rush et al., 2015; Vinyals et al.,
2015; Serban et al., 2016).

Different strategies have been explored to im-
prove the performance of the Encoder-Decoder
model. The attention mechanism (Bahdanau et al.,
2014) is a soft alignment approach that allows the
model to automatically locate the relevant input
components. In order to make use of the impor-
tant information in the source text, some stud-
ies sought ways to copy certain parts of content
from the source text and paste them into the target
text (Allamanis et al., 2016; Gu et al., 2016; Zeng
et al., 2016). A discrepancy exists between the
optimizing objective during training and the met-
rics during evaluation. A few studies attempted
to eliminate this discrepancy by incorporating
new training algorithms (Marc’ Aurelio Ranzato
et al., 2016) or by modifying the optimizing ob-
jectives (Shen et al., 2016).

3 Methodology

This section will introduce our proposed deep
keyphrase generation method in detail. First,
the task of keyphrase generation is defined, fol-
lowed by an overview of how we apply the RNN
Encoder-Decoder model. Details of the frame-
work as well as the copying mechanism will be
introduced in Sections 3.3 and 3.4.

3.1 Problem Definition

Given a keyphrase dataset that consists of N
data samples, the i-th data sample (x), p(®)
contains one source text x(i), and M, tar-
get keyphrases p() = (pt1) p(2)  pE:Mi)),
Both the source text x() and keyphrase ptd) are
sequences of words:

<@ (@) (9 (@)

=x,2y,...,2

x1

(i) (4.3) , (@:7) (4,9)

p - yl 7y2 9y 7pr(i,j)

Ly and Lijdenotes the length of word se-
quence of x(V and p(d) respectively.
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Each data sample contains one source text
sequence and multiple target phrase sequences.
To apply the RNN Encoder-Decoder model, the
data need to be converted into text-keyphrase pairs
that contain only one source sequence and one
target sequence. We adopt a simple way, which
splits the data sample (x(®), p(®) into M; pairs:
(x® pEy (xO pE2)y (%O pEM)y,
Then the Encoder-Decoder model is ready to be
applied to learn the mapping from the source
sequence to target sequence. For the purpose
of simplicity, (x,y) is used to denote each data
pair in the rest of this section, where x is the
word sequence of a source text and y is the word
sequence of its keyphrase.

3.2 Encoder-Decoder Model

The basic idea of our keyphrase generation model
is to compress the content of source text into a hid-
den representation with an encoder and to generate
corresponding keyphrases with the decoder, based
on the representation . Both the encoder and de-
coder are implemented with recurrent neural net-

works (RNN).
The encoder RNN converts the variable-length

input sequence x = (1, z2, ..., z7) into a set of
hidden representation h = (hy, ho,...,hr), by
iterating the following equations along time ¢:

hy = f(x4, hy—1) (D

where f is a non-linear function. We get the con-
text vector c acting as the representation of the
whole input x through a non-linear function q.

c =q(hi,ha,...,hr) (2)

The decoder is another RNN; it decompresses
the context vector and generates a variable-length
sequence y = (y1,¥2,...,yrr) word by word,
through a conditional language model:

St = f(yt—la St—1, C)

(3)
p(yelyr,...t—1,%) = g(Yt—1,8¢,¢)

where s; is the hidden state of the decoder RNN
at time ¢. The non-linear function g is a softmax
classifier, which outputs the probabilities of all the
words in the vocabulary. g is the predicted word
at time ¢, by taking the word with largest probabil-
ity after g(-).

The encoder and decoder networks are trained
jointly to maximize the conditional probability of
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the target sequence, given a source sequence. Af-
ter training, we use the beam search to generate
phrases and a max heap is maintained to get the
predicted word sequences with the highest proba-
bilities.

3.3 Details of the Encoder and Decoder

A bidirectional gated recurrent unit (GRU) is ap-
plied as our encoder to replace the simple recur-
rent neural network. Previous studies (Bahdanau
et al., 2014; Cho et al., 2014) indicate that it can
generally provide better performance of language
modeling than a simple RNN and a simpler struc-
ture than other Long Short-Term Memory net-
works (Hochreiter and Schmidhuber, 1997). As a
result, the above non-linear function f is replaced

by the GRU function (see in (Cho et al., 2014)).
Another forward GRU is used as the decoder.

In addition, an attention mechanism is adopted to
improve performance. The attention mechanism
was firstly introduced by Bahdanau et al. (2014) to
make the model dynamically focus on the impor-
tant parts in input. The context vector c is com-
puted as a weighted sum of hidden representation
h= (hl,...,hT)I

T
C;, = E Otl'jhj
Jj=1

s — a1, b))
T Y exp(alsi—1, i)

where a(s;—1,h;) is a soft alignment function
that measures the similarity between s;_1 and h;;
namely, to which degree the inputs around posi-
tion j and the output at position ¢ match.

4

3.4 Copying Mechanism

To ensure the quality of learned representation and
reduce the size of the vocabulary, typically the
RNN model considers a certain number of fre-
quent words (e.g. 30,000 words in (Cho et al.,
2014)), but a large amount of long-tail words
are simply ignored. Therefore, the RNN is not
able to recall any keyphrase that contains out-of-
vocabulary words. Actually, important phrases
can also be identified by positional and syntactic
information in their contexts, even though their ex-
act meanings are not known. The copying mecha-
nism (Gu et al., 2016) is one feasible solution that
enables RNN to predict out-of-vocabulary words
by selecting appropriate words from the source
text.



By incorporating the copying mechanism, the
probability of predicting each new word y; con-
sists of two parts. The first term is the probability
of generating the term (see Equation 3) and the
second one is the probability of copying it from
the source text:

p(yelyr,...t-1,%)

)
= pg(Wely1,....t1—1, %) + Pe(Ye|y1,....t-1,X)

Similar to attention mechanism, the copying
mechanism weights the importance of each word
in source text with a measure of positional atten-
tion. But unlike the generative RNN which pre-
dicts the next word from all the words in vocabu-
lary, the copying part p.(y¢|y1,... +—1,x) only con-
siders the words in source text. Consequently, on
the one hand, the RNN with copying mechanism
is able to predict the words that are out of vocab-
ulary but in the source text; on the other hand, the
model would potentially give preference to the ap-
pearing words, which caters to the fact that most
keyphrases tend to appear in the source text.

S expl(tele;).y € X

Jixi=yt

Ye(x;) = o(h] We)s;

1
pC(yt’yl,...,t_l, x) = 7

(6)
where x is the set of all of the unique words in
the source text x, o is a non-linear function and
W, € Ris a learned parameter matrix. Z is the
sum of all the scores and is used for normalization.
Please see (Gu et al., 2016) for more details.

4 Experiment Settings

This section begins by discussing how we de-
signed our evaluation experiments, followed by
the description of training and testing datasets.
Then, we introduce our evaluation metrics and
baselines.

4.1 Training Dataset

There are several publicly-available datasets for
evaluating keyphrase generation. The largest one
came from Krapivin et al. (2008), which con-
tains 2,304 scientific publications. However, this
amount of data is unable to train a robust recur-
rent neural network model. In fact, there are mil-
lions of scientific papers available online, each of
which contains the keyphrases that were assigned
by their authors. Therefore, we collected a large
amount of high-quality scientific metadata in the
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computer science domain from various online dig-
ital libraries, including ACM Digital Library, Sci-
enceDirect, Wiley, and Web of Science etc. (Han
et al., 2013; Rui et al., 2016). In total, we ob-
tained a dataset of 567,830 articles, after remov-
ing duplicates and overlaps with testing datasets,
which is 200 times larger than the one of Krapivin
et al. (2008). Note that our model is only trained
on 527,830 articles, since 40,000 publications are
randomly held out, among which 20,000 articles
were used for building a new test dataset KP20k.
Another 20,000 articles served as the validation
dataset to check the convergence of our model, as
well as the training dataset for supervised base-
lines.

4.2 Testing Datasets

For evaluating the proposed model more compre-
hensively, four widely-adopted scientific publica-
tion datasets were used. In addition, since these
datasets only contain a few hundred or a few thou-
sand publications, we contribute a new testing
dataset KP20k with a much larger number of sci-
entific articles. We take the title and abstract as
the source text. Each dataset is described in detail
below.

— Inspec (Hulth, 2003): This dataset provides
2,000 paper abstracts. We adopt the 500 test-
ing papers and their corresponding uncon-
trolled keyphrases for evaluation, and the re-
maining 1,500 papers are used for training
the supervised baseline models.

— Krapivin (Krapivin et al., 2008): This
dataset provides 2,304 papers with full-text
and author-assigned keyphrases. However,
the author did not mention how to split test-
ing data, so we selected the first 400 papers
in alphabetical order as the testing data, and
the remaining papers are used to train the su-
pervised baselines.

— NUS (Nguyen and Kan, 2007): We use the
author-assigned keyphrases and treat all 211
papers as the testing data. Since the NUS
dataset did not specifically mention the ways
of splitting training and testing data, the re-
sults of the supervised baseline models are
obtained through a five-fold cross-validation.

— SemEval-2010 (Kim et al., 2010): 288 ar-
ticles were collected from the ACM Digital



Library. 100 articles were used for testing
and the rest were used for training supervised
baselines.

KP20k: We built a new testing dataset that
contains the titles, abstracts, and keyphrases
of 20,000 scientific articles in computer sci-
ence. They were randomly selected from our
obtained 567,830 articles. Due to the mem-
ory limits of implementation, we were not
able to train the supervised baselines on the
whole training set. Thus we take the 20,000
articles in the validation set to train the su-
pervised baselines. It is worth noting that we
also examined their performance by enlarg-
ing the training dataset to 50,000 articles, but
no significant improvement was observed.

4.3 Implementation Details

In total, there are 2,780,316 (text, keyphrase) pairs
for training, in which text refers to the concate-
nation of the title and abstract of a publication,
and keyphrase indicates an author-assigned key-
word. The text pre-processing steps including to-
kenization, lowercasing and replacing all digits
with symbol (digit) are applied. Two encoder-
decoder models are trained, one with only at-
tention mechanism (RNN) and one with both at-
tention and copying mechanism enabled (Copy-
RNN). For both models, we choose the top 50,000
frequently-occurred words as our vocabulary, the
dimension of embedding is set to 150, the di-
mension of hidden layers is set to 300, and the
word embeddings are randomly initialized with
uniform distribution in [-0.1,0.1]. Models are op-
timized using Adam (Kingma and Ba, 2014) with
initial learning rate = 10~, gradient clipping = 0.1
and dropout rate = 0.5. The max depth of beam
search is set to 6, and the beam size is set to 200.
The training is stopped once convergence is de-
termined on the validation dataset (namely early-
stopping, the cross-entropy loss stops dropping for
several iterations).

In the generation of keyphrases, we find that
the model tends to assign higher probabilities for
shorter keyphrases, whereas most keyphrases con-
tain more than two words. To resolve this problem,
we apply a simple heuristic by preserving only the
first single-word phrase (with the highest generat-
ing probability) and removing the rest.
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4.4 Baseline Models

Four unsupervised algorithms (Tf-Idf, Tex-
tRank (Mihalcea and Tarau, 2004), SingleR-
ank (Wan and Xiao, 2008), and ExpandRank (Wan
and Xiao, 2008)) and two supervised algorithms
(KEA (Witten et al., 1999) and Maui (Medelyan
et al., 2009a)) are adopted as baselines. We set up
the four unsupervised methods following the opti-
mal settings in (Hasan and Ng, 2010), and the two
supervised methods following the default setting
as specified in their papers.

4.5 Evaluation Metric

Three evaluation metrics, the macro-averaged pre-
cision, recall and F-measure (F1) are employed
for measuring the algorithm’s performance. Fol-
lowing the standard definition, precision is defined
as the number of correctly-predicted keyphrases
over the number of all predicted keyphrases, and
recall is computed by the number of correctly-
predicted keyphrases over the total number of data
records. Note that, when determining the match of
two keyphrases, we use Porter Stemmer for pre-
processing.

5 Results and Analysis

We conduct an empirical study on three different
tasks to evaluate our model.

5.1 Predicting Present Keyphrases

This is the same as the keyphrase extraction task
in prior studies, in which we analyze how well our
proposed model performs on a commonly-defined
task. To make a fair comparison, we only con-
sider the present keyphrases for evaluation in this
task. Table 2 provides the performances of the six
baseline models, as well as our proposed models
(i.e., RNN and CopyRNN). For each method, the
table lists its F-measure at top 5 and top 10 pre-
dictions on the five datasets. The best scores are
highlighted in bold and the underlines indicate the
second best performances.

The results show that the four unsupervised
models (Tf-idf, TextTank, SingleRank and Ex-
pandRank) have a robust performance across dif-
ferent datasets. The ExpandRank fails to return
any result on the KP20k dataset, due to its high
time complexity. The measures on NUS and Se-
mEval here are higher than the ones reported in
(Hasan and Ng, 2010) and (Kim et al., 2010),
probably because we utilized the paper abstract
instead of the full text for training, which may



Method Inspec Krapivin NUS SemEval KP20k
F,@5 F,@10 | F;@5 F,@10 | F,@5 F,@10 | F;@5 F,@10 | F;@5 F,;@10

Tf-1df 0.221 0313 | 0.129 0.160 | 0.136  0.184 | 0.128  0.194 | 0.102  0.126
TextRank 0.223  0.281 | 0.189 0.162 | 0.195 0.196 | 0.176  0.187 | 0.175  0.147
SingleRank | 0.214  0.306 | 0.189 0.162 | 0.140 0.173 | 0.135 0.176 | 0.096  0.119
ExpandRank | 0.210  0.304 | 0.081 0.126 | 0.132 0.164 | 0.139  0.170 N/A N/A
Maui 0.040 0.042 | 0249 0.216 | 0.249 0.268 | 0.044 0.039 | 0.270  0.230
KEA 0.098 0.126 | 0.110 0.152 | 0.069 0.084 | 0.025 0.026 | 0.171  0.154
RNN 0.085 0.064 | 0.135 0.088 | 0.169 0.127 | 0.157 0.124 | 0.179  0.189
CopyRNN | 0.278 0342 | 0311 0.266 | 0334 0326 | 0.293 0.304 | 0.333  0.262

Table 2: The performance of predicting present keyphrases of various models on five benchmark datasets

filter out some noisy information. The perfor-
mance of the two supervised models (i.e., Maui
and KEA) were unstable on some datasets, but
Maui achieved the best performances on three
datasets among all the baseline models.

As for our proposed keyphrase prediction ap-
proaches, the RNN model with the attention mech-
anism did not perform as well as we expected. It
might be because the RNN model is only con-
cerned with finding the hidden semantics behind
the text, which may tend to generate keyphrases
or words that are too general and may not neces-
sarily refer to the source text. In addition, we ob-
serve that 2.5% (70,891/2,780,316) of keyphrases
in our dataset contain out-of-vocabulary words,
which the RNN model is not able to recall, since
the RNN model can only generate results with
the 50,000 words in vocabulary. This indicates
that a pure generative model may not fit the ex-
traction task, and we need to further link back to
the language usage within the source text. The
CopyRNN model, by considering more contextual
information, significantly outperforms not only
the RNN model but also all baselines, exceed-
ing the best baselines by more than 20% on av-
erage. This result demonstrates the importance
of source text to the extraction task. Besides,
nearly 2% of all correct predictions contained out-
of-vocabulary words.

The example in Figure 1(a) shows the result of
predicted present keyphrases by RNN and Copy-
RNN for an article about video search. We see
that both models can generate phrases that relate to
the topic of information retrieval and video. How-
ever most of RNN predictions are high-level ter-
minologies, which are too general to be selected
as keyphrases. CopyRNN, on the other hand,
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predicts more detailed phrases like “video meta-
data” and “integrated ranking”. An interesting bad
case, “rich content” coordinates with a keyphrase
“video metadata”, and the CopyRNN mistakenly
puts it into prediction.

5.2 Predicting Absent Keyphrases

As stated, one important motivation for this work
is that we are interested in the proposed model’s
capability for predicting absent keyphrases based
on the “understanding” of content. It is worth
noting that such prediction is a very challenging
task, and, to the best of our knowledge, no existing
methods can handle this task. Therefore, we only
provide the RNN and CopyRNN performances in
the discussion of the results of this task. Here, we
evaluate the performance within the recall of the
top 10 and top 50 results, to see how many absent
keyphrases can be correctly predicted. We use the
absent keyphrases in the testing datasets for eval-
uation.

Dataset RNN CopyRNN
R@10 R@50 | R@10 R@50
Inspec 0.031  0.061 | 0.047 0.100
Krapivin | 0.095 0.156 | 0.113  0.202
NUS 0.050 0.089 | 0.058 0.116
SemEval | 0.041 0.060 | 0.043 0.067
KP20k | 0.083 0.144 | 0.125 0.211

Table 3: Absent keyphrases prediction perfor-
mance of RNN and CopyRNN on five datasets

Table 3 presents the recall results of the top
10/50 predicted keyphrases for our RNN and
CopyRNN models, in which we observe that the
CopyRNN can, on average, recall around 8%



(15%) of keyphrases at top 10 (50) predictions.
This indicates that, to some extent, both models
can capture the hidden semantics behind the tex-
tual content and make reasonable predictions. In
addition, with the advantage of features from the
source text, the CopyRNN model also outperforms
the RNN model in this condition, though it does
not show as much improvement as the present
keyphrase extraction task. An example is shown
in Figure 1(b), in which we see that two absent
keyphrases, “video retrieval” and “video index-
ing”, are correctly recalled by both models. Note
that the term “indexing” does not appear in the
text, but the models may detect the information
“index videos” in the first sentence and paraphrase
it to the target phrase. And the CopyRNN success-
fully predicts another two keyphrases by capturing
the detailed information from the text (highlighted
text segments).

Model Fq Model |

Tf-1df 0.270 | ExpandRank | 0.269
TextRank 0.097 | KeyCluster 0.140
SingleRank | 0.256 | CopyRNN 0.164

Table 4: Keyphrase prediction performance of
CopyRNN on DUC-2001. The model is trained
on scientific publication and evaluated on news.

5.3 Transferring the Model to the News
Domain

RNN and CopyRNN are supervised models, and
they are trained on data in a specific domain and
writing style. However, with sufficient training on
a large-scale dataset, we expect the models to be
able to learn universal language features that are
also effective in other corpora. Thus in this task,
we will test our model on another type of text, to
see whether the model would work when being
transferred to a different environment.

We use the popular news article dataset DUC-
2001 (Wan and Xiao, 2008) for analysis. The
dataset consists of 308 news articles and 2,488
manually annotated keyphrases. The result of this
analysis is shown in Table 4, from which we could
see that the CopyRNN can extract a portion of cor-
rect keyphrases from a unfamiliar text. Compared
to the results reported in (Hasan and Ng, 2010),
the performance of CopyRNN is better than Tex-
tRank (Mihalcea and Tarau, 2004) and KeyClus-
ter (Liu et al., 2009), but lags behind the other
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three baselines.
As it is transferred to a corpus in a completely

different type and domain, the model encounters
more unknown words and has to rely more on
the positional and syntactic features within the
text. In this experiment, the CopyRNN recalls
766 keyphrases. 14.3% of them contain out-of-
vocabulary words, and many names of persons and
places are correctly predicted.

6 Discussion

Our experimental results demonstrate that the
CopyRNN model not only performs well on pre-
dicting present keyphrases, but also has the abil-
ity to generate topically relevant keyphrases that
are absent in the text. In a broader sense, this
model attempts to map a long text (i.e., paper ab-
stract) with representative short text chunks (i.e.,
keyphrases), which can potentially be applied
to improve information retrieval performance by
generating high-quality index terms, as well as as-
sisting user browsing by summarizing long docu-
ments into short, readable phrases.

Thus far, we have tested our model with sci-
entific publications and news articles, and have
demonstrated that our model has the ability to cap-
ture universal language patterns and extract key in-
formation from unfamiliar texts. We believe that
our model has a greater potential to be general-
ized to other domains and types, like books, online
reviews, etc., if it is trained on a larger data cor-
pus. Also, we directly applied our model, which
was trained on a publication dataset, into generat-
ing keyphrases for news articles without any adap-
tive training. We believe that with proper training
on news data, the model would make further im-
provement.

Additionally, this work mainly studies the prob-
lem of discovering core content from textual mate-
rials. Here, the encoder-decoder framework is ap-
plied to model language; however, such a frame-
work can also be extended to locate the core infor-
mation on other data resources, such as summariz-
ing content from images and videos.

7 Conclusions and Future Work

In this paper, we proposed an RNN-based gen-
erative model for predicting keyphrases in scien-
tific text. To the best of our knowledge, this is
the first application of the encoder-decoder model
to a keyphrase prediction task. Our model sum-
marizes phrases based the deep semantic meaning



Title: Towards content-based relevance ranking for video search

Abstract: Most existing web video search engines index videos by file names, URLs, and surrounding texts. These types of video metadata roughly describe
the whole video in an abstract level without taking the rich content, such as semantic content descriptions and speech within the video, into consideration.
Therefore the relevance ranking of the video search results is not satisfactory as the details of video contents are ignored. In this paper we propose a novel
relevance ranking approach for Web-based video search using both video metadata and the rich content contained in the videos. To leverage real content
into ranking, the videos are segmented into shots, which are smaller and more semantic-meaningful retrievable units, and then more detailed information of
video content such as semantic descriptions and speech of each shots are used to improve the retrieval and ranking performance. With video metadata and
content information of shots, we developed an integrated ranking approach, which achieves improved ranking performance. We also introduce machine
learning into the ranking system, and compare them with IR-model (information retrieval model) based method. The evaluation results demonstrate the
effectiveness of the proposed ranking methods.

(a) Present Keyphrase

RNN: 1. information retrieval; 2. video search; 3. search engine; 4. video content; 5. machine learning; 6. web video; 7. content based;
8. semantic content; 9. web based video; 10. web based

CopyRNN: 1.information retrieval; 2. video search; 3. ranking; 4. machine learning; 5. relevance ranking; 6. video metadata; 7. integrated ranking;
8. web video; 9. web video search; 10. rich content

(b) Absent Keyphrase

RNN: 1. video retrieval; 2. relevance feedback; 3. video summarization; 4.query expansion; 5.video indexing; 6.semantic web; 7. multimedia retrieval;
8. image retrieval; 9. web search; 10. query processing

CopyRNN: 1.video retrieval; 2. web search; 3. content ranking; 4. content based retrieval; 5. content retrieval; 6. video indexing; 7. relevance feedback;
8. video ranking; 9. semantic web; 10. content based video retrieval; 34. content based ranking; 61. video segmentation

Figure 1: An example of predicted keyphrase by RNN and CopyRNN. Phrases shown in bold are correct
predictions.
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