
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 506–517
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1047

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 506–517
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1047

Learning word-like units from joint audio-visual analysis

David Harwath and James Glass
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139, USA

{dharwath,glass}@mit.edu

Abstract

Given a collection of images and spoken
audio captions, we present a method for
discovering word-like acoustic units in the
continuous speech signal and grounding
them to semantically relevant image re-
gions. For example, our model is able
to detect spoken instances of the words
“lighthouse” within an utterance and as-
sociate them with image regions contain-
ing lighthouses. We do not use any form
of conventional automatic speech recog-
nition, nor do we use any text transcrip-
tions or conventional linguistic annota-
tions. Our model effectively implements
a form of spoken language acquisition, in
which the computer learns not only to rec-
ognize word categories by sound, but also
to enrich the words it learns with seman-
tics by grounding them in images.

1 Introduction

1.1 Problem Statement and Motivation
Automatically discovering words and other el-
ements of linguistic structure from continuous
speech has been a longstanding goal in com-
putational linguists, cognitive science, and other
speech processing fields. Practically all humans
acquire language at a very early age, but this task
has proven to be an incredibly difficult problem for
computers. While conventional automatic speech
recognition (ASR) systems have a long history and
have recently made great strides thanks to the re-
vival of deep neural networks (DNNs), their re-
liance on highly supervised training paradigms has
essentially restricted their application to the ma-
jor languages of the world, accounting for a small
fraction of the more than 7,000 human languages
spoken worldwide (Lewis et al., 2016). The main

reason for this limitation is the fact that these su-
pervised approaches require enormous amounts of
very expensive human transcripts. Moreover, the
use of the written word is a convenient but limiting
convention, since there are many oral languages
which do not even employ a writing system. In
constrast, infants learn to communicate verbally
before they are capable of reading and writing - so
there is no inherent reason why spoken language
systems need to be inseparably tied to text.

The key contribution of this paper has two
facets. First, we introduce a methodology capable
of not only discovering word-like units from con-
tinuous speech at the waveform level with no ad-
ditional text transcriptions or conventional speech
recognition apparatus. Instead, we jointly learn
the semantics of those units via visual associa-
tions. Although we evaluate our algorithm on an
English corpus, it could conceivably run on any
language without requiring any text or associated
ASR capability. Second, from a computational
perspective, our method of speech pattern discov-
ery runs in linear time. Previous work has pre-
sented algorithms for performing acoustic pattern
discovery in continuous speech (Park and Glass,
2008; Jansen et al., 2010; Jansen and Van Durme,
2011) without the use of transcriptions or another
modality, but those algorithms are limited in their
ability to scale by their inherent O(n2) complex-
ity, since they do an exhaustive comparison of the
data against itself. Our method leverages corre-
lated information from a second modality - the vi-
sual domain - to guide the discovery of words and
phrases. This enables our method to run in O(n)
time, and we demonstrate it scalability by discov-
ering acoustic patterns in over 522 hours of audio.

1.2 Previous Work

A sub-field within speech processing that has
garnered much attention recently is unsupervised
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speech pattern discovery. Segmental Dynamic
Time Warping (S-DTW) was introduced by Park
and Glass (2008), which discovers repetitions of
the same words and phrases in a collection of un-
transcribed acoustic data. Many subsequent ef-
forts extended these ideas (Jansen et al., 2010;
Jansen and Van Durme, 2011; Dredze et al., 2010;
Harwath et al., 2012; Zhang and Glass, 2009).
Alternative approaches based on Bayesian non-
parametric modeling (Lee and Glass, 2012; On-
del et al., 2016) employed a generative model
to cluster acoustic segments into phoneme-like
categories, and related works aimed to segment
and cluster either reference or learned phoneme-
like tokens into higher-level units (Johnson, 2008;
Goldwater et al., 2009; Lee et al., 2015).

While supervised object detection is a stan-
dard problem in the vision community, several re-
cent works have tackled the problem of weakly-
supervised or unsupervised object localization
(Bergamo et al., 2014; Cho et al., 2015; Zhou
et al., 2015; Cinbis et al., 2016). Although the fo-
cus of this work is discovering acoustic patterns,
in the process we jointly associate the acoustic
patterns with clusters of image crops, which we
demonstrate capture visual patterns as well.

The computer vision and NLP communities
have begun to leverage deep learning to create
multimodal models of images and text. Many
works have focused on generating annotations or
text captions for images (Socher and Li, 2010;
Frome et al., 2013; Socher et al., 2014; Karpathy
et al., 2014; Karpathy and Li, 2015; Vinyals et al.,
2015; Fang et al., 2015; Johnson et al., 2016). One
interesting intersection between word induction
from phoneme strings and multimodal modeling
of images and text is that of Gelderloos and Chru-
paa (2016), who uses images to segment words
within captions at the phoneme string level. Other
work has taken these ideas beyond text, and at-
tempted to relate images to spoken audio captions
directly at the waveform level (Roy, 2003; Har-
wath and Glass, 2015; Harwath et al., 2016). The
work of (Harwath et al., 2016) is the most similar
to ours, in which the authors learned embeddings
at the entire image and entire spoken caption level
and then used the embeddings to perform bidirec-
tional retrieval. In this work, we go further by au-
tomatically segmenting and clustering the spoken
captions into individual word-like units, as well as
the images into object-like categories.

2 Experimental Data

We employ a corpus of over 200,000 spoken cap-
tions for images taken from the Places205 dataset
(Zhou et al., 2014), corresponding to over 522
hours of speech data. The captions were col-
lected using Amazon’s Mechanical Turk service,
in which workers were shown images and asked
to describe them verbally in a free-form manner.
The data collection scheme is described in detail
in Harwath et al. (2016), but the experiments in
this paper leverage nearly twice the amount of
data. For training our multimodal neural network
as well as the pattern discovery experiments, we
use a subset of 214,585 image/caption pairs, and
we hold out a set of 1,000 pairs for evaluating the
multimodal network’s retrieval ability. Because
we lack ground truth text transcripts for the data,
we used Google’s Speech Recognition public API
to generate proxy transcripts which we use when
analyzing our system. Note that the ASR was only
used for analysis of the results, and was not in-
volved in any of the learning.

3 Audio-Visual Embedding Neural
Networks

We first train a deep multimodal embedding net-
work similar in spirit to the one described in
Harwath et al. (2016), but with a more sophisti-
cated architecture. The model is trained to map
entire image frames and entire spoken captions
into a shared embedding space; however, as we
will show, the trained network can then be used
to localize patterns corresponding to words and
phrases within the spectrogram, as well as visual
objects within the image by applying it to small
sub-regions of the image and spectrogram. The
model is comprised of two branches, one which
takes as input images, and the other which takes as
input spectrograms. The image network is formed
by taking the off-the-shelf VGG 16 layer network
(Simonyan and Zisserman, 2014) and replacing
the softmax classification layer with a linear trans-
form which maps the 4096-dimensional activa-
tions of the second fully connected layer into our
1024-dimensional multimodal embedding space.
In our experiments, the weights of this projection
layer are trained, but the layers taken from the
VGG network below it are kept fixed. The sec-
ond branch of our network analyzes speech spec-
trograms as if they were black and white images.
Our spectrograms are computed using 40 log Mel
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filterbanks with a 25ms Hamming window and
a 10ms shift. The input to this branch always
has 1 color channel and is always 40 pixels high
(corresponding to the 40 Mel filterbanks), but the
width of the spectrogram varies depending upon
the duration of the spoken caption, with each pixel
corresponding to approximately 10 milliseconds
worth of audio. The architecture we use is entirely
convolutional and shown below, where C denotes
the number of convolutional channels, W is filter
width, H is filter height, and S is pooling stride.

1. Convolution: C=128, W=1, H=40, ReLU
2. Convolution: C=256, W=11, H=1, ReLU
3. Maxpool: W=3, H=1, S=2
4. Convolution: C=512, W=17, H=1, ReLU
5. Maxpool: W=3, H=1, S=2
6. Convolution: C=512, W=17, H=1, ReLU
7. Maxpool: W=3, H=1, S=2
8. Convolution: C=1024, W=17, H=1, ReLU
9. Meanpool over entire caption

10. L2 normalization
In practice during training, we restrict the cap-
tion spectrograms to all be 1024 frames wide (i.e.,
10sec of speech) by applying truncation or zero
padding. Additionally, both the images and spec-
trograms are mean normalized before training.
The overall multimodal network is formed by ty-
ing together the image and audio branches with a
layer which takes both of their output vectors and
computes an inner product between them, repre-
senting the similarity score between a given im-
age/caption pair. We train the network to assign
high scores to matching image/caption pairs, and
lower scores to mismatched pairs.

Within a minibatch of B image/caption pairs,
let Sp

j , j = 1, . . . , B denote the similarity score of
the jth image/caption pair as output by the neural
network. Next, for each pair we randomly sam-
ple one impostor caption and one impostor image
from the same minibatch. Let Si

j denote the simi-
larity score between the jth caption and its impos-
tor image, and Sc

j be the similarity score between
the jth image and its impostor caption. The total
loss for the entire minibatch is then computed as

L(θ) =
B∑

j=1

[max(0, Sc
j − Sp

j + 1)

+ max(0, Si
j − Sp

j + 1)] (1)

We train the neural network with 50 epochs of
stochastic gradient descent using a batch size B =

128, a momentum of 0.9, and a learning rate of 1e-
5 which is set to geometrically decay by a factor
between 2 and 5 every 5 to 10 epochs.

4 Finding and Clustering Audio-Visual
Caption Groundings

Although we have trained our multimodal network
to compute embeddings at the granularity of entire
images and entire caption spectrograms, we can
easily apply it in a more localized fashion. In the
case of images, we can simply take any arbitrary
crop of an original image and resize it to 224x224
pixels. The audio network is even more trivial to
apply locally, because it is entirely convolutional
and the final mean pooling layer ensures that the
output will be a 1024-dim vector no matter the
extent of the input. The bigger question is where
to locally apply the networks in order to discover
meaningful acoustic and visual patterns.

Given an image and its corresponding spoken
audio caption, we use the term grounding to refer
to extracting meaningful segments from the cap-
tion and associating them with an appropriate sub-
region of the image. For example, if an image
depicted a person eating ice cream and its cap-
tion contained the spoken words “A person is en-
joying some ice cream,” an ideal set of ground-
ings would entail the acoustic segment contain-
ing the word “person” linked to a bounding box
around the person, and the segment containing the
word “ice cream” linked to a box around the ice
cream. We use a constrained brute force ranking
scheme to evaluate all possible groundings (with
a restricted granularity) between an image and its
caption. Specifically, we divide the image into
a grid, and extract all of the image crops whose
boundaries sit on the grid lines. Because we are
mainly interested in extracting regions of interest
and not high precision object detection boxes, to
keep the number of proposal regions under con-
trol we impose several restrictions. First, we use a
10x10 grid on each image regardless of its original
size. Second, we define minimum and maximum
aspect ratios as 2:3 and 3:2 so as not to introduce
too much distortion and also to reduce the num-
ber of proposal boxes. Third, we define a mini-
mum bounding width as 30% of the original image
width, and similarly a minimum height as 30% of
the original image height. In practice, this results
in a few thousand proposal regions per image.

To extract proposal segments from the audio
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caption spectrogram, we similarly define a 1-dim
grid along the time axis, and consider all possible
start/end points at 10 frame (pixel) intervals. We
impose minimum and maximum segment length
constraints at 50 and 100 frames (pixels), implying
that our discovered acoustic patterns are restricted
to fall between 0.5 and 1 second in duration. The
number of proposal segments will vary depend-
ing on the caption length, and typically number
in the several thousands. Note that when learn-
ing groundings we consider the entire audio se-
quence, and do not incorporate the 10sec duration
constraint imposed during training.

Once we have extracted a set of proposed visual
bounding boxes and acoustic segments for a given
image/caption pair, we use our multimodal net-
work to compute a similarity score between each
unique image crop/acoustic segment pair. Each
triplet of an image crop, acoustic segment, and
similarity score constitutes a proposed grounding.
A naive approach would be to simply keep the top
N groundings from this list, but in practice we
ran into two problems with this strategy. First,
many proposed acoustic segments capture mostly
silence due to pauses present in natural speech. We
solve this issue by using a simple voice activity de-
tector (VAD) which was trained on the TIMIT cor-
pus(Garofolo et al., 1993). If the VAD estimates
that 40% or more of any proposed acoustic seg-
ment is silence, we discard that entire grounding.
The second problem we ran into is the fact that the
top of the sorted grounding list is dominated by
highly overlapping acoustic segments. This makes
sense, because highly informative content words
will show up in many different groundings with
slightly perturbed start or end times. To allevi-
ate this issue, when evaluating a grounding from
the top of the proposal list we compare the in-
terval intersection over union (IOU) of its acous-
tic segment against all acoustic segments already
accepted for further consideration. If the IOU
exceeds a threshold of 0.1, we discard the new
grounding and continue moving down the list. We
stop accumulating groundings once the scores fall
to below 50% of the top score in the “keep” list,
or when 10 groundings have been added to the
“keep” list. Figure 1 displays a pictorial example
of our grounding procedure.

Once we have completed the grounding proce-
dure, we are left with a small set of regions of
interest in each image and caption spectrogram.

We use the respective branches of our multimodal
network to compute embedding vectors for each
grounding’s image crop and acoustic segment. We
then employ k-means clustering separately on the
collection of image embedding vectors as well as
the collection of acoustic embedding vectors. The
last step is to establish an affinity score between
each image cluster I and each acoustic cluster A;
we do so using the equation

Affinity(I,A) =
∑

i∈I

∑

a∈A
i>a · Pair(i,a) (2)

where i is an image crop embedding vector, a is an
acoustic segment embedding vector, and Pair(i,a)
is equal to 1 when i and a belong to the same
grounding pair, and 0 otherwise. After clustering,
we are left with a set of acoustic pattern clusters, a
set of visual pattern clusters, and a set of linkages
describing which acoustic clusters are associated
with which image clusters. In the next section, we
investigate these clusters in more detail.

5 Experiments and Analysis

Table 1: Results for image search and annotation
on the Places audio caption data (214k training
pairs, 1k testing pairs). Recall is shown for the
top 1, 5, and 10 hits. The model we use in this
paper is compared against the meanpool variant of
the model architecture presented in Harwath et al.
(2016). For both training and testing, the captions
were truncated/zero-padded to 10 seconds.

Search
Model R@1 R@5 R@10

(Harwath et al., 2016) 0.090 0.261 0.372
This work (audio) 0.112 0.312 0.431
This work (text) 0.111 0.383 0.525

Annotation
Model R@1 R@5 R@10

(Harwath et al., 2016) 0.098 0.266 0.352
This work (audio) 0.120 0.307 0.438
This work (text) 0.113 0.341 0.493

We trained our multimodal network on a set of
214,585 image/caption pairs, and vetted it with an
image search (given caption, find image) and an-
notation (given image, find caption) task similar
to the one used in Harwath et al. (2016); Karpathy
et al. (2014); Karpathy and Li (2015). The im-
age annotation and search recall scores on a 1,000
image/caption pair held-out test set are shown in
Table 1. Also shown in this table are the scores

509



Figure 1: An example of our grounding method. The left image displays a grid defining the allowed
start and end coordinates for the bounding box proposals. The bottom spectrogram displays several
audio region proposals drawn as the families of stacked red line segments. The image on the right and
spectrogram on the top display the final output of the grounding algorithm. The top spectrogram also
displays the time-aligned text transcript of the caption, so as to demonstrate which words were captured
by the groundings. In this example, the top 3 groundings have been kept, with the colors indicating the
audio segment which is grounded to each bounding box.

Word Count Word Count

ocean 2150 castle 766
(silence) 127 (silence) 70
the ocean 72 capital 39
blue ocean 29 large castle 24
body ocean 22 castles 23

oceans 16 (noise) 21
ocean water 16 council 13

(noise) 15 stone castle 12
of ocean 14 capitol 10

oceanside 14 old castle 10

Table 2: Examples of the breakdown of
word/phrase identities of several acoustic clusters

achieved by a model which uses the ASR text tran-
scriptions for each caption instead of the speech
audio. The text captions were truncated/padded
to 20 words, and the audio branch of the network
was replaced with a branch with the following ar-
chitecture:

1. Word embedding layer of dimension 200

2. Temporal Convolution: C=512, W=3, ReLU
3. Temporal Convolution: C=1024, W=3
4. Meanpool over entire caption
5. L2 normalization

One would expect that access to ASR hypotheses
should improve the recall scores, but the perfor-
mance gap is not enormous. Access to the ASR
hypotheses provides a relative improvement of ap-
proximately 21.8% for image search R@10 and
12.5% for annotation R@10 compared to using no
transcriptions or ASR whatsoever.

We performed the grounding and pattern clus-
tering steps on the entire training dataset, which
resulted in a total of 1,161,305 unique ground-
ing pairs. For evaluation, we wish to assign a la-
bel to each cluster and cluster member, but this is
not completely straightforward since each acous-
tic segment may capture part of a word, a whole
word, multiple words, etc. Our strategy is to force-
align the Google recognition hypothesis text to the
audio, and then assign a label string to each acous-
tic segment based upon which words it overlaps
in time. The alignments are created with the help
of a Kaldi (Povey et al., 2011) speech recognizer
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Table 3: Top 50 clusters with k = 500 sorted by increasing variance. Legend: |Cc| is acoustic cluster
size, |Ci| is associated image cluster size, Pur. is acoustic cluster purity, σ2 is acoustic cluster variance,
and Cov. is acoustic cluster coverage. A dash (-) indicates a cluster whose majority label is silence.

Trans |Cc| |Ci| Pur. σ2 Cov. Trans |Cc| |Ci| Pur. σ2 Cov.

- 1059 3480 0.70 0.26 - snow 4331 3480 0.85 0.26 0.45
desert 1936 2896 0.82 0.27 0.67 kitchen 3200 2990 0.88 0.28 0.76

restaurant 1921 2536 0.89 0.29 0.71 mountain 4571 2768 0.86 0.30 0.38
black 4369 2387 0.64 0.30 0.17 skyscraper 843 3205 0.84 0.30 0.84
bridge 1654 2025 0.84 0.30 0.25 tree 5303 3758 0.90 0.30 0.16
castle 1298 2887 0.72 0.31 0.74 bridge 2779 2025 0.81 0.32 0.41

- 2349 2165 0.31 0.33 - ocean 2913 3505 0.87 0.33 0.71
table 3765 2165 0.94 0.33 0.23 windmill 1458 3752 0.71 0.33 0.76

window 1890 2795 0.85 0.34 0.21 river 2643 3204 0.76 0.35 0.62
water 5868 3204 0.90 0.35 0.27 beach 1897 2964 0.79 0.35 0.64
flower 3906 2587 0.92 0.35 0.67 wall 3158 3636 0.84 0.35 0.23

sky 4306 6055 0.76 0.36 0.34 street 2602 2385 0.86 0.36 0.49
golf course 1678 3864 0.44 0.36 0.63 field 3896 3261 0.74 0.36 0.37

tree 4098 3758 0.89 0.36 0.13 lighthouse 1254 1518 0.61 0.36 0.83
forest 1752 3431 0.80 0.37 0.56 church 2503 3140 0.86 0.37 0.72
people 3624 2275 0.91 0.37 0.14 baseball 2777 1929 0.66 0.37 0.86
field 2603 3922 0.74 0.37 0.25 car 3442 2118 0.79 0.38 0.27

people 4074 2286 0.92 0.38 0.17 shower 1271 2206 0.74 0.38 0.82
people walking 918 2224 0.63 0.38 0.25 wooden 3095 2723 0.63 0.38 0.28

mountain 3464 3239 0.88 0.38 0.29 tree 3676 2393 0.89 0.39 0.11
- 1976 3158 0.28 0.39 - snow 2521 3480 0.79 0.39 0.24

water 3102 2948 0.90 0.39 0.14 rock 2897 2967 0.76 0.39 0.26
- 2918 3459 0.08 0.39 - night 3027 3185 0.44 0.39 0.59

station 2063 2083 0.85 0.39 0.62 chair 2589 2288 0.89 0.39 0.22
building 6791 3450 0.89 0.40 0.21 city 2951 3190 0.67 0.40 0.50

Figure 2: Scatter plot of audio cluster purity
weighted by log cluster size vs variance for k =
500 (least-squares line superimposed).

based on the standard WSJ recipe and trained us-
ing the Google ASR hypothesis as a proxy for the
transcriptions. Any word whose duration is over-
lapped 30% or more by the acoustic segment is in-
cluded in the label string for the segment. We then
employ a majority vote scheme to derive the over-
all cluster labels. When computing the purity of a

cluster, we count a cluster member as matching the
cluster label as long as the overall cluster label ap-
pears in the member’s label string. In other words,
an acoustic segment overlapping the words “the
lighthouse” would receive credit for matching the
overall cluster label “lighthouse”. A breakdown of
the segments captured by two clusters is shown in
Table 2. We investigated some simple schemes for
predicting highly pure clusters, and found that the
empirical variance of the cluster members (aver-
age squared distance to the cluster centroid) was
a good indicator. Figure 2 displays a scatter plot
of cluster purity weighted by the natural log of the
cluster size against the empirical variance. Large,
pure clusters are easily predicted by their low em-
pirical variance, while a high variance is indicative
of a garbage cluster.

Ranking a set of k = 500 acoustic clusters by
their variance, Table 3 displays some statistics for
the 50 lowest-variance clusters. We see that most
of the clusters are very large and highly pure, and
their labels reflect interesting object categories be-
ing identified by the neural network. We addi-
tionally compute the coverage of each cluster by
counting the total number of instances of the clus-
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sky grass sunset ocean river

castle couch wooden lighthouse train

Figure 3: The 9 most central image crops from several image clusters, along with the majority-vote label
of their most associated acoustic pattern cluster

Table 4: Clustering statistics of the acoustic clusters for various values of k and different settings of the
variance-based cluster pruning threshold. Legend: |C| = number of clusters remaining after pruning, |X |
= number of datapoints after pruning, Pur = purity, |L| = number of unique cluster labels, AC = average
cluster coverage

σ2 < 0.9 σ2 < 0.65
k |C| |X | Pur |L| AC |C| |X | Pur |L| AC

250 249 1081514 .364 149 .423 128 548866 .575 108 .463
500 499 1097225 .396 242 .332 278 623159 .591 196 .375
750 749 1101151 .409 308 .406 434 668771 .585 255 .450

1000 999 1103391 .411 373 .336 622 710081 .568 318 .382
1500 1496 1104631 .429 464 .316 971 750162 .566 413 .366
2000 1992 1106418 .431 540 .237 1354 790492 .546 484 .271

ter label anywhere in the training data, and then
compute what fraction of those instances were
captured by the cluster. There are many examples
of high coverage clusters, e.g. the “skyscraper”
cluster captures 84% of all occurrences of the
word “skyscraper”, while the “baseball” cluster
captures 86% of all occurrences of the word “base-
ball”. This is quite impressive given the fact
that no conventional speech recognition was em-
ployed, and neither the multimodal neural network
nor the grounding algorithm had access to the text
transcripts of the captions.

To get an idea of the impact of the k parameter
as well as a variance-based cluster pruning thresh-
old based on Figure 2, we swept k from 250 to
2000 and computed a set of statistics shown in
Table 4. We compute the standard overall clus-
ter purity evaluation metric in addition to the aver-
age coverage across clusters. The table shows the
natural tradeoff between cluster purity and redun-

dancy (indicated by the average cluster coverage)
as k is increased. In all cases, the variance-based
cluster pruning greatly increases both the overall
purity and average cluster coverage metrics. We
also notice that more unique cluster labels are dis-
covered with a larger k.

Next, we examine the image clusters. Figure
3 displays the 9 most central image crops for a
set of 10 different image clusters, along with the
majority-vote label of each image cluster’s asso-
ciated audio cluster. In all cases, we see that the
image crops are highly relevant to their audio clus-
ter label. We include many more example image
clusters in Appendix A.

In order to examine the semantic embedding
space in more depth, we took the top 150 clusters
from the same k = 500 clustering run described
in Table 3 and performed t-SNE (van der Maaten
and Hinton, 2008) analysis on the cluster centroid
vectors. We projected each centroid down to 2 di-
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Figure 4: t-SNE analysis of the 150 lowest-variance audio pattern cluster centroids for k = 500. Dis-
played is the majority-vote transcription of the each audio cluster. All clusters shown contained a mini-
mum of 583 members and an average of 2482, with an average purity of .668.

mensions and plotted their majority-vote labels in
Figure 4. Immediately we see that different clus-
ters which capture the same label closely neigh-
bor one another, indicating that distances in the
embedding space do indeed carry information dis-
criminative across word types (and suggesting that
a more sophisticated clustering algorithm than k-
means would perform better). More interestingly,
we see that semantic information is also reflected
in these distances. The cluster centroids for “lake,”
“river,” “body,” “water,” “waterfall,” “pond,” and
“pool” all form a tight meta-cluster, as do “restau-
rant,” “store,” “shop,” and “shelves,” as well as
“children,” “girl,” “woman,” and “man.” Many
other semantic meta-clusters can be seen in Figure
4, suggesting that the embedding space is captur-
ing information that is highly discriminative both
acoustically and semantically.

Because our experiments revolve around the
discovery of word and object categories, a key
question to address is the extent to which the
supervision used to train the VGG network
constrains or influences the kinds of objects
learned. Because the 1,000 object classes from
the ILSVRC2012 task (Russakovsky et al., 2015)
used to train the VGG network were derived from
WordNet synsets (Fellbaum, 1998), we can mea-
sure the semantic similarity between the words

learned by our network and the ILSVRC2012
class labels by using synset similarity measures
within WordNet. We do this by first building a
list of the 1,000 WordNet synsets associated with
the ILSVRC2012 classes. We then take the set
of unique majority-vote labels associated with the
discovered word clusters for k = 500, filtered by
setting a threshold on their variance (σ2 ≤ 0.65)
so as to get rid of garbage clusters, leaving us with
197 unique acoustic cluster labels. We then look
up each cluster label in WordNet, and compare all
noun senses of the label to every ILSVRC2012
class synset according to the path similarity mea-
sure. This measure describes the distance between
two synsets in a hyponym/hypernym hierarchy,
where a score of 1 represents identity and lower
scores indicate less similarity. We retain the high-
est score between any sense of the cluster label and
any ILSVRC2012 synset. Of the 197 unique clus-
ter labels, only 16 had a distance of 1 from any
ILSVRC12 class, which would indicate an exact
match. A path similarity of 0.5 indicates one de-
gree of separation in the hyponym/hypernym hier-
archy - for example, the similarity between “desk”
and “table” is 0.5. 47 cluster labels were found to
have a similarity of 0.5 to some ILSVRC12 class,
leaving 134 cluster labels whose highest similar-
ity to any ILSVRC12 class was less than 0.5. In
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other words, more than two thirds of the highly
pure pattern clusters learned by our network were
dissimilar to all of the 1,000 ILSVRC12 classes
used to pretrain the VGG network, indicating that
our model is able to generalize far beyond the set
of classes found in the ILSVRC12 data. We dis-
play the labels of the 40 lowest variance acoustic
clusters labels along with the name and similarity
score of their closest ILSVRC12 synset in Table 5.

Cluster ILSVRC synset Similarity
snow cliff.n.01 0.14
desert cliff.n.01 0.12

kitchen patio.n.01 0.25
restaurant restaurant.n.01 1.00
mountain alp.n.01 0.50

black pool table.n.01 0.25
skyscraper greenhouse.n.01 0.33

bridge steel arch bridge.n.01 0.50
tree daisy.n.01 0.14

castle castle.n.02 1.00
ocean cliff.n.01 0.14
table desk.n.01 0.50

windmill cash machine.n.01 0.20
window screen.n.03 0.33

river cliff.n.01 0.12
water menu.n.02 0.25
beach cliff.n.01 0.33
flower daisy.n.01 0.50
wall cliff.n.01 0.33
sky cliff.n.01 0.11

street swing.n.02 0.14
golf course swing.n.02 0.17

field cliff.n.01 0.20
lighthouse beacon.n.03 1.00

forest cliff.n.01 0.20
church church.n.02 1.00
people street sign.n.01 0.17

baseball baseball.n.02 1.00
car freight car.n.01 0.50

shower swing.n.02 0.17
people walking (none) 0.00

wooden (none) 0.00
rock toilet tissue.n.01 0.20
night street sign.n.01 0.14

station swing.n.02 0.20
chair barber chair.n.01 0.50

building greenhouse.n.01 0.50
city cliff.n.01 0.12

white jean.n.01 0.33
sunset street sign.n.01 0.11

Table 5: The 40 lowest variance, uniquely-labeled
acoustic clusters paired with their most similar
ILSVRC2012 synset.

6 Conclusions and Future Work

In this paper, we have demonstrated that a neu-
ral network trained to associate images with the
waveforms representing their spoken audio cap-
tions can successfully be applied to discover and

cluster acoustic patterns representing words or
short phrases in untranscribed audio data. An
analogous procedure can be applied to visual im-
ages to discover visual patterns, and then the two
modalities can be linked, allowing the network
to learn, for example, that spoken instances of
the word “train” are associated with image re-
gions containing trains. This is done without the
use of a conventional automatic speech recogni-
tion system and zero text transcriptions, and there-
fore is completely agnostic to the language in
which the captions are spoken. Further, this is
done in O(n) time with respect to the number
of image/caption pairs, whereas previous state-
of-the-art acoustic pattern discovery algorithms
which leveraged acoustic data alone run in O(n2)
time. We demonstrate the success of our method-
ology on a large-scale dataset of over 214,000 im-
age/caption pairs comprising over 522 hours of
spoken audio data, which is to our knowledge
the largest scale acoustic pattern discovery exper-
iment ever performed. We have shown that the
shared multimodal embedding space learned by
our model is discriminative not only across visual
object categories, but also acoustically and seman-
tically across spoken words.

The future directions in which this research
could be taken are incredibly fertile. Because our
method creates a segmentation as well as an align-
ment between images and their spoken captions,
a generative model could be trained using these
alignments. The model could provide a spoken
caption for an arbitrary image, or even synthe-
size an image given a spoken description. Mod-
eling improvements are also possible, aimed at
the goal of incorporating both visual and acous-
tic localization into the neural network itself. The
same framework we use here could be extended
to video, enabling the learning of actions, verbs,
environmental sounds, and the like. Additionally,
by collecting a second dataset of captions for our
images in a different language, such as Spanish,
our model could be extended to learn the acous-
tic correspondences for a given object category in
both languages. This paves the way for creating a
speech-to-speech translation model not only with
absolutely zero need for any sort of text transcrip-
tions, but also with zero need for directly parallel
linguistic data or manual human translations.
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A Additional Cluster Visualizations

beach cliff pool desert field

chair table staircase statue stone

church forest mountain skyscraper trees

waterfall windmills window city bridge

flowers man wall archway baseball

boat shelves cockpit girl children

building rock kitchen plant hallway
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